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Abstract

In this paper, we explore the possibility of applying Monte
Carlo methods (i.e., randomization) to semi-infinite program-
ming problems. Equivalent stochastic optimization problems
are derived for a general class of semi-infinite programming
problems. For the equivalent stochastic optimization problems,
algorithms based on stochastic approximation and Monte Carlo
sampling methods are proposed. The asymptotic behavior of
the proposed algorithms is analyzed and sufficient conditions
for their almost sure convergence are obtained.

1 Introduction

In this paper we consider semi-infinite programming problems
in which there are a possibly uncountable number of con-
straints. As a special case, we also consider the determination
of a feasible solution to an uncountable number of inequal-
ity constraints. Problems of this type naturally arise in opti-
mal control, filter design, optimal experiment design, reliability
and numerous other engineering problems where the underly-
ing model contains at least one inequality for each value of a
parameter and where the parameter (usually representing time,
frequency or space) varies over an uncountable set (for more
details see e.g., [2], [5], [8] and references cited therein).

Existing algorithms for semi-infinite programming problems
are deterministic numerical procedures which use a determinis-
tic grid to discretize the original inifinitely constrained model,
i.e., to approximate the original problem by an optimization
problem with finitely many constraints (for a recent survey see
[9]; see also [3], [6]). Because of that, they suffer from the
curse of dimensionality: their computational complexity is ex-
ponential in the problem dimension.

Randomized algorithms is currently an active area of research
within the field of robust control (see e.g., [12]). In particular,
in this paper, the possibility of applying Monte Carlo meth-
ods (i.e., randomization) to semi-infinite programming prob-
lems is explored. For a general class of semi-infinite program-

ming problems, equivalent stochastic optimization problems
are derived. Algorithms based on stochastic approximation and
Monte Carlo sampling methods are proposed for the equivalent
stochastic optimization problems. The asymptotic behavior of
the proposed algorithms is analyzed and sufficient conditions
for their almost sure convergence are obtained. The general re-
sults on Monte Carlo methods (see e.g., [10]), as well as the
initial theoretical results reported in this paper suggest that the
computational complexity of the proposed algorithms is con-
siderably reduced in comparison with the existing deterministic
methods.

The paper is organized as follows. In Section 2, the semi-
infinite programming problems studied in this paper are for-
mally defined. The problem of equivalent stochastic program-
ming representation of semi-infinite programming problems
are considered in Section 3, while algorithms for these equiv-
alent problems are proposed and analyzed in Sections 4 and
5.

2 Semi-Infinite Programming Problems

Let � � �� � � and � � �� � �� � � be Borel-measurable
functions, while

� � �� � �� � ���� �� � ���� � ���� (1)

In this paper, we consider the determination of a solution to the
following system of uncountably many inequalities:

���� �� � �� �� � �� (2)

(i.e., we want to find a point from the set �). Besides a sys-
tem of infinitely many inequalities, the following optimization
problem with infinitely many constraints is also considered in
this paper:

��� ����

subject to: ���� �� � �� �� � �� (3)

(i.e., we want to find a (local) minimum of ���� over the set�).

The problems (2) and (3) fall into the category of semi-infinite
programming (for more details see [2], [5], [8] and references
cited therein). The reason why (2) and (3) are called semi-
infinite comes out of the fact that the number of constraints



these problems require to be satisfied is infinite. Such require-
ments naturally arise in engineering design where it is neces-
sary to maintain the response of a dynamical system within
prescribed performance envelopes.

Throughout the paper, the following notation is used. � � � de-
notes the Euclidean norm in �� and �� , while ��

���� � ��� �
�� � �� 	 ��� � 	�, ��

���� � ��� � �� � �� 	 ��� � 	�,
��
� � ��

���� and ��
� � ��

���� for � � ��, � � �� ,
	 � ���
�. Moreover, 
��� �� is the distance in �� and ��

induced by the Euclidean norm.

3 Equivalent Stochastic Programming Repre-
sentation

In this section, the problem of the equivalent stochastic pro-
gramming representation of the semi-infinite programming
problems (2), (3) is considered.

Let �� be the family of open sets from ��, while �� is the
set of Borel-measurable sets from ��. Moreover, let ���� be
a probability measure on ��� ����, while � � � � ���
� is
a continuous function. The problem of equivalent stochastic
programming representation of (2) and (3) is analyzed under
the following assumptions:

A1 ��� � � for all  � �� .

A2 ���� �� is continuous for all � � ��.

A3 ���� � � for all � � �	
� �	 and ���� � � for all � �
���
�.

