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Abstract

For a problem of calculus of variations in infinite horizon, lin-
ear with respect to the derivative, we use the theory of viscosity
solutions to obtain a unique characterization of the value func-
tion by an Hamilton-Jacobi equation. This approach allows to
extend in the scalar case known results on turnpike properties.

1 Introduction

In this paper we consider a problem of calculus of variations in
infinite horizon whose objective� ��� is given by

� ������ � ���
����
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�

��Æ�������� 	�������

whereÆ is a positive number and���� is a real valued function
on � � �, linear w.r.t. his second argument. Our interest is
the maximization of� ��� on the paths���� with fixed initial
condition��
� � ��, for which the velocities respect some
inequality constraints, like

	 � 	���� � 
 �� � 


(	� 
 being real numbers).
Our goal in this paper is to study the so called Turnpike prop-
erty which asserts, roughly speaking, in this framework, that
there exists a particular solution����� (the “turnpike”) such that,
from any initial condition, an optimal trajectory reaches as fast
as possible the path����� and coincides with this solution for
any future time. To our knowledge it does not exist many theo-
retical results in this setting.
We underline that several papers on turnpikes are found in the
literature but only few of them are relevant with our problem.
These papers can be classified in two categories, depending on
whether the Euler first order condition :

�������� 	����� � � �������� 	����� � Æ� �������� 	����� � 
 (1)

is a differential equation, the regular case that we don’t con-
sider here, or an algebraic equation, a case we call singular and
that is the aim of the present paper.
In the regular case, the Turnpike property is obtained when
from all initial conditions it is optimal to reaches (asymptot-
ically) a particular equilibrium of the problem, that is to say

an optimal constant solution of (1). This situation can be com-
pared with the one presented below, the equilibrium being�����.
In this paper we will consider a lagrangian given by

���� �� � ���� �
����

for ���� end
��� two functions. In this setting (1) becomes
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and can only possess constant solutions. Therefore from most
of the initial conditions, there does’nt exist a solution of (1). If
emating from�� such a solution����� � �� exists and is optimal,
for instance if the sufficient optimality conditions are satisfied
(concavity of the objective and transversality condition), then
this solution is what we called below a turnpike. The problem
is then to characterize the optimal solutions (if any), emanating
from �� that are not solution of (1). It is relevant to introduce
the Most Rapid Approach Paths (MRAPs), which are the ad-
missible trajectories that join�� to �� as quickly as possible and
then rest at�� for all future time. Following a method proposed
by Miele [14], which is based on the Green theorem, one can
obtain sufficient conditions for the optimality of the MRAPs
[12] when the Euler equation���� � 
 possesses only one so-
lution�. More precisely if for the unique solution of (1),��, the
following condition

��� ������ � �� � 


is fulfilled, the MRAPs are optimal.
Without loss of generality, we shall take	 � �� and
 � �.
In this paper we propose a new optimality condition of the
MRAPs which is necessary and sufficient. We consider more
general growth assumptions than the usual ones when one deals
with absolutely continuous paths. Our approach is based on a
characterization of the value function of a particular Hamilton-
Jacobi equation, in terms of viscosity solutions ([13]). This
approach allows also to consider the case of a multiplicity of
singular solutions of the Euler equation, and therefore provides
a criterion for the choice of the turnpikes in competition, de-
pending on the initial condition. In the last section of the paper,
an example which exhibits the different possible occurrences of
turnpikes (one or several) is given.

2 Statement of the problem and assumptions

Let us consider the following set
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whose elements are called the admissible paths. We also con-
sider the functional, when it converges, given by :
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��Æ��������� �
������ 	������� (2)

and we are interested by the following optimal control prob-
lem :

���
����������

� ������ (3)

We denote by� the value function associated to this problem :

� ���� � ���
����������

� ������ (4)

We assume that
���� 
 ���� is twice differentiable and
��� is differentiable.
���� 
 There exists two real numbers� � 
 and� � Æ such
that for all�

��� � 	����	 � 	����� � Æ
���	 � 	������ � Æ
����	 � � ������

3 The Hamilton-Jacobi Equation

The uniqueness of (generalized) solutions of first order partial
differential equations, defined on unbounded sets is known to
be a hard question and can be obtained only for well chosen
classes of functions (see for instance [1]). For this reason we
do not characterize the value function� itself, but a transfor-
mation of it, denoted� in the sequel, which is solution of a
particular Hamilton-Jacobi equation, for which we are able to
state a result of unique characterization.

