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Abstract

Descriptor systems represent dynamics of processes subject to
constraint. The information about the constraint can be used in
the observability analysis and observer design. A class of non-
linear descriptor systems to which a wide range of constrained
mechanical systems belong are considered. The design method
is illustrated by a robot manipulator example.

1 Introduction

A direct and natural outcome of modeling a dynamic pro-
cess is often a set of ordinary differential equations and al-
gebraic equations. Differential equations are obtained by ap-
plying physical laws of dynamic behaviours, while algebraic
equations are determined following principles of geometric and
static relations among variables representing systems’ status.
Dynamic systems represented by a set of differential-algebraic
equations (DAEs) are called descriptor systems.

To describe complex technical processes, descriptor systems
normally appear as nonlinear DAEs. As a matter of fact, in the
control literature, descriptor systems were firstly introduced as
nonlinear DAEs in the 70s [4, 12]. In the past, a vast of at-
tention has been devoted to numerical analysis and algorithm
development for descriptor systems [3, 7]. This has been driven
by applications arising in simulations of chemical and mechan-
ical processes described by descriptor systems. Another inter-
esting application of descriptor systems is studied in [16] where
reconstructing states of conventional systems is reformulated
as numerically solving DAEs.

In the control field, most investigation had focused on linear
descriptor systems in the past, see e.g. [5, 14, 18]. For certain
classes of nonlinear descriptor systems, controller designs have
been considered, see e.g. [2, 6, 13, 15]. As far as observer de-
signs are concerned, it seems that no approaches are available
to the class of nonlinear descriptor systems under considera-
tion.

An observer asymptotically reconstructs all the variables of a
descriptor system based on a limited number of measurements.
As in the case of conventional systems, observers can be used
for implementation of feedback controls, system supervision
and fault diagnosis in descriptor systems. Mathematical de-
scriptions of observers for descriptor systems may be either in
the conventional differential equation form or in the DAE form.

This study is interested in conventional observers because they
are easily implementable.

2 Problem specification

Consider a class of descriptor systems described by

T = f1(1')+f2(.’L‘,U)+f3(.’L‘,>\,u), (D
0 = p), 2
y h(z) 3)

where x and A represent the descriptor vector, u the control
vector, y the measurement vector, p(z) the algebraic constraint,
and f;, p and h are vector-valued smooth functions of their
arguments, and f,(0) = 0, f2(x,0) = 0 and f3(z,0,u) =
0. Note that an arbitrary function f(x, A\, u) with f(0,0,0) =
0 can always be expressed by the three terms in (1) through
defining

fl(x):f($7070)7 f2($7u):f(x707u)_f(x7070)7
faz, A u) = fz, A\ u) — f(z,0,u).

It will be assumed that A can be determined as a function
of z and u. In most cases, like conventional nonlinear sys-
tems, descriptor systems may not be globally well defined. It
is assumed that the system (1-3) is defined on a specified set
X x U, where ¥ C R™ and Y/ C R™ with n, = dimx and
n, = dimwu are open sets with respect to x and u, respectively.
The input u : [0, ty] — U is analytic on the time interval
[0, t7]. Moreover, u is assumed to be known and the initial
value 2(0) unknown since observer issues are being consid-
ered.

An observer for the system (1-3) is described by

ZZQZSZ(Z,U,:I/), .’IAZ'ZQZSI(Z,’LL,y), A:QS)\(Z,U,y), (4)
where # — x and A\ — X as t — oo for arbitrary z(0) € R™
with n, = dimz and (2(0),u) € X x U. In a special case,
the Z-equation may be replaced by Z = z. The above observer
is in the conventional form of differential equations since no

constraint on the observer state z is imposed.

The notation Lj}g = Lf(LZJ‘flg) with Lyg = g—gf and
L(} g = ¢ will indicate the ith-order Lie derivative of g with
respect to f. fi23 stands for f1 + fo + fs.

Assumption A: There exists an integer [ > 1 which is called
the index of the system (1-2), such that for¢ = 0,---,1 — 1,



Llj}mp = Liﬁ p, and A can be uniquely determined from
Lmelf:lp = 0 as a vector-valued function of z and wu,

denoted by A\ = A(z, u).

Assumption A is sufficient (but not necessary) for regularity of
the descriptor system and properness of of the descriptor vector
with respect to the input. These two notions are defined in the
following.

Definition 1 The system (1-2) is said to be regular if there exist
unique x and X satisfying (1-2) for each pair (x(0),u) € X X
Uu.

Definition 2 The descriptor vector of x and X is said to be
proper with respect to u if there exists continuous solution x
and X to (1-2) for x(0) = 0 and arbitrary piecewise continuous
u.

