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In this paper we will consider a lagrangian given by

Abstract i(x,p) = A(x) + B(a)p

For a problem of calculus of variations in infinite horizon, lins,, A(.) endB(.) two functions. In this setting (1) becomes
ear with respect to the derivative, we use the theory of viscosity

solutions to obtain a unique characterization of the value func- C(z):=A'(x) + 6B(z) =0

tion by an Hamilton-Jacobi equation. This approach allows to

extend in the scalar case known results on turnpike propertied)d can only possess constant solutions. Therefore from most
of the initial conditions, there does’nt exist a solution of (1). If

. emating fromz such a solutiorx(.) = z exists and is optimal,
1 Introduction for instance if the sufficient optimality conditions are satisfied
In this paper we consider a problem of calculus of variations fgoncavity of the objective and transversality condition), then
infinite horizon whose objectivé[] is given by _thls solution is wha_t we calleq below a jcurnp!ke. The problem
is then to characterize the optimal solutions (if any), emanating
T from zo that are not solution of (1). It is relevant to introduce
Je()] = lim e U(w(t), &(t))dt the Most Rapid Approach Paths (MRAPSs), which are the ad-
0 missible trajectories that join, to Z as quickly as possible and
whered is a positive number and.) is a real valued function then rest af for all future time. Following a method proposed
onR x R, linear w.r.t. his second argument. Our interest iBy Miele [14], which is based on the Green theorem, one can
the maximization of/[.] on the pathsz(.) with fixed initial ~obtain sufficient conditions for the optimality of the MRAPs
conditionz(0) = x,, for which the velocities respect somd12] when the Euler equatiafi(z) = 0 possesses only one so-
inequality constraints, like lution Z. More precisely if for the unique solution of (L), the
following condition
a<it)<p Vt>0
Ve, C(e)(T—¢)>0
(c, 8 being real numbers). ) i )
Our goal in this paper is to study the so called Turnpike prof fulfilled, the MRAPs are optimal.
erty which asserts, roughly speaking, in this framework, th¥Yithout loss of generality, we shall take= —1 andj = 1.
there exists a particular solutiat.) (the “turnpike”) such that, /" this paper we propose a new optimality condition of the
from any initial condition, an optimal trajectory reaches as faMRAPS which is necessary and sufficient. We consider more
as possible the path(.) and coincides with this solution for general growth assumptions than the usual ones when one deals

any future time. To our knowledge it does not exist many thed\ith absolutely continuous paths. Our approach is based on a
retical results in this setting. characterization of the value function of a particular Hamilton-
We underline that several papers on turnpikes are found in tfac0bi equation, in terms of viscosity solutions ([13]). This
literature but only few of them are relevant with our problerr?PProach allows also to consider the case of a multiplicity of

These papers can be classified in two categories, dependin&tﬂgmar solutions of the Euler equation, and therefore provides
whether the Euler first order condition a criterion for the choice of the turnpikes in competition, de-

pending on the initial condition. In the last section of the paper,
Lo (z(t), (t) — 13 (x(t), 2(t)) + 6l (x(t),2(t)) =0 (1) anexample which exhibits the different possible occurrences of
turnpikes (one or several) is given.
is a differential equation, the regular case that we don'’t con-
sider here, or an algebraic equation, a case we call singular az1d
that is the aim of the present paper.
In the regular case, the Turnpike property is obtained wheRt us consider the following set
from all initial conditions it is optimal to reaches (asymptot- z(0) = o,
ically) a particular equilibrium of the problem, that is to say @™ (%0) = {x(‘) 1[0, 00[= R, AC, i(t) € [-1, +1] a.e.}

Statement of the problem and assumptions



whose elements are called the admissible paths. We also cllereover if W () denotes the value function of the problem
sider the functional, when it converges, given by : (6),then

T[z()] :/0 e~ [A(z(t)) + B(z(t)@(t)]dt  (2) V(w0) — % = %0) >0, V.

and we are interested by the following optimal control probd-emma 3.3 Let Z be defined by

lem: Z(z) = e VT (V(x) - @)

where n satisfiesy < n < §. Then Z isB.U.C.
We denote by the value function associated to this problem :

Lemma 3.4 Thefunction Z(.) satisfies the following equation

v Jz(.)] 3)