Proposition 3.1 Under the assumption ���� et ���� the func-
tion � defined by
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where � satisfies � � � � Æ, is the unique viscosity solution in
the class of B.U.C. (bounded uniformly continuous) functions
of the following Hamilton-Jacobi equation :
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(5)

Proof : The proof is split in four lemmas, for which we do not
give proofs because of lack of space.

Lemma 3.2 Let
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The problem (3) is equivalent to the problem
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Moreover if � ���� denotes the value function of the problem
(6),then
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Lemma 3.3 Let � be defined by
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where � satisfies � � � � Æ. Then � is B.U.C.

Lemma 3.4 The function ���� satisfies the following equation
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(Dynamic programming equation for the value function (4) as-
sociated to the problem (3))

Lemma 3.5 The function ���� is a viscosity solution of (5).

Lemma 3.6 The function ���� is the unique solution in the set
of B.U.C. functions of the Hamilton-Jacobi equation (5).

4 Turnpike

For �� a solution of the Euler equation
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an admissible path which links�� and�� as rapidly as possible,
is called MRAP(��� ��). We call basin of�� the following set:

����� 
� ��� ���� ���� ���� ��� �� �������

When����� is not empty,�� is called a turnpike. When����� is
not reduced to the singleton���
, then we also call�� a ”true”
turnpike. We denote by� the set of the solutions of the Euler
equation:
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We also define the following function , which is playing an
important role in the following

 ���� ��� �
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Proposition 4.1 Let us assume ����,����, and suppose that
the cardinal of � is finite. Then the two following assertions
are equivalent:
(i) For any ��, there exists a turnpike �� � � (i.e. there exists ��
such that �� � ������
(ii) For any �, we have

� ��� 
� ���
����

 ��� ��� � 
 (8)

Moreover the value function of the problem is given by � ��� �
����� � � ����"Æ.



Proof : Assume that the subset� has finite cardinality, and
assume (8).
Let�� be an initial condition�� and�� � arg����
��  ���� �#�.
The path����� 
����� ���� ��� is given by :

- if �� � ��� ����� �

���� �� � � �� � � �� � ��
�� �� � � �� � ��

- if �� � ��� ����� �

���� �� � � �� � � ��� ��
�� �� � � ��� ��

When�� � ��, the value of the objective along this path is :
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With the new variable# � �� � �, it can be rewritten
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When�� � ��, we then obtain

� ������ �
�����

Æ
�

�

Æ

� �����

�

��Æ������� � �� � Æ
��� � �����

and with# � �� � �,
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Then in these two cases we can write
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Therefore the���� ���� ��� are optimal paths for any�� if
and only if the function
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Æ
�
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is the value function that we have characterized in our preced-
ing proposition, that is to say
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The proof of this result is then given by the two following lem-
mas:

Lemma 4.2 The function ���� � ��	����
� ���

Æ
is B.U.C.

Proof of the lemma : Let � � �, we have for a particular�� �
�:
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From assumption��, we obtain
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from
	#	 � 	�	 � 	# � �	 ��� $��� � 	�	 �

we finally have
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This expression is bounded by the value at�� or at�� depend-
ing on whether�� � �� or �� � ��, because� � Æ � 
 and
� � � � 
. Therefore���� is bounded.

Now we study the differentiability w.r.t.� of the new function
� defined by
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which is derivable and whose derivative is given by :
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which is also derivable, with :
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At � � �#, we compute the following limits

���
���
�

%�

%�
��� �#� � ���

���
�

%�

%�
��� �#�

� ��
�	
��
�

Æ
����#� � Æ
�#��

therefore� is also differentiable at�#. Moreover we observe
that, for all�:
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and we obtain����%�%� ��� �#�
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This last expression is bounded because��� � 
 and��Æ �

, the exponential being bounded by their values at� or at �#
depending on whether� � �# or � � �#.
Therefore we conclude that� is uniformly continuous with
respect to�. But� is given by

���� � ���
�
��

� ��� �#�� �� � � (12)

which establishes that� is B.U.C.

Lemma 4.3 The function � is a viscosity solution of the
Hamilton-Jacobi equation (5)

Proof of the lemma :
From (11) we immediately obtain
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�

Æ
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(13)

We now have to consider two cases:

1. arg����
� ��� �#� � ���


2. arg����
� ��� �#� not given by a single��

In the first case, at any� such that arg��� �
� ��� �#� � ���
,
the function� is differentiable and we have
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From (12) and (13), we deduce����� ���� � �
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� Æ 	����	

therefore� is an classical solution of the Hamilton-Jacobi
equation (5) as soon as���� � 
.