It is easy to see that the descriptor vector of x and A is proper
with respect to u if and only if A is proper with respect to u. In
the discrete-time case, properness of A(k) means that A(k) is
not influenced by the future input u(j) for j > k.

It remains further to clarify the open sets A" and /. The set
X x U is not only for f;, p and h in (1-3) being well-defined as
smooth functions but also for consistency of (1-2) with respect
to each pair (x(0), u).

Definition 3 The system (1-2) is said to be consistent with pair
(2(0),u) if there exist x and X satisfying (1-2) associated with
this pair (x(0), ).

The consistency concerns with restrictions imposing on the
choice of z(0) and wu.

Proposition 1 Under Assumption A, the system (1-2) is con-
sistent with

(a) z(0) if and only iijtlp(x(O)) =0fori=0,---,1-1;
(b) each u.

Proof: All the constraint on x and u can be deduced from (2) as-
sociated with (1). Since A = A\(x, u) is deduced from Llflz3p =
0, L"mp = 0 for ¢ > [ no longer contains any constraint on
x and u. This means that all the constraint which may impose
on x and u are represented solely by Li123p = L}lp = 0 for
t =0,---,1— 1. This set of equations are purely in terms of z.
The statement regarding (a) and (b) then follows. A

In the following the system descriptions and notions introduced

so far are illustrated by analysing a class of mechanical descrip-

tor systems. Consider a wide class of constrained mechanical
systems described by

M(@)i+Clq,¢)i+G(@) = Blgu+F'(g,9)A, (5

0 = pla,49), (©6)

y (2.49), @)
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where ¢ is the generalized displacement vector, A the La-
grangian multiplier vector, u the control vector, y the measure-
ment vector. M(q) is the symmetric positive-definite inertial
matrix, C(q, ¢)q the centrifugal and Coriolis vector, G(q) the
gravitational vector, F'(q,¢) and B(q) are matrices of appro-
priate dimensions, F’ is the transpose of F. The term F'A
represents the constraint force.

To make a correspondence between the descriptor systems (1-
3) and (5-7), consider the special case of the mechanical system
(5-7) with holonomic constraint. That means in (6) p(q,qd) =

p(q) and in (5) F'(q,q4) = F(q) = g_g'

Letz = [ ?] ] Then, f1, fo and f3 in (1) read

_ q _ 0
fl_[—M_l(Cq+G):|7 f2—|:M—1Bu:|7

0
f3 = |: M*lFIA :| 3

where arguments of the matrices are omitted.

®)

For the holonomic constraint p(¢) = 0,since 22 = [ F 0 |,
it is easy to verify that Ly,p = Lzgp = 0 and Lpp =
Fq. Hence, Ly,,p = 0 becomes F'¢ = 0. Furthermore,
Ly, Ly p=0leads to

o(Fq)
dq

G—FM Y C4¢+G—-Bu)+ FM'F'AX=0. (9)
The regularity assumption ensures rank F' = dim A for all ¢,
which means A is uniquely determined by

A= Xgq,q,u) = (FM~FH)~1.

0(Fq) .
a4 q) .(10)

The integer [ for the holonomic system (5-6) is 2 which is one
less than the widely adopted index. This is because in this study
it is sufficient to obtain an expression of A, while in other prob-
lem formulations such as in numerical analysis A s required.
As can be seen, an expression for A generally involves @ which
may not be available in real applications.

- <FM‘1(CQ + G — Bu) —

3 Observability

Consider descriptor systems in a special form as

i o= f(@)+g(@u), (an
0 = p), (12)
y = h) (13)

with A = Mz, u) on X x U, where [, g, p, h and r are vector-
valued smooth functions of their arguments. Assume, without
loss of generality, that g(x,0) = 0. A structural restriction on
this system, which corresponds to Assumption A on the system
(1-3), is that the constraint of the higher-order Lie derivatives



L‘J} +gP = 0fori > [is automatically satisfied by the trajectory
x governed by (11).

Under Assumption A, the descriptor system (1-3) is then equiv-
alent to (11-13) with the specifications

f(l') :fl(l')-i-fg(l‘,)\(l‘,()),()), (14)
g(xvu) = fQ(xvu) + fg(x,/\(x,u),u) - f3($,)\($,0),(05)

and A = A(z, u) being the unique solution to Ly, ,, Llfjl p=0.
This means that both descriptions (1-3) and (11-13) with A =
A(z,u) defined on X' x U possess the same trajectories of x,
A and y for the same initial condition and control (z(0), u) €
X xU.

