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It should be observed that whilst there are many results con-
Abstract cerning the transient performance of the output, see eg. [8],

there is little work in the literature on non-singular costs for

A non-singular performance measurement for output feedbq%._o timal desians. see however [5]. [41. [21 for related re-
designs is introduced. The observer backstepping desigry| P ans, (51, 41, 2]

compared to the high-gain observer design through a nonlineg\@[S and techniques.

output feedback system. If the initial error between the initi&or an output feedback systemwith input v and outputy,
condition of the state and the initial condition of the observ@nd a controlleE mappingy — u, we consider the following
is large, the high-gain observer design has better performagest which penalizes both the control and the output signal.
than the observer backstepping design.

P(3,E) = llzz () + lull ey

1 Introduction where the time sef,, is defined by

In this paper we will be concerned with two major classes of
control designs using output feedback. The first class of con-
trollers are based on high gain observers with saturated c
trols, see eg. [3, 6, 1]. We refer to this class of control desig
asKhalil designs. The second class of controllers are ba
on backstepping techniques [8], and we refer to this Classk%
controllers akKK designs.

T,={t>0]y®)]>n}

gﬂan is a small positive number. Such a cost penalizes the in-
8t and output response of the system whjlgt) ¢ [—n, 7],
%ce for a closed loop whose goal is to regulat® zero,
epingy, v bounded, this cost is finite and is a reasonable
penalty on the transient behavior. Note that whilst that a direct
TheKhalil designs are applicable to affine systems of full reld-*> penalty on the output could be considered for the designs
tive degree, whilst th&KK designs are applicable to an altergiven, the relaxation of the output penalty is physically mean-

native class of systems, namely those which possess an outpgfiul, and considerably simplifies the technical treatment.

feedback normal form. By considering systems which are bqWSection 2 we show thatléhalil design out-performs with a

full relative degree and have a output feedback normal forr}QKK design when the information on initial state is poor and

we can compare the behaviour of the controllers on comME e 15 a large initial observer error
systems, as initiated in [7]. '

The results in [7] are purely numerical, and give rise to many Performance of output feedback system
interesting questions, such as: When do k&K designs re-

quire greater control effort than thehalil designs, and vice In this section we study the performances K design and
versa? When do thEKK designs have superior output trana Khalil design for a syster(zq) which can be expressed in
sients to theKhalil designs, and vice versa? In particular, bshe output feedback form

introducing suitable measures of performance and sensitivity

we would like to be able to characterize situations in whichone  X(zg): & = Az + ¢(y) + Bu, z(0) = (1a)
design is preferable to another. Such characterizations have ob- y=Cux (1b)
vious consequences for design choices, and also should lead to

insight into the dynamics and trade-offs inherent in these caghere

trollers. The second problem has been studied in [10]. Here we

will consider the former point, by considering a non-singular T1 Zo1 e1(y)

cost functional penalizing both the output transient and the con- Z2 Zo2 P2(y)
z=| . |, m=| . |, =] .
INote also that such systems are characterized in a coordinate free manner, : :

[8]. Tn ZTon Pn (y)




Then define

010 - 00 0 &(y) =y
. 001 - 00 .| o (y) = — e1&y — di&y — o1(y)
TR 0 Eilysdr, oo 1 80) = — i (Y B, Bi)
00 0 0 0 1 ) ) dai 1\’
(Y, T1, 0, 8) = — & — §i-1 — d; ( 3 1) &i
Y
02(1707...70) —];i(y—xl)—%(y)
Qi1
andu is the control inputy is the measured output is the + =5, S (&2 + ¢1(y))
initial condition of the state, and the functiogs are suffi- i
ciently smooth and Lipschitz continuous. da—1 .
Y P +25T_1(%‘+1+ka(y—$1)+¢j(y))
Let us first consider a generic observer based contral|&s), J=1 I
wherei is the initial condition for the observer. The perfor- i=2,3,-,n

mance of the closed loafX(xg), Z(&0)) is dependent on both

the initial statery and the initial condition for the observég. wherec;, d;, 1 < i < n are positive constants. The controller
Whilst the initial stater is the property of a system, the conis then defined as

trol designer has the freedom to chose the initial conditign

for the observer. Eo(#o) : u=an(y, &1, - ,2n)
It is intuitive that good performance results from initializing &= At +k(y—9)+e(y) + Bu, 2(0) =g
the observer statg, to be close to the actual initial staig. y=CZ.