Vizg) = sup  Jz()] (4)
z(.)EAdm4, Z(xo)emp(wo) —
We assume that 1 /T St g :
- A t OB(x(t t)dt
(Hq) : A(.) is twice differentiable and(.) is differentiable. A?ilrlnzo {6 0 e A (1) + oB(=)]() (7)
(H2) : There exists two real numbeks> 0 andy < § such . .
that for allz +e™T Z(x(T))em? ! ))}

max (|A(z)], |A'(z) + 6B(z)|, |A"(z) + 6B'(z)|) < ke’*|  (Dynamic programming equation for the value function (4) as-
sociated to the problem (3))
3 TheHamilton-Jacobi Equation
Lemma 3.5 Thefunction Z(.) isa viscosity solution of (5).
The uniqueness of (generalized) solutions of first order partial
differential equations, defined on unbounded sets is knowntemma 3.6 Thefunction Z(.) is the unique solution in the set

be a hard question and can be obtained only for well chosgnB.U.C. functions of the Hamilton-Jacobi equation (5).
classes of functions (see for instance [1]). For this reason we

do not characterize the value functidhitself, but a transfor- 4 Turnpike

mation of it, denoted” in the sequel, which is solution of a

particular Hamilton-Jacobi equation, for which we are able t6or z a solution of the Euler equation
result of uni har rization.

state a result of unique characterizatio C(z) = A'(Z) + 0B(E) = 0

Proposition 3.1 Under the assumption (H,) et (H») thefunc- an admissible path which links, andz as rapidly as possible,
tion Z defined by is called MRAP{, Z). We call basin oft the following set:
Z(z) = o—nVaTF L <V($) B A(x)) B(z) :={zg s.t. MRAP(zo,Z) is optimal}
Y WhenB(z) is not emptyz is called a turnpike. WheB(z) is
where 7 satisfies v < 7 < 4, is the unique viscosity solutionin  Not reduced to the singletofr}, then we also cal a "true”
the class of B.U.C. (bounded uniformly continuous) functions ~ turnpike. We denote by the set of the solutions of the Euler

of the following Hamilton-Jacobi equation : equation:
E :={z st. C(z) =0}
0Z(z) —|Z'(x) +n 29c Z(x) We also define the following functiof, which is playing an
EEET z°+1 (5) important role in the following
) + 53(;6))‘ —0

S(e0,2) = [ (A') + 5By,
Zo
Proof : The proof is split in four lemmas, for which we do ”OtProposition 4.1 Let us assume (H,)

,(H3), and suppose that
give proofs because of lack of space. () PP

the cardinal of E is finite. Then the two following assertions
are eguivalent:

Lemma32 Let (i) For any zq, there existsaturnpike z € FE (i.e. thereexists z
T s . such that zo € B(z))
E(T) = /0 e " [A'(z(t)) + 0B(z(t))] &(t)dt. (ii) For any z, we have
The problem (3) is equivalent to the problem T(z) == max5(z,7) 2 0 8)
max E(co) (6) Moreover thevalue function of the problemisgivenby V' (z) =

Adme, (A(z) + T(x))/9.



Proof : Assume that the subsét has finite cardinality, and From assumptioi/,, we obtain

assume (8). B
Letz, be an initial conditionzy andz € argmaxg. g S(zo, ).
The pathi(.) := MRAP(xo, %) is given by :

_ o zo—t if t<wmo—1=
-ifzg > T, l‘(t): T if t>z9—1=
_ o zo+t if t<T—mp
-ifzo <7, ()= - if t>%—

Whenz, > Z, the value of the objective along this path is :

+ /0 - e A (2(t)) + 6B(&(t))](t)dt

_ A(;”O) _ %/0_ e~ A! (2o — ) + 6 B(wo — 1))t

With the new variablg = x¢ — ¢, it can be rewritten

J[()] = A(g““)) +% me—‘*(%—ﬁ) [A'(€) + 6B(&)de

Whenzq < T, we then obtain

() = 220

+ %/ e A" (zg +t) + 6B(z + t)]dt
0

and withé = zg + ¢,

|Z(z)] < %k/ e Olz=tlg=ne(@) VIEl ge

_ % /z ¢~ dle—Elg—ne(@)+vlz] (1€l -I2]) g
from

€] = |z < 1€ — |

we finally have

and o(z) > |z|,

IN

|Z ()] %/m e~ dle=€lg(r=mlel rle—¢l ge

_ g/w (1=l €l (1=l g¢

T

This expression is bounded by the valueair atz, depend-
ing on whethe < xy orz > xzo, becausey — 6 < 0 and
~v —n < 0. ThereforeZ(.) is boundedy

