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Abstract In this paper, we will go a bit further by studying sys-
On the contrary to Lyapunov theory, contraction theory studiégms which Jacobian may have a temporarily positive or zero
system behavior independently from a specific attractor, thi@ximum eigenvalue.
leading to simpler computations when verifying exponentiome interesting results are already available in the literature
convergence of nonlinear systems. To check the contractfor Lyapunov stability (see for example [7, 1, 2, 13]). In the
property, a condition of negativity on the Jacobian of the sytgst of this paper, the issue of adapting a result of Aeyels
tem has to be fulfilled. In this paper, attention is paid to resukd Peuteman to the world of contraction theory will be first
for which the negativity condition can be relaxée, the max- addressed in section 2. This result will be simplified in section
imum eigenvalue of the Jacobian may take zero or positive v8ls0 as to study directly the maximum eigenvalue through a
ues. In this issue, we present a theorem and a corollary whithe integral. Finally, in section 4, a simple application to
sufficient conditions enable to conclude when the Jacobiarthie design of an autonomous underwater vehicle nonlinear
not uniformly negative definite but fulfils some weaker condPbserver will be presented to illustrate the concept.
tions. Intended as an illustrative example, a nonlinear underwa-
ter vehicle observer, which Jacobian is not uniformly negativés in [11], the class of systems considered is the general
definite, is presented and proven to be exponentially convergéaterministic continuous nonlinear systems represented by
using the new criterion. )

i = f(z,1) (@H)

1 Introduction wherez is the state of the system (€ R"™), and f a nonlin-

_ ) ~_ ear time and state dependent function. From (1), the virtual
Contraction theory, also called contraction analysis, is dynamics are written as

recent tool enabling to study the stability of nonlinear systems

trajectories with respect to one another, which in some cases, 5 — ﬁ(x )6z @)
like tracking or observer design, may lead to a simpler analysis ox "’
than with Lyapunov theory (see [11, 12] and reference

Wheredz is a virtual displacement andlf /0« is the Jacobian

of the system. In the following, we will denote,, . (z, t) the

.- _ . . largest value of the symmetric part of the above Jacobian. To

The original definition of contraction requires the uni-, > ) . .
. - : obtain the generalized Jacobi&hdefine the local transform

form negative definiteness of the Jacobian of the system

& = f(z,t) or a modified Jacobian, called generalized 5z = O(z,t)dx 3)

JacobianF, which is obtained after a local time and state

dependent transformation matri®(z,¢). Although there which leads to definé" as

exists a converse theorem (see [11, section 3.5] stating that if _ of

a system is exponentially convergent, then there exists a local F= (@ + @8 ) o-! 4

transformation matrix® such that the system is contracting, z

one may wonder whether or not it is possible to relax theyr the definition of the original criteria enabling to conclude

step has already been made in this issue, which was presepge@ier is referred to [11].

in [12, section 2.3] and [9, p. 17-20] where it is shown that

therein).



2 Relaxation of the negativity constraint Lettingn = 1 and noting that:¥ = e¥!", (10) becomes

As the original version of contraction theory, this new crite- 162 (trs1)]| < e ) [62(t)|] (11)
rion presents the same useful property of being independent of

a specific attractor, making unnecessary the expression ofdH

error term, as it is the case in Lyapunov theory. Therefore, the \ = _ L In (1 — f ) (12)
chosen point of view for this study is in a sense more general. 2r maz

The theorem enabling to relax the constraint of negativity cés ¢, — t < T, (11) can be approximated with

be stated as follow.

162 (tra)I| < et |68 | (13)

Theorem 2.1 If the local transforn® and the generalized Ja-
cobianF are uniformly bounded, and if there exists an increa
ing sequence af, such thatt;, — oo whenk — oo and that
tgk+1 € [tx,trx +T) whereT > 0 and for all k£, such that the

forall k € Z.
fWith the same reasoning, by starting with equation (9), one
would have obtained

following condition is verified [[62(tran)|| < e_)‘(tk+n_tk)”5z(tk)” (14)
2 2 2
102(tk4 )17 = l02(tx) 117 < —=Bl|0x(tx)| () Thus, it has been demonstrated that for all instant of the
for all k and where3 is a positive constant, then the systerfiéquence, there is an exponential convergence of the virtual
trajectories will converge exponentially to one another. displacementsz towards0.