Definition 4 The descriptor system (1-3) is said to be uni-
formly observable if every (x, \) can be uniquely determined
on the basis of y with arbitrarily specified u € U.

Because of equivalence between the descriptions (1-3) and (11-
13), the following proposition is evident.

Proposition 2 Under Assumption A, the system (1-3) is uni-
Sormly observable for (x, \) if and only if the system (11-13)
is uniformly observable for x.

Owing to this proposition, in the remaining part of the paper,
observability and observer design will be discussed for the de-
scriptor systems described by (11-13) with the index /.

Proposition 3 The descriptor system (11-13) is uniformly ob-
servable on X x U if and only if for some positive integer k the
set of equations

oy 1 T Yo(z, u) 1
ZJ 1/’1(%“@)
(k;l) Y1 (z,u u(k—l))
Y _ k—1\L, W, 5
0 - p(z) (16)
0 Lyp(z)
Lo | [ L 'p(x) l

denoted by Y = (z,v) withv = {u,---,u*"D} define an
injective map on X, x — 'Y, parametrised by v.

Proof. Without the constraint (12), the system (11) with (13)
becomes the conventional system. In such a case, without the
part of L’} P, (16) has been proved to be necessary and sufficient
for uniform observability in [9]. Now treat the constraint (12)

e . g .
as artificial measurements. By Assumption A, d—t%) = L? 1P =

L’}p = Lilp for ¢ < [, which forms the part of L’}p in (16).
Furthermore, 5575’ = Llf +gp = 0 is ensured by the explicit

figp = 0s
A

relation A = A(x,u), and for i > I, %
implied in (11).

Obviously, for an unforced descriptor system & = f(z), 0 =
p(z) y = h(x) with the index [, the condition (16) is reduced

h
REC | Lk
v =| L ww =] T
L’;—lh
p
Lsp
dpla)=| . (a7
Lljflp

defining an injective map on X'. Note that the integer k can be
less than n, (the dimension of x). In fact, for the single-output
case, only k + [ > n, is required.

4 Observer design

On the strength of Proposition 2, this section deals with the
problem of designing observers for descriptor systems de-
scribed by (11-13). The observer design discussed in this sec-
tion is rooted in a recent result of designing observers for con-
ventional systems [9].

Under uniform observability, the map +(x) defined through
(17) is invertible. Define a map as £ = (). It is then easy
th see that

§€=Lyrothn = fe(&) + fu(& u) (18)
with
fe(©) = Lypn o (&), ful&u) = Ly o™ (€) (19)

where 1)1 (€) is an inverse of ).

Now regard £ = 1, (x) as a pseudo coordinate change. Note
that either n, > ng or n, < ng is possible, and £ = ¢y (x)
may not be an injective map, where n; = dim{. Because of
the structure of ¢y (),

& &2+ (&, u)
o= : L y=&, (0
k-1 &+ dp—1(&,u) I
&k i (&5 u)
or denoted in short as
§=At+ (&), y=0C¢ @1
with
0 I
A = 5 C = [ I 0 0 ] ,
I
0
¢1 (57 ’LL)
¢ = : ; (22)



where I is the identity matrix with the dimension equal to
dim¢; = .- = dim&. According to [9], h in ¢y (x) may
need to be replaced by h, where h contains part of the elements
of h.

The problem of designing an observer for x based on (11-13)
has been converted to that for & based on (21). In this way, ob-
server design for the class of descriptor systems (1-3) is equiv-
alent to designing observers for the conventional system (21).

It is possible that sometimes in (21) ¢(&,u) = P(y,u). It is
then trivial to see that

§=Al+o(y,u) + Ly —C, &=¢7'(§) @3
with A — LC being stable is an z-observer with linear error
dynamics. More general discussion about the problem of ob-
server error linearisation can be foundin [1, 11, 19, 8].

If the nonlinear term ¢(&,w) in (21) has a functionally trian-
gular structure, namely ¢; = ¢;(&1, - -, &, u), then instead of
(23), the following observer

§=Al+ 0 u) + LEW(y-C8, =971 @)
can be designed, where L(£, ) is the gain matrix having ele-
ments as nonlinear functions of ¢ and w. More details about

this kind of design are given in [9], for instance.

If ¢(&,u) in (21) does not possess any particular structure but
satisfies the Lipschitz condition || (&, u) — (&, u)|| < af|E—£]|
with « being a positive constant, an observer in form (23) can
also be designed (see, e.g. [17]).