Now we study the differentiability w.r.t: of the new function
W defined by

S(z, )

W(m,f) — ¢ n¢(@) 5

Whenz < £, we have

~ A(l'[)) ]. z —5(6— —
Ta() = 2504 5 [ e L) + (g i
575l Wie,d) = [ 9@ + (s
Then in these two cases we can write _ - )
e9%e ne(z) € st 41
. A(zo)  S(zo,z)  A(wo)  T(xo) i — / e [A'(§) + 0B(€))d¢
i e N ’
hich is derivabl dwh derivative is given by :
Therefore theM RAP(xo, ) are optimal paths for any, if Which IS dertvable and whose derivative Is given by
and only if the function oW s / 3
& —ne\r z—np(z -
Aw) 1@ oy 0= [0 oo
T ‘
] ] eI p—ne(x)
~ S e [A(2) + 6B(2)]
is the value function that we have characterized in our preced- d

ing proposition, that is to say

_ o) L (@)
Z(x)=e &( )T.

Whenz > £, we have

_ L[S e i
W= 5 [ et 9emwa(e + sBls
The proof of this result is then given by the two following lem- I (10)
mas: e 0te—ne(z)

Lemma 4.2 Thefunction Z(z) = e‘”"’(“)@ isB.U.C.

Proof of the lemma : Letz € R, we have for a particulat €
E:

7@ =5 [ e e A + aB

13
= S [ e + omee
which is also derivable, with :

=5 —no 3
T 0.8 = s [ + op(olag

—dz ,—ne(x)
— "4 (2) + B ()]



At z = £, we compute the following limits From (12) and (13), we deduce

i 2 0,6) = tim 2V (0, Z'@) + e DA () + 5B(@)] + np!(2) Z(a)
=~ 0T z—E+t O
_ _efn;(ﬁ) (A'(€) + 6B(6)) =01Z(z)|

~ thereforeZ is an classical solution of the Hamilton-Jacobi
thereforelV is also differentiable at. Moreover we observe equation (5) as soon &) > 0.

that, for allz:
oW, . —sgrz —&)8 —ny (x) In the second caseZ is no more differentiable, and its sub-
%(% §) = 5 X differentials are :
€ DtZ(z) = 0,
[t onee @ 77 ow
’ o—19(2) D~ Z(z) = W){ —(z,%) , T € argmax W (x,¢) }
——5—(4'(2) + 6B()) or ek
and we obtain = { 00Z(z) —ne'(x)Z(z)
3 e—ne(z)
‘%—W(x,f)‘ < (STTn/ e=0le—Elg=ne(®) kel g¢ - [A'(z) + 6B(z)], 0 € [-1,1] }
T a T
+ e "0 kel It then suffices to prove thaf is a viscosity super-solution for

the Hamilton-Jacobi equation (5).

This last expression is bounded becaysey < 0andy—§ < 7O"P” € D~ Z(x), we have
0, the exponential being bounded by their values at at §

1
depending on whether < £ orz > €. 6Z(x) — |p~ + ge_””(’”)[A’(x) +6B(2)] + n¢' (2)Z(x)
Therefore we conclude thdt” is uniformly continuous with
respect tac. But 7 is given by =d6Z(z)(1 - o)
Z(z) = maxW(z,£), VzeR (12) Wwhich is non negative for alb € [-1,1] if and only if
fer Z(z) > 0.4

which establishes that is B.U.C.j

This ends the proof of our second proposition. Ind&eid a
viscosity solution of (5) if it is non negative, that is to say if

Lemma4.3 The function Z is a viscosity solution of the ]
and only ifT'(z) > 0, Vz € R. g

Hamilton-Jacobi equation (5)

Proof of the lemma :

) , , Remark : We observe that this proposition gives a generaliza-
From (11) we immediately obtain

tion of the standard result, obtained with the help of the Green

ow . - 1 _ theorem, which asserts, whéhis reduced to a unique, that

o (B0 + ge*W(@[A'(x) +0B(z)] + ¢’ ()W (z,§)  MRAP(xy,%) is optimal from any initial condition:, if the
following (sufficient) condition is satisfied

= —sgn(z — £)0W (z,¢€)
(13) (z —x)(A'(z) + 6B(z)) >0, VzeR (14)

We now have to consider two cases: This last condition just implies our condition (8) whéhis a
singleton :

1. argmaxe W (x, €) = {z} (%) 20, VreR

2. argmax;g W (z,£) not given by a single 5 An example

i _ We now give an example for which the Euler equation is
In the first case, at any such that argnaxg W (z,¢) = {Z}, sjngular and admits more than one stationary solutions, none
the functionZ is differentiable and we have of them satisfying (14). From (8), we deduce the optimality of
oW MRAP(xy, ) for one or several turnpikes.

