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Abstract

This paper compares four observers of vehicle sideslip an-
gle. The first is linear and uses a linear vehicle model. Next
observers use an extended nonlinear model. The three non-
linear observers are: extended Luenberger observer, extended
Kalman filter and sliding mode observer. Modelling and model
simplification are described, and an observability analysis is
performed for the entire vehicle trajectory. The paper alsodeals
with three different sets of sensors. Comparison is first done by
simulation, and then observers are used on experimental data.

1 Introduction

In vehicle development, knowledge of wheel-ground contact
forces is important. The information is useful for securityac-
tuators, for validating vehicle simulators and for advanced ve-
hicle control systems.
Braking systems and control systems must be able to stabilize
the car during cornering. When subject to transversal forces,
such as when cornering, or in the presence of a camber an-
gle, tire torsional flexibility produces an aligning torquewhich
modifies the original wheel direction. The difference is charac-
terized by an angle known as ”sideslip angle”. This is a signifi-
cant signal to determine the stability of the vehicle and it is the
main transversal force variable.
Measuring sideslip angle would represent a disproportionate
cost in the case of an ordinary car, and it must therefore be ob-
served or estimated.
The literature describes several observers for sideslip angle.
For example, Kiencke in [2] or [3] presents linear and non-
linear observers with a bicycle model. Venhovens [10], use a
Kalman filter for a linear vehicle model.
The present study compares four observers for the sideslip an-
gle on a conventional test with three different speeds. We are
particularly concerned with the stability of the observersand
the model as the vehicle approaches the linear dynamic limits.
It also presents the results for three different sets of sensors:
yaw rate; vehicle speed; yaw rate and vehicle speed together.
We include some results concerning observability. Finally, it
presents some experimental results obtained with the Heudi-
asyc experimental vehicle. All simulations have been per-
formed using with Callas

�
software developed by SERA-CD

(Vehicle engineering Research and Development Company),
and all data processed with MATLAB

�
software.

2 Vehicle and simulator

2.1 STRADA

Figure 1: Heudiasyc laboratory experimental vehicle :
STRADA

STRADA is the Heudiasyc Laboratory’s test vehicle: a Citro¨en
Xantia station-wagon equipped with a number of sensors. Tests
use GPS, with longitudinal and lateral acceleration to trace the
path and to determine whether the vehicle reaches linear ap-
proximation limits. The speed of center of gravity is calculated
as the mean of the longitudinal speeds of the two rear wheels
(odometry), and yaw rate obtained from the yaw rate gyrome-
ter.

2.2 Callas
�

Callas software is a realistic simulator validated by vehicle
manufacturers including PSA, and research institutions includ-
ing INRETS (”Institut national de recherche sur les transports
et leur sécurité”). The Callas model takes into account vertical
dynamics (suspension, tires), kinematics, elasto-kinematics,
tire adhesion and aerodynamics.

3 Vehicle models

Lateral vehicle dynamics has been studied since the 50’s. In
1956 Segel presented a vehicle model with three degrees of
freedom in order to describe lateral movements including roll
and yaw. If roll movement is neglected, a simple model known
as the ”bicycle model” is obtained. This model is currently
used for studies of lateral vehicle dynamics (yaw and sideslip).
A nonlinear representation of the bicycle model is shown in
Figure 2. The different notations are indicated in the appendix



(section 9). Some simplifications are available for the different
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Figure 2: Bicycle model

models. Cornering stiffness is taken to be constant. But corner-
ing stiffness increases with tire pressure. When the car turns,
the mass transfer on the external wheels increases tire pressure.
Figure 3 presents variations in cornering stiffness for different
simulation speeds. The difference is less than 10%.
Tire/road forces are highly nonlinear. Various wheel-ground
contact force models are to be found in the literature, including
a comparison between three different models by Stéphant in
[9]. In this paper, transversal forces are taken to be linear. This
assumption is reasonable when lateral acceleration of the vehi-
cle is less than����[4], limit of adhesion zone. Consequently,
transversal forces can be written as:

����������� ���� (1)

Rear and front tire sideslip angles are calculated as:!"#�
$ �%&�&'$ ()*+�, �&�-', ()*+ (2)
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3.1 Linear model - LM

Given the assumption of cornering at constant speed, with
small steering angle and sideslip angle, the linear model is:456�76-89: �;6 (3)
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3.2 Nonlinear model - NLM

The nonlinear bicycle model is described as:

!SSSSSSSSSSSSSSSSSS"SSSSSSSSSSSSSSSSSS#
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(4)

where the state vector is:6�<a+ � =>?@and the input vec-
tor: V�<% �$b �,b?@
3.3 Extended nonlinear model - ENLM

In the extended nonlinear model, longitudinal forces and their
first derivatives become state variables with a random walk dy-
namic (like constants parameters). This could be used for esti-
mating longitudinal forces, as in [8].
The state vector becomes:6�ca+ � => �$b =�$b �,b =�,bd@and the input vector:V�<%?
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(5)

3.4 Remarks

All models have been implemented in a discrete form with
MATLAB software. The sampling rate is

.�ms.
The nonlinear and extended nonlinear systems are undefined
whenjkl�0�m&�. In practice, there is a problem of diver-
gence whenjnop0�m&�. When speed is less than 10�m&�,
sideslip angle effects are negligible in comparison to the yaw
rate.

4 Observers

Four different observers are used in this paper.



4.1 Linear observer (LO)

The linear observer used in this paper is a Luenberger observer
[3]. It is applied to system described by equation (3).

4.2 Nonlinear observer (NLO)

qrrrs
rrrt

uvlwxvyz{| l}xv{~uvlwx~vyz{��x~vyz{x|�~|{~| l}x~v{
(6)

wxvyz{and
}xv{

are nonlinear functions in state and input.
After linearization, with a pole placement technique, it ispossi-
ble to impose error dynamics. The system matrix of the closed-
loop system has constant poles�. The observer is stable.
The gain matrix of the observer is computed by:

�x~vyz{l��w�vx
~vyz{�����}�vx

~v{��
(7)

with �is the pseudo-inverse:
����l��x����{&�

4.3 Extended Kalman filter (EKF)

The Kalman filter has been applied and described in many
studies. For example, Mohinder and Andrews [5] present a
wide overview of Kalman filtering. In this paper, an extended
Kalman filter with measured input is used. The error measure-
ment covariance matrix R is determined by sensor variance. R
is a diagonal matrix, measurements are independent. The error
model covariance matrix Q is determined by model quality.

4.4 Sliding mode observer (SMO)

From [6], this kind of observer is useful when working with re-
duced observation error dynamics, for a finite time convergence
for all observable states, and for robustness under parameter
variations (with respect to conditions).qrrrs

rrrt

uvlwxvyz{| l}xv{~uvlwx~vyz{��m�����x|�~|{~| l}x~v{
(8)

To cover chattering effects [1], the functionm�����is as fol-
lows: m�����x�{l����x�{�.�� (9)

5 Observability

5.1 Linear system

System describes by equation (3) is observable if the matrix��<;;7;7, ��� ;7�
L
$?@

has a rank equal to�. The
observability condition is given by:�������l� ��� (10)

This condition is equivalent to ”neutral steer” property ofthe
vehicle. In the simulation case the system is observable be-
cause (10)�p���3p�l.��2��
5.2 Nonlinear system

In the nonlinear case, the observability definition is localand
uses the Lie derivative [7]. For system described by equation
(4) and sensor set� defined in section (??) the observability
function is:

¡ l
¢
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¦
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where :
1�xv{l©�ljkand

1 xv{l© luª
If this function is invertible at the current state and input, the
system is observable. This function is invertible if the jacobian
matrix«has a full rank.