S Illustrative example

Fig. 1 shows a typical two-link planar manipulator free of mo-
tion in a certain region of the x-y plane. The motion of the

Y

Figure 1: Two-link manipulator

manipulator becomes constrained when its end-effector moves
along a surface S. The two cases are considered:

(a) The surface is a portion of a circle with radius ry and cen-
tered at the origin.

(b) the surface is a portion of a straight line parallel to the
y-axis in the distance [o.

Practical implication of the constrained manipulator can be re-
vealed in the tasks like grinding or polishing by using robot
manipulators.

The system parameters are as follows. m; is the mass, I; the
length, I; the moment of inertia, and [.; the distance of the
center of mass of link 4.

The motion of the constrained manipulator with the measure-
ment 6; is described by

az + asca 02

14]+]

[a1+a2+a12+2a3@ a2+a362 :| [ 01 :|

bicr + bacy 2

—a3.0.232 —as (91 + 92)82
5201 2

(L30182 0
_ !
= [ - ] +F'(O)A,

0=p(0),
y:917

where p(6) and the associated F'(6) are to be determined for the
two cases, 71 and 7, are the control torques acting respectively
on the two joints,

_ 2 _ 2
aq —mllcl +Il, as —m2l62+127

_ 2 _ _
aj2 = maly, az=malilez, ¢ =cosby,
So = sinbs ,

by = (mllc,1 + mali)g

cy = cosbs,
01’2 = COS((91 + (92) ,

b2 = lecgg .

For simplicity, let a; = as = by = 1l and a3 = by = %

5.1 Case (a)

For the end-effector being in contact with the portion of a cir-
cle, simple geometry shows

7-8 = lf + lj + 21115 cos s .

This means that to follow the surface S, 62 must equal the con-
stant

o213

0y = arccos TR

while 6 is free to vary within a certain range. Hence, the con-
straint function p(6) and its Jacobian F' are given by

p:62—60, F:[O 1]

Since OF) — 0, from (10)

90 —

1.
A= (01 +02) So + 10%82 —=C+-Cog+-T1 —To.

2 4 2

mu

|



. h
For this example, k =1 = 2, ¢, = [ Lyh ],
h [ 6
| Lyh | 01
V= p | 6 - bo
Lysp 02

Hence, no coordinate change is needed and thus (21) reads

6,7 [0 171[6:] 0 B
G-l ]la e [a] e e
with
1
¢2:Lf+gth:— (Cl+—61’2—7'1).

24 ¢y 2
This means that ¢o = ¢2 (61,62, 71) = ¢2(y, 00, 71) and hence

HEIt F sk
] w-a

with [y, Iy > 0, is the desired observer with linear error dynam-
ics. The estimation of A is then

< 1s 1 - 1 . 1
A= 501 sinfy — 3 cosf + 1 cos(fy + 6o) + ST T T2
5.2 Case (b)

The constraint equation p(f) = 0 is with p =
lici + laci 2 — lp and the associated Jacobian is F =

[ —lis1 — 3812, —l2s1 |. The map (25) becomes
h 9_1
= L¢h | 0,
B p B licp + 1201:2 -l ]
Lyp —(licr + lac1 2)01 — lacy 26

which is injective because from [ p ] =0, 65 and 92 are

L f P
determined as

9- . (1181 + 128172)91
g = —~n L ETET

lo — 1101
- 4,
Iy ! 1281,2

6 = arccos
namely 62 = 71 (y), 6y = Y2 (y, 01) Thus, if 6, is an asymp-

totic estimation of 1, so is Y2 (y, él) for 6.

As in case (a), no coordinate change is needed and (25) remains
valid but ¢ becomes ¢ = (01,605,601, 62, 71, 72) which has
a long expression and hence omitted (the same is true for A =
A(61,605,601,02,71,72)). An observer for reconstructing 6 is

given by
_Jor)fo,
10 0 6,
0

0
2

l ¢2(Z/’71(y)7W2(yaél),71772) ] " [ aly

with I3, > 0 and a > 1. Clearly, an asymptotic estimation
of Xis A = A(y, 71 (1), 72(y, 61).

6 Concluding remark

This paper has considered observability and observer design for
a class of dynamic systems described by a set of differential-
algebraic equations. The fundamental assumption imposed on
the systems is closely related to regularity of descriptor sys-
tems and properness of the descriptor vector with respect to
the input. According to the established analysis of observabil-
ity and observer designs for linear descriptor systems, at least
theoretically, the class of nonlinear descriptor systems covered
in this paper is very limited. Nevertheless, a broad range of
constrained mechanical systems belong to this class of nonlin-
ear systems. The treatment in this paper can be considered as
an extension of the method adopted in [10] dealing with linear
mechanical systems with constraint.
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