7'() = S (2,7)



Let0 < a < b, we consider with the help of a symbolic computation software :

—00

max/ e~ w()[Qw()(a—}—b—w(t))—ab]dt S(.T,O): 2[:v?’—(a+b+3)w2+(ab+2(a+b+3))

z() Jo H (35 -1+ e_w)]

with &(t) € [-1,+1] a.e.
i(t) €[ ] S(z,b) = 2[-2®+ (a+b—3)2> + (—ab+2(a+b—3))
The associated Euler equation (z+1+ ew—b) + (b —da+2b+ 12)695_17]
A'(x) + 6B(z) = —2z(a—2)(b—2) =0 (15)

possesses three stationary solutions (see Figure 1). Then for different values of: et b, we obtain the three

We observe that = 0 andz = b satisfies (only locally) the following cases :

A'(x)+3 B(X)
1. Fora = 2 eth = 3, we have
S(b,0) =2(22¢ % —1) > 0.
and we can conclude that the paths that are going with a most
rapid velocity tox = 0 are optimal (see Figure 2).
0 a b X

S(x,0)

Figure 1:

S(x,b)
classical condition (14). From Proposition 4.1, we prove now

that depending on the values®fndb,

- MRAP(z(,0) or MRAP(z,b) is optimal for any initial

conditionzg,

- there exists z* €]0,b] such that MRAP(zg,0) ]
(resp.M RAP(x,b)) is optimal forz < z* (resp. zo > z*). Figure 2:

2. Fora = 1 etb = 4, we obtain
S(0,b) = 64e~* > 0.

In this example we have
A(z) = —abz®, B(z)=22%(a+b—z) et §=1.
Then the Euler equation is :
C(x) = —2z(ab + (a + b)x — 2*) = —2z(a — 2)(b — ),

which admits three solutionsz € {0, a, b}. Itis easy to verify
the following properties :

z €[0,b] = S(z,a) <0
z<a={S(z,0) >0 et S(z,b) > S(0,b) }
z>b= S(x,0) > S(b,0) ’
z>a= S(z,b) >0

and we can conclude that the paths that are going with a most
rapid velocity toz = b are optimal (see Figure 3).

S(x,b)

S(x,0)

Therefore we can conclude by the Proposition 4.1 that :
1. MRAP(zy,a) is never optimal for any initial conditiony.
2. MRAP(x,0) is optimal for allzo as soon a$(b,0) > 0.
3. MRAP(z,b) is optimal for allzo as soon as§'(0,b) > 0. )
4. If x — max{S(z,0),s(z,b)} is non negative for all Figure 3:
x € [0,b], thenM RAP(x0,0) or M RAP(zo,b) is optimal.
3. Fora = 2 etb = 5, we obtain

Forz € [0,b], we compute the following functions { S(b,0) = 2(30e~ —

5) <
T -5 _
S0 =e [ =)oy S(0,0) = 20877 =2) <
0 but we observe thahax{S(x,0), s(z,b)
. B [0,b]. Letz* €]0,b] be such thaf(z*,0) = S(z*,b) (see Fig-
S(z,b) = —e /x 2y(a —y)(b—y)e ™ dy ure 4). Then there is a competition between the two turnpikes

} is non negative on



Z =0andz = b: forzg < z* (resp.zy > x*), it is optimal
to go as quickly as possible to = 0 (resp.z = b). Let us

S(x,b)

Figure 4:

(7]

(8]

9]

(10]

(11]

underline that in this last case there is no longer uniqueness of

the turnpike for the initial condition, = «*, which also cor-

responds to a non-differentiability point of the value function.
[12]

6 Conclusion

For singular scalar problems of calculus of variation with in-
finite horizon, we have obtain a new necessary and sufficigng]
condition for the optimality of the MRAPs. This condition gen-

eralizes the standard one which is only sufficient and valid only
in the case of a unique solution of the singular Euler equation.
Our result is established with the help of the viscosity solii14] A. Miele, “Extremization of Linear Integrals by Green’s
tions of a particular Hamilton-Jacobi equation associated to the
problem. Our condition also applies when one is dealing with

singular Euler equations that possess more than one solutio[fs]
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