This theorem being greatly inspired by the work of Aeyels afyoW 100king at the second step of the proof of the theo-
Peuteman, only the sketch of its proof will be given, whicFE™: We will pay attention to what goes on between the
would be sufficient however to give the reader an idea of tiistants of the sequence. Assume first théies sometime
method. Note that the use of virtual displacements and of (ABWEeMx+1 andi.2. The bound of the generalized Jacobian
notations of contraction theory renders the approach ratferexpressed as
simple. I|1F[| < K (15)
leads to the following inequality

The proof can be obtained into two main steps. The first

consists in demonstrating exponential convergence for all 102(8)]] < "5 e[62 (g 41) | (16)

timesty, wherek € Z, while the second one will complete the_l_h ing the d . il § lae (13
proof by considering exponential convergerweertimes en, using the decreasing exponential formulae (13), one gets

. . . [62(0)]] < ROt A=t |52(1y )] (17)
Let us start by considering the timgs The fact that the local

transform® is bounded, combined with the other fact statingfter transformation, it gives

that the metridl/ = ©7'© is uniformly positive definite means

one has the following relation 162(2)]] < e XTI eOHOT 521, (18)

o2 . |6x|)? < ||62]|* = szt ©Tesx < o2, ||6x||> () Usinginequality (14) one can get back to the indlex

Using this last expression, the condition (5) can be changed in [62(8)|] < e~ A1) QHET152(20)]| (19)
102 (ter)|]? — ||02(te)]]* < — f l0z(t,)]|>  (7) and by assuming thag < 7', the boundk on the generalized
mag Jacobian can be used to write
which gives
8 162 (to)l| < e"T1]62(0)]] (20)
2 2
ot < (1= 5 ) 1@ ©  (19)i hen changedin
It can be noticed that i > 0, the sequence is indeed decreas- |[62(1)]] < e A7) AHEIT KT 50| (21)
ing sincel — —£— < 1. “A(t—to+T) 20+ K)T
o Tmaz . . . = 0z(0 22
Now if, instead oft;, andt;., we consider the distant instants N NN KeT [10=(0)] (22)
t, andty..,, wheren € N, one will obtain < e Me2ATOT 52(0)| (23)

Finally, by lettingoz(t) = éz anddz(0) = dz, we obtain

/8 n
ol < (1= =) sl @
. . - 16211 < 7'l1dz0le ™ (24)
which, in terms of signal norms, gives
n with
B \? 1 p
102(tk4n)ll < | 1= — 162 (t)]| (10) A=—gpn(l-—— (25)

max 2T max




and to have positive values, would provoke overshooting compared
Ay = AT (26) with a usual exponential function. This would hence induce an
implicit local transformatior®.

Coming back to théz, it gives ) . .
g » g Accounting for this fact, introduce a scalar transform as follows

||(5JIH S’YH(S'TOH‘Q_M (27) ||5ZH2 2||5‘TH2 (31)
=0
with this time
= Tmaz 2(A\+K)T (28) whereo is a positive constant particularizing the local transfor-
Tmin mation®.

which leads to finally conclude that for dll there is an expo- The introduction ofr gives
nential convergence @ir towards0, and hence of the flow of

trajectories towards a unique trajectory. 2|16z (tpi1)||* — o?[|6x(te)||* < —B||0x(ts)]]? (32)
3 Atemporarily positive eigenvalue hence 5

| o | ot < (1= 2 ) o)l (39)
Using and manipulating a decreasing sequence such as the o

one of condition (5) may appear as not obvious or countefyys, for all positives, there exists @ such that the decreas-
intuitive, especially because this condition, as it is present@,qig condition is realized.

somehow removes the continuous time aspect by including

a more discrete-time type term in the left hand side of th€sturning now to the proof of corollary 3.1, note that
condition. The corollary to theorem 2.1 that we propose

hereafter is a simplification allowing both to study directly ; ofT of
Amaz(x,t) and to present a condition with a time integral term.; (627 (t)0z(t)) = 62" (t) 32 (z,t) + %(w, t) | oz (t)
(34)
Corollary 3.1 Let Apuq (2, t) be the maximum eigenvalue of < 2 maa (2, 1)|[62(2)]]? (35)
the Jacobian of systemh = f(z,t). If 0f/0x is uniformly o
bounded and if there exists an increasing sequence oftjmen the time intervalty, ¢.11] leads to
such that € [t,t, + T) with T > 0, that verifies the inequal- best
ity " / Amaz (T, T)dT
/ Amag (2, 8)dt < —a (29) [0z (tr1)l] < [|0z(tr)]]et (36)
tk’ . . - . . .
for all £ and wherea is a positive constant, then the systerWh'Ch' given inequality (29), implies
trajectories will exponentially converge to one another. _
182 ()] < (102 (te)lle ™ 37)