Remark It is straightforward to verify that A1 hold if

���� �

�
�

����
�� (4)

where ���� is a strictly positive probability density function on
���� ��� (i.e., � � �� � ���
�).

The equivalent stochastic programming representation of the
semi-infinite problems (2) and (3) is essentially based on the
following theorem:

Theorem 1 Let A1 – A3 hold. Then,

� � �� � �� � ���� � ��� (5)

where

���� �

�
������ �����
��� � � ��� (6)

Proof Let � be an arbitrary element of�. Then,

������ ��� � �

for all � � ��. Therefore,���� � �, and consequently,� � �.
Hence,

�  �� � �� � ���� � ��� (7)

Now, let � be an arbitrary element of �� � �� � ���� � ��.
Suppose that � �� �. Then, there exists � � �� (depending on
�) such that ���� �� � �. Since ���� �� and ���� are continuous,
there exist constants Æ� � � ���
� such that

������ ���� � � (8)

for all �� � ��
Æ ���. Due to A1 and (8)

���� �

�
�
�

Æ
���

������ ������
��� � �����
Æ ���� � ��

However, this is impossible since ���� � �. Consequently,
� �� �. Hence,

� � �� � �� � ���� � ��� (9)

The theorem’s assertion is a direct consequence of (7) and (9).

Let � be an ��-valued random variable defined on a probabil-
ity space �
�� � � � whose probability measure is ����, i.e.,

� �� � �� � ���� (10)

for all � � ��. Then,

���� � �������� � ��� (11)

for all � � ��, while the following corollaries are a direct
consequence of Theorem 1:

Corollary 1 Let A1 – A3 hold. Then, � � �� solves the semi-
infinite problem (2) if and only if it solves the equation

�������� � ��� � �� (12)

Corollary 2 Let A1 – A3 hold. Then, the semi-infinite prob-
lem (3) is equivalent to the constrained stochastic optimization
problem

��� ����

subject to: �������� � ��� � �� (13)

Remark Corollaries 1 and 2 suggest that the semi-infinite
problems (2) and (3) can be solved by Monte-Carlo methods,
i.e., by sampling from the probability measure ���� and using
appropriate algorithms to solve the associated stochastic opti-
mization problem.



4 Algorithms for Systems of Infinitely Many In-
equalities

In this section, algorithms for the semi-infinite programming
problem (2) are proposed, and their asymptotic behavior is an-
alyzed.

Suppose that ���� is differentiable (����� denotes the derivative
of ����) and ���� �� is differentiable for all � � �� (notice that
���� � ������� ����, � � �, is differentiable and satisfies A3).
Due to Theorem 1, any solution of (2) is a (global) minimum of
���� (provided A1 – A3 hold). Therefore, the problem (2) can
be considered as the minimization of ���� and the following
gradient algorithm can be used:

���� � �� 	 ����������� � � ��

where ������� is a sequence of positive reals. Apart from
few special cases (see e.g., [7]), it is hard (if possible at all)
to determine analytically �����, while the deterministic ap-
proximations of ����� result in a computationally intractable
algorithms. On the other hand, (11) implies that

����� � ��������� � �������� � �� (14)

for all � � �� (under mild regularity conditions; see B1
below), which itself provides a ‘stochastic approximation’ of
�����: ������� � �������� � � can be used as an unbiased es-
timate of �����. Then, it is quite natural to use the following
stochastic gradient algorithm to search for the minima of ����:

���� � �� 	 �����
������� ������

� ������� ������ � � �� (15)

������� is a sequence of positive reals, while ��, � � ,
are independent random samples from the probability measure
����, i.e., ������� is a sequence of ��-valued i.i.d. random
variable satisfying

� ��� � �� � ����� � � �

for all � � ��.

The algorithm (15) falls into the category of stochastic approx-
imation algorithms (for details see [1], [4] and references cited
therein). Therefore, its analysis is based on asymptotic results
for stochastic approximation.

The asymptotic behavior of the algorithm (15) is analyzed un-
der the following assumptions:

B1 ������ �� � �,
��

��� �� �
 and
��

��� �
�
� �
.

B2 For all 	 � ��
�, there exists a Borel-measurable func-
tion �� � �� � ��
� and such that

�
��������
�� �
�

and

����������� ����� �������� ����� ������� ���� � ������

��������� ���	 ��������� ���� � �������
� 	 �����

������
�� ��	�����

��� ��� � �������
� 	 ����

for all �� ��� ��� � ��
� , � � ��.

B3 ����� �� � for all � �� �.