«l¬¬v¡ (12)

For system dsecribes by equation (5) the observability study is
the same.
For the nonlinear and extended nonlinear systems, the rank of
the observability matrix is respectively�l�'® °̄ �l�±'®
along the path. The computation is performed at each time step
with the different sensor sets.

6 Simulation Results

6.1 Remarks

Values in the different tables and figures are calculated along
the full path from themaximum error and themean error
between the estimated state and the measured one. Those er-
rors are normalized by the maximum of state value along the
full path. For example, figure 4 give the error max and mean
for the sideslip angle models and observers. Table 1 give the
maximum value of sideslip angle calculated by Callas. On fig-
ure 7b) normalized maximum error of SMO for sideslip angle
is: 30 %. The normalized mean error is therefore 9 %.

6.2 Simulation conditions

Simulations were performed using three sets of sensors:²��: Yaw rate only²� : Speed of center of gravity only²� : Speed of center of gravity and yaw rate together
Tests took place in a chicane at three different speeds:.�/0�1&�,2�/0�1&�and3�/0�1&�.
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Figure 5: Path and acceleration for chicane at
.�/0�1&�,2�/0�1&�,3�/0�1&�

Figure 5 presents the simulation path and acceleration for the
different speeds. Table 1 gives the maximum values for speed
of center of gravity, yaw rate and sideslip angle at the different
speeds. Figure 6 shows the sideslip angle calculated using the
linear and nonlinear (³�́µ�) models and observers results. In
Figure 5 it can be seen that longitudinal acceleration is close
to zero, meaning that longitudinal forces are virtually nonex-
istent. The simulation by the nonlinear model with zero force
input seems to be a good simulation. Table 2 shows that a good¶·́[=>\ ¶·́[a+\ ¶·́[�\�̧ZL

$ ¶�ZL
$ ¸ h¹¶�ºL

$
2.8 5.6 0.7»h¹¶�ºL

$
7.3 16.6 0.19¼h¹¶�ºL

$
9.9 24.9 0.21

Table 1: Maximum values for chicanes simulations

approximation of speed is obtained from the nonlinear model.
The error is less than 1 % for the three speeds (mean and max).
Throughout the path the Callas simulator driver aims to main-
tain a constant speed. There are only small speed variations.
The greater the speed, the greater the yaw rate estimation error.
From table 2, mean error is 5 % at 60

/0�1&�. At 90
/0�1&�,

it is 10 %. This indicates that the models are valid in respectof
lateral movements. As regards sideslip angle, neither model is
accurate. It would appear that observers are necessary to cor-
rect the estimations.

(%)
¶·́[½¾()½\¶·́[=>\ ¶·́[½¾*+½\¶·́[a+\ ¶·́[½¾�½\¶·́[�\¹¶�ºL

$  h »h ¼h  h »h ¼h  h »h ¼h
LM 1.5 17 39 - - - 10 99 257
NLM 2.5 18 40 0.5 0.6 0.7 1.1 67.2 236

(%)
¶�·_[½¾()½\¶·́[=>\ ¶�·_[½¾*+½\¶·́[a+\ ¶�·_[½¾�½\¶·́[�\¹¶�ºL

$  h »h ¼h  h »h ¼h  h »h ¼h
LM 0.6 4.8 10 - - - 3.1 31 78
NLM 0.8 5.1 10 0.3 0.3 0.4 0.6 21 71

Table 2: Models error for full simulation - max/mean
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6.3 Observers results for chicane at 20, 60 and 90

/0�1&�
²Observers results for chicane at 20

/0�1&�
Figure 7a) shows the results of the sideslip angle observation at.�/0�1&�. At 20

/0�1&�, all nonlinear observers are highly
accurate in respect of sideslip angle (less than 1 % in max and
mean).²Observers results for chicane at 60

/0�1&�
Figure 6 shows simulated and estimated sideslip angle at 60/0�1&�. A comparison of table 2 and figure 7b) shows that
observers give a better approximation of sideslip angle than
models. If the measurement is only the speed of the center of
gravity, observers improve the accuracy of the sideslip angle.
But yaw rate measurement, with its substantially better mean
accuracy (10 %), would appear indispensable.²Observers results for chicane at 90