Of course, in practice, the initial state is often unknown, so it _ . _ .
can be hard to initialize in this manner. Nevertheless standdrde following result summarizes the standard properties of this
practice is to try to minimize closed loop.

Proposition 1. Consider the closed loop system
(3(x0),ZE0(&0)). For any initial data zy € R™ and
according to the best information available. However, we may € R", the following hold:

well not possess complete information concerning the valuebfThe signals, &, v andy and bounded;

the initial condition of the state, that is we do not exactly kno®. The output is regulated to zero:

zo, and hence we have to takg to be the best estimate 1g. .

Then we are interested in studying the situation in which our tli{fgoy(t) =0

estimate ofz, is not accurate anf{z,|| is large, in particular

how does poor information ary, (which causes ‘bad’ choices3. The performance is finite:

of zy), affect the performance of the controllers?

1 Zoll = llzo — Zol|

P(%(z0),Z0(20)) < oco.
2.1 KKK design Proof. The proof of 1, 2 can be found in [8]. Let(7,) denote
We first consider &KK design [8] which achieves global regthe Lebesgue measure of the §gt Note thatm(T;,) < oo
ulation of the output. Although thKKK design has a global sincey(t) — 0 ast — oo hence,
region of attraction (in(zo, Zo)), we will prove that the per- )
formance of the controller can degrade arbitrarily as the initial Il 221,y < m(Ty) 2|yl Lo ry) < 00

error ||Zo|| becomes large for any fixed initial state condition .
by 1. The boundedness of the performance follows directly.

Zo-

O
TheKKK design [8] for systent(z) is as follows.
Firstly, an observer is defined by We now establish the critical performance property for the

KKK design, which states that the performance gets arbitrar-
Az +k(y—9) +¢y) + Bu, #(0)=29  (2a) ilylarge as the initial observer error increases.
Ci (2b)

z

y

Theorem 1. For any choice of the controller gairig, 1 < ¢ <
where n, and for any fixed initial state;, of the systenkt(z), the
performance of the controll€E, (%) has following property:
k: (k17k27"' ;kn)T; k’L >07 1 SZS’N/
limsup P(X(z¢),Eo(d0)) = oc. 3)
is chosen such that — kC' is Hurwitz. llZo || =00



Proof. For the convenience of notation, the following definiThen in thez coordinatesy(z) is of the form
tions are introduced:
(z0): 2=Az+ B(W(z)+u), 2z(0)=z (7a)

§i(0) =&y, &1, Zi)li=o0 y=Cxz (7b)
@;(0) = ai(y, 21, -, &i)|1=0 where
j=12,--- . n. 20 = T(z0)
To prove this theorem, it suffices to show V(z) =1, (T71(2)) (8)
|l‘i_mHsup llull oo (r, ) = 00 Yn() = Yn(T1,- - Tn).
Fol|—o0

Remark 1. X(zp) andX(z) actually present the same sys-
Sinceu(t) is continuous, to establish the above equation, wem in different coordinates, but, for convenience, we will use

only need to show Y (x0) andX(zp) to denote (1) and (7) respectively.
lim sup «(0) = limsup a,(0) = oo. (4) Remark 2. It can be seen from the definition of transform that
l[Zo[|—o0 llZo | —o0 T is invertible. Further more, botfi and7~! are smooth since

i, 1 < i < n are smooth. Hence, the mappiiigs a global

n—1 i
LetC C R"~" be a compact set, define diffeomorphism irnR”.

Cr = {&0 €R"|(@01, -+ Fon) € Cidon =7} Remark 3. Since the outpuy is unchanged by the transforma-
Consider the initial data of the observay € C,.. Becauser, tionT’, and the control input is independent of the change of
is fixed, if we can prove that variables, the performande independent of .