In the second case:� is no more differentiable, and its sub-
differentials are :
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It then suffices to prove that� is a viscosity super-solution for
the Hamilton-Jacobi equation (5).
For�� � &�����, we have

Æ�����
������ �

�

Æ
��	
��������� � Æ
���� � �$��������

����
� Æ������� '�

which is non negative for all' � ���� �� if and only if
���� � 
.

This ends the proof of our second proposition. Indeed� is a
viscosity solution of (5) if it is non negative, that is to say if
and only if� ��� � 
� �� � �.

Remark : We observe that this proposition gives a generaliza-
tion of the standard result, obtained with the help of the Green
theorem, which asserts, when� is reduced to a unique��, that
���� ���� ��� is optimal from any initial condition�� if the
following (sufficient) condition is satisfied

��� � �������� � Æ
���� � 
� �� � �� (14)

This last condition just implies our condition (8) when� is a
singleton :

 ��� ��� � 
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5 An example

We now give an example for which the Euler equation is
singular and admits more than one stationary solutions, none
of them satisfying (14). From (8), we deduce the optimality of
���� ���� ��� for one or several turnpikes.



Let 
 � � � (, we consider
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with 	���� � ������� a.e.

The associated Euler equation
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possesses three stationary solutions (see Figure 1).
We observe that�� � 
 and�� � ( satisfies (only locally) the

A′(x)+δ B(x)

0 a b x

Figure 1:

classical condition (14). From Proposition 4.1, we prove now
that depending on the values of� and(,
- ���� ���� 
� or ���� ���� (� is optimal for any initial
condition��,
- there exists �� ��
� (� such that ���� ���� 
�
(resp.���� ���� (�) is optimal for�� � �� (resp. �� � ��).

In this example we have

���� � ��(��� 
��� � ������ (� �� et Æ � ��

Then the Euler equation is :

���� � �����(� ��� (��� ��� � ������ ���(� ���

which admits three solutions :�� � �
� �� (
. It is easy to verify
the following properties :�		
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Therefore we can conclude by the Proposition 4.1 that :
1.���� ���� �� is never optimal for any initial condition��.
2.���� ���� 
� is optimal for all�� as soon as �(� 
� � 
.
3.���� ���� (� is optimal for all�� as soon as �
� (� � 
.
4. If � � ���� ��� 
�� )��� (�
 is non negative for all
� � �
� (�, then���� ���� 
� or���� ���� (� is optimal.

For� � �
� (�, we compute the following functions

 ��� 
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 ��� (� � ���
� �

�

�!��� !��(� !�����!

with the help of a symbolic computation software :�			

			�

 ��� 
� � �
�
�	 � ��� (� ���� � ��(� ���� (� ���

�� � � ���

��
 ��� (� � �

���	 � ��� (� ���� � ���(� ���� (� ���

��� � � ����� � �(� � ��� �(� �������
�

(15)

Then for different values of� et (, we obtain the three
following cases :

1. For� � � et( � �, we have

 �(� 
� � ������	 � �� � 
�

and we can conclude that the paths that are going with a most
rapid velocity to�� � 
 are optimal (see Figure 2).

0 b x

S(x,b)

S(x,0)

Figure 2:

2. For� � � et( � �, we obtain

 �
� (� � ����
 � 
�

and we can conclude that the paths that are going with a most
rapid velocity to�� � ( are optimal (see Figure 3).

0
b x

S(x,0)

S(x,b)

Figure 3:

3. For� � � et( �  , we obtain�
 �(� 
� � ���
��� �  � � 


 �
� (� � ���!��� � �� � 


but we observe that���� ��� 
�� )��� (�
 is non negative on
�
� (�. Let�� ��
� (� be such that ���� 
� �  ���� (� (see Fig-
ure 4). Then there is a competition between the two turnpikes



�� � 
 and�� � ( : for �� � �� (resp.�� � ��), it is optimal
to go as quickly as possible to�� � 
 (resp.�� � (). Let us

b0 x

S(x,b)

S(x,0)

x*

Figure 4:

underline that in this last case there is no longer uniqueness of
the turnpike for the initial condition�� � ��, which also cor-
responds to a non-differentiability point of the value function.

6 Conclusion

For singular scalar problems of calculus of variation with in-
finite horizon, we have obtain a new necessary and sufficient
condition for the optimality of the MRAPs. This condition gen-
eralizes the standard one which is only sufficient and valid only
in the case of a unique solution of the singular Euler equation.
Our result is established with the help of the viscosity solu-
tions of a particular Hamilton-Jacobi equation associated to the
problem. Our condition also applies when one is dealing with
singular Euler equations that possess more than one solutions.
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