o ) thus proving convergence for ajl of the sequence.
Note that the implications of the above corollary are differefthen noticing that there exists a positixesuch thate >
from those_ of a simple moving_average (which is_ alluded tor > A(trs1 — tx) and taking into account the boundedness
in [9, section 3.4, p. 16]) which would constrain the noBssymption ordf/dz, the end of the proof of corollary 3.1

stationary part to be periodical. In our case, as the integfgfiows the same line as theorem 2.1 starting from expression
interval does not move (rather, it is repeated), it allows to WO(K5)_

on a more general class of systems.
Before showing how this result can be applied with a very

simple illustrative example, we hereafter present a glimpse of )
Example 3.1 Given the system

its proof.

For the sake of clarity, only the case whepe= I will be . 9 3

presented. The extension to the generalized Jacobias ( % ) = ( _1561 % ) (38)
straightforward. 2 — 322+ cos()

. . . _ Its virtual dynamics can be written as
To begin with, remark that the use of virtual displace- y

mentsdz, without any preliminary local transformatiad, in iy —2— 322 0 ox
condition of theorem 2.1 is somehow quite restrictive since ( Sii > = ( 0 _% + cos(t) > < 5o ) (39)

|‘5z(tk+1)‘|2 - H(s‘r(tk)Hz < 76H6I(tk)|‘2 (30) From thiS, deduce

constraing’ to be lower thari. This limitation is due to the fact 1
that for a function\,, ., (, t), for which it would be possible Amaz (T,t) = -5t cos(t) (40)
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Figure 1: Evolution of the state norm of system (38) Figure 2: AUV and LBL navigation system
which is positive periodically. If only the positionz of the vehicle (with = v) and the
Choosing the sequent¢g = 2k, one finds angle of the propellet (& = w) are measured, noticing that

the system (44) is a hierarchy would help us to design a simple
thta Akt roq _ reduced-order observer estimatingindv, as in [11].
/tk Amaa (2, )dt < /%7r (_2 - COS(t)) dt (41, However, a first practical consideration will lead us to design
' a slightly different observer. Indeed, while one may consider

2(k+1)m
= [_1,5 + sin(t)} (42, thatais nottoo much corrupted with noise as itis measured in-
U ternally in the AUV, this is not the case for the measurement
=—1<0 (43) which is obtained through acoustic sensing [8]. Taking into ac-

count the higher sensitivity to noise of reduced-order observers,
to conclude to exponential convergence of system trajectoriege design a full-state observer for the vehicle dynamics subsys-
tem to obtain the following equations:

Simulation results of system (38) are represented in figure 1 . D, ... 1 .
with initial conditionsz, = (5,2)”. Note the different behav- w= _JT,WM A ka (O‘ - 0‘)
ior from the one that would be obtained with an always negative
. . A D’U NP Kw A~ A (45)
maximum eigenvalue. v=—97 |0] + Y O+ ky (T —x)

4 Application to the design of an underwater ve- E=0+ks (2 -2)

hicle observer where the implementation of the subsystem is made as in

{68] through the transformw = & + k. a. If k,, is tuned so that

Ho'S contracting, then this part of the observer will represent a
e varying and exponentially decaying disturbafigét) for

e (ﬁ, 2)T dynamics. Computing the virtual displacements of

is subsystem as follows

Contraction analysis was demonstrated to be very useful for
design of nonlinear observers (see for example [10]). Amo
the applications that have been considered, let us single out
example of an autonomous underwater vehicle (AUV). A pog-
sible model including thruster dynamics for an AUV moviné

on a single horizontal axis would be described by [14] ) D
( &0 ): —zM” o] K, ( W ) (46)
Jow = —Dywlw| + 7 oz 1" ks 0z
T, = K, w|w| (44)
M,o = —Dyvlv| + T, we see that for the cage+# 0, (46) is uniformly negative defi-
nite (u.n.d.) ifk, < 0 andk, = —1, by virtue of the feedback

wherew andwv represent the angular velocity of the propellegombination property of contracting systems. Note addition-
and the vehicle speed respectively, is the thrust provided to a|ly that the constraints on parameters induced by this com-
the vehicle by the propeller, andthe propeller control volt- pination property can be eased through the use of a constant
age.J,,, M,, D,,, D,, andK, are constant positive parametergcalar change of coordinates i, i.e. by definingé = 65z

standing for, respectively, a parameter proportional to the inggee [5]). Whert = 0 and with the above tuning fdk, and
tia of the propeller, the mass of the AUV, the propeller nonlin: e have

ear damping coefficient, the drag parameter of the vehicle and e ( 0 -1 )

the thrust coefficient. 1k, 47)
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Figure 5: Underwater vehicle velocity