B1 holds if �� � ���, � � , where � � ���� 	 is a con-
stant (which is a typical choice for the step-sizes in stochastic
approximation algorithms).

In the case where ���� � ������� ����, � � � (which is
probably the most convenient choice for ����), B2 is satisfied
if for all 	 � ��
� there exists a Borel-measurable function
�� � �� � ��
� such that

�
��������
�� �
�

and
��������� ��� ������� ���� � ������

������ ��	 ������ ��� � �������
� 	 �����

������
�� ��	�����

��� ��� � �������
� 	 ����

for all �� ��� ��� � ��
� , � � ��. On the other hand, in the

case where ���� �� � �� ���� � ����, � � ��, � � �� and
� � �� � ��, � � �� � � are Borel-measurable functions
(the case of linear constraints in (3)), such a Borel-measurable
function ����� exists for all 	 � ��
� if

�
���������
�� �
�

�
���������
�� �
�

B3 is satisfied if ���� �� is convex for all � � �� (the case of
convex constraints in (3), which could be considered as one
of the most important special cases of (3)) and ���� is non-
decreasing and convex. In that case, ���� itself is convex, and
consequently, ����� �� � for all � �� �, since ���� � � for
all � � � and ���� � � for all � �� �.

Theorem 2 Let B1 and B2 hold. Suppose that � �� �. Then,
������ 
����  � � � !��� on the event ������� ���� �

�, where  � �� � �� � ����� � ��. Moreover, if A1 – A3
and B3 hold, then ������ 
���� �� � � !��� on the event
������� ���� �
�.

For a proof see [11].

In most practical situations, we want to find a solution of
the semi-infinite problem (2) which lies in a predetermined
bounded set. In that case, instead of (15), projected stochastic
gradient algorithms can be used. These algorithms are defined
by the following difference equation:

���� � �	��� 	 �����
������� ������

� ������� ������� � � �� (16)



������� and ������� have the same meaning as in the case
of the algorithm (15), while " � �� is a compact convex set
and �	��� is the projection on " defined as

�	��� � ��� ���
���	

��	 ���� � � ���

5 Algorithms for Semi-Infinite Optimization
Problems

In this section, algorithms for the semi-infinite programming
problem (3) are proposed, and their asymptotic behavior is an-
alyzed.

Suppose that ���� is differentiable and ���� �� is differentiable
for all � � ��. Due to the Theorem 1, the semi-infinite prob-
lem (3) is equivalent to the following constrained optimization
problem:

��� ����

subject to: ���� � � (17)

(provided A1 – A3 hold). Let �Æ����� be an increasing se-
quence of positive reals satisfying ������ Æ� � 
. Since
���� � � for all � � ��, �Æ���������, can be used as penalty
functions for (17). Therefore, the following gradient algorithm
(with penalty functions) can be used to solve the problem (3):

���� � �� 	 ����������� � Æ���������� � � ��

where ������� is a sequence of positive reals. How-
ever, it is difficult to determine analytically �����. As
������� � �������� � � can be used as an unbiased estimate of
����� (due to (14)), it is quite natural to use the following
stochastic gradient algorithm (with penalty functions) to search
for the minima of ����:

���� � �� 	 ����������� � Æ����
������� ������

� ������� ������� � � ��
(18)

������� is a sequence of positive reals, while ��, � � ,
are independent random samples from the probability measure
����, i.e., ������� is a sequence of ��-valued i.i.d. random
variable satisfying

� ��� � �� � ����� � � �

for all � � ��.

For the analysis of the algorithm (18), the following assump-
tions are needed:

C1 ������ �� � �,
��

��� �� �
 and
��

��� �
�
� �
.

C2 ������ Æ� � 
, ������ ��Æ� � � and
������ �

��
���Æ

��
����Æ��� 	 Æ�� � �.

C3 ���� is convex and����� is locally Lipschitz continuous.

C4 ���� is convex and ���� �� is convex for all � � �� . For
all 	 � ��
�, there exists a Borel-measurable function �� �
�� � ��
� and such that

�
��������
�� �
�

and

����������� ����� �������� ����� ������� ���� � ������

��������� ���	 ��������� ���� � �������
� 	 �����

������
�� ��	�����

��� ��� � �������
� 	 ����

for all �� ��� ��� � ��
� , � � ��.

C5 ���� has a finite minimum �� on �.

Theorem 3 Let A1 – A3 and C1 – C5 hold. Then,
�������� � �� !��� on the event ������� ���� �
�.

For a proof see [11].

Acknowledgements

This research was performed while Vladislav B. Tadić was with
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