/0�1&�
Figure 7c) show the results of the sideslip angle observation at3�/0�1&�. The same remarks can be made as for 60

/0�1&�.
Two explanations can be given for the errors. Table 2 shows
that the accuracy of the model decreases as speed increases.
The second explanation is that at 90

/0�1&�demands on tires
are large. The maximum error occurs at maximum transversal
acceleration, when we reach the limit of linear approximation.
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7 Road tests

7.1 Test conditions

Figure 8 presents the vehicle trajectory and acceleration dur-
ing the tests. Table 3a) gives the maximum values for vehicle
speed, taken as the mean of longitudinal speeds of the two rear
wheels, and maximum yaw rate.
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Figure 8: Path and acceleration

7.2 Results

Table 3 gives maximum and mean error, normalized by max-
imum value, for linear and extended nonlinear systems along
the test path. ¶·́[=>\ ¶·́[a+\�̧ZL

$ ¶�ZL
$

16.6 14.0
a) Maximum measurement values for experimental test

(%)
¶·́[½¾()½\¶·́[=>\ ¶·́[½¾*+½\¶·́[a+\

LM 23 -
NLM 34 28

(%)
¶�·_[½¾()½\¶·́[=>\ ¶�·_[½¾*+½\¶·́[a+\

LM 8.2 -
NLM 5.4 11.2

b) Model error - max/mean

Table 3: a) Maximum measurement values for experimental
test b) Model error - max/mean
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Figure 9: Sideslip angle,� 
Figure 8 shows that longitudinal acceleration is not negligible,
and that longitudinal forces are present. The NLM simulation



has zero force input. This explains the error obtained in the
nonlinear model. The approximation of yaw rate obtained from
the models has a mean error lower than 10 %.
Because STRADA does not have a sideslip angle sensor, we
do not have a validation measure for sideslip angle. Figure 10
gives the maximum and mean error for yaw rate and velocity
estimations. Figure 9 presents the sideslip angle observeddur-
ing the tests, and the confidence interval at

�¿for the EKF.
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Figure 9 shows that the linear observer is the least accuratebe-
cause constant speed hypothesis is false along the experimental
path. All observers are in the

�¿bandwidth of EKF. The real
sideslip angle is in this confidence interval. The three nonlinear
observers are close to each other.

8 Conclusion

This study deals with four different sideslip angle observers
with three sets of sensor. It consists of two parts. The first part
includes simulation results. We can see from the results that
the measurement of the speed of center of gravity is not a de-
terminant variable in the estimation of sideslip angle. Butthis
measure gives a little estimation improvement. The EKF ap-
plied with the sensor set��gives less accurate estimations than
NLO and SMO. There are some convergence problems with the
NLO with non-optimal initial states. Nonlinear sideslip angle
observers (NLO, EKF and SMO) give approximately the same
results. All observers are satisfactory when lateral accelera-
tion is low. In normal driving conditions, lateral acceleration
is often low. Observers can provide a good estimation. Along
the different paths, all observers are stable. They all represent
transients qualitatively. Future studies will take into account
the four wheels and vertical dynamics, as well as providing a
better model for longitudinal forces.
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9 Appendix - Notations��� �� Front, rear wheel cornering stiffnessÀ�°�¬&�³�� ́ Longitudinal front, rear force in the vehicle frameÀ³�� Á Transversal front, rear force in the vehicle frameÀ³�Â Longitudinal front force in the front wheel frameÀ³�Ã Transversal front force in the front wheel frameÀ��� CG to front, rear axle distance0jk Speed of center of gravity0�m&�©
State vectorÄÅ_� Measurement vectorÄÅÆÇ
Steering angle°�¬È
Vehicle sideslip angle°�¬È�� Front, rear wheel sideslip angle°�¬uª
Yaw rate°�¬�m&�
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