Instead ofr, we formalise partial measurement with

p(t)x

wherep(t) = 1 fort € [kT,T/10 + kT) andp(t) = 0 for

t € [T/10 + kT, T + kT) with T" being the update period

of the LBL system. As this measurement will be fed into the
AUV observer, and that the system equations still have to be a
solution of the observer, replace (45) with

(48)

N D, . . 1 PO
w——Tww|w|+TwT+ka (a—a)

: D, .. K.,.. )

b= 000l + F76I0]+ k() (¢~ @) (49)

& =1+ kep(t) (& — )

Note that whilet € [T/10 + kT, T + kT'), the observer (49)
is in open-loop since the position information is not available,
and that
D,
F — M |U|

0 (50)

behavior and therefore convergence to the real system trajec-

tories can be concluded by joining the two cases 0 and

0 # 0 with a reasoning similar to section 4.9 of [9].

isnotu.n.d.
Now using a straightforward consequence of theorem 2.1, we
see that ifk, is set to—10, by computing the integral terms

As a second practical consideration that one may co ZJ,;’“TT kyp(t)dt andfOTI;kTT k.p(t)dt one can finally conclude
sider, let us mention the fact that the information on the the exponential convergence of the observer.

position = is constrained by the physical limitations of the

position sensing system. Indeed, it happens that suchVa now present some simulation results for observer (49)
measurement is made using a long baseline (LBL) navigatishere the parameters valués = 0.0238 Vs2, M,, = 340 kg,
system which consists of transponders fixed on the seaflday = 8.8 - 10~* Vs2, D, = 67 kg/m and K, = 0.022 Ns?

that the AUV interrogate with acoustic pings to estimate iere taken from [14]. The observer gains are tuned so that
position (see figure 2). Unfortunately, the update rate of LB, = —0.5, k&, = —2 andk, = —20. The update period’ is
systems happens to go down@®5H =z (see [8]). Thus, one set tol0 s.

can only consider that the position information is available f@bserver (49) was also compared to observer (45) for which
a fraction of the ping period (say ten percent of the period). Asntinuous position measurement was assumed to be available.
a consequence, thimsto be enough to ensure the convergencehe gains of this observer were setiip = —0.5, k, = —0.2

of the AUV observer, if we want it to give a correct estimate.and k, = —2. The two observers were set with the same

initial conditions w(0) = 50 rad/s, v(0) = 1 m/s and



Z(0) = 10 m while the initial conditions of the AUV were [6] J. Jouffroy, J. Lottin, “Remarks on “Nonlinear output
set tow(0) = 0 rad/s, a(0) = 1 rad, v(0) = 0 m/s and

(0)

= 0 m. The propeller control voltageis set to2 V.

Figure 3 shows the evolution of the propeller angular velocity

variables. Recall that the thrust resulting from the variables if7]

then
tem.

Figure 4 and 5 show respectively the evolution of the vehicléS]
position and speed variables. Note the difference between sys-

considered as input to the, )7 (resp. (¢, 2)7) subsys-

tem and observer-with-pings variables fox ¢ < 10 due to
the lack of information. Convergence is then quickly ensured
as soon ag is available.

More complex models could have been used to design an AU{?]
observer, by considering for example the influence of the axial

flow

portant (for more details, see [3] and [6]). We would hopefully o]
keep the same considerations regarding the interrupted position

velocity on the system behavior which can be quite im-

information in case an LBL system is used.

5 Concluding remarks

By continuing the approach that was presented in this paper,
other results could be envisaged, as for example the consid
tion of the averaged systems so as conclude on the conver
behavior of the original systems, thus leading to an incremental

version of average theory. One could also consider possible
extensions to systems with external signals such as inputs and
outputs (see [4]).

On the application point of view, it may be of interest to

look

for more application-motivated examples to verify the

potentiality and the interest of such relaxed criteria.

(14]
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