TILH;O ;gg an(0) = oo ®)  Hence thekhalil designs considered in [3, 6, 1] can be applied
o to the systent(zy). Typical results establish semiglobal reg-
then (4) will hold. ulation of the output. Th&halil designs utilize a high gain

. . . bserver and a nonlinear separation principle [1] which allow
By a Ieng'ghy CaICUIat'O_n (omitted for brevity), we can Shovgwe observer and a globally bounded state feedback controller
thata, (0) is of the form: . : . .
to be designed separately, and then combined using certainty
" 8@ i—1
an(0)=r g (—cj —d, ( 8Jy

>2 equivalence, to ensure semiglobal results and closeness of the
t=0

output feedback controllers trajectory to the underlying state

j=2 feedback controller’s trajectory. For the systéi), if ¢;
+ F(21(0),21(0),--- , #,-1(0)) and its higher derivatives are globally bounded, it is straight-
forward to design a globally bounded state feedback controller
whereF' is a constant independent af for X(z0), achieving bounded performance. Hence through the

Because; andd; are all positive numbers, anfd is indepen- high gain observer we can design an output feedback controller,

dent ofr, we have established (5) as required. 7 Which, for fixed initial condition of the state, = 7'(zo) and
’ any initial condition of the observed, also has bounded per-

. . formance. Furthermore, if the initial error
2.2 Khalil design

It is well-known that by a suitable coordinate transformation 1Zoll = llz0 — Zol|
the systent(x,) can also be written as integrator chain with

: . , ) Becomes large, this design still achieves a bounded perfor-
matched nonlinearity. Concretely, we define a coordinate tra

Mance independent of the initial condition of the observer.

formation
T:R" — R", z="T(z) To design an output feedback controller, we first give a state
by feedback controller foE(z). The controller
TZle.C(}l, Z2:.’172+¢1(.’171), ety U:—’(/J(Z)-f-v (9)
Zn = Tn + Yno1(21, 22, Tp—1) feedback linearizes the systeifz,), yielding
where z2=Az+ Bv, z(0)=z (10a)
Vi(x1,- ;) y=Cz. (10b)

i—1
OY;— .
=pi(x1) + Y p (i1 + (1)), 1<i<n. (6) We first design a bounded state feedback controller for the lin-
J

J=1 ear system (10). From [9] we have following lemma.



Lemma 1. The system (10) is null controllable with bounde®roof. Sincep; € C" (R), gagk) € L*(R), from (6) we

control (ANCBC) if and only if have that),, (x) is continuous and ir.>°(R™). Note that the
1. A has no eigenvalues with positive real part; mappingd? is a global diffeomorphism, we know thafz) also
2. The pair(A, B) is stabilizable in the ordinary sense. is continuous and i>° (R™). O

Now since all the eigenvalues of are zero, namely, without gy ppose that the conditions of Lemma 2 are satisfied, then the
positive real parts, and the paid, B) is stabilizable, the sys- gtate feedback controller (12) is globally bounded, so an output

tem (10) is null controllable with bounded control, and, fukaedback controller for systed(z,) can be taken as
thermore, there exists bounded state feedback controllers for

the system (10). An explicit example [9] of such a bounded no
state feedback controller is given by En(e(f0) 1 u=—p(2) = Y _ d'sat(hi(2)) (15a)
=1
v 7251-8%(}”(2)) (11) Z=Az+H(y— %) 2(0) = 2. (15b)
=1

. o For the systemX(z,) and the output feedback controller
where0 < ¢ < 3, eachh; : R" — R, 1 <4 <mn,isalinear =, (), relevant properties of the closed loop are summa-

function, andsat(-) is the saturation function defined by rized below.
-1, w<-1 Proposition 2. For systenk(z), suppose thaty = T'(xg), xg
sat(w) = w, —1<w<1 is fixed,(0) = 0, and the assumption of Lemma 2 is satisfied.
1, w>1. Then for anyg, = zo— 2, there existg* such that foralk : 0 <

€ < ¢* the output feedback controll& ;. (Zo) guarantees:
This controller achieves global asymptotic stability for the rexr. The signals, 2, u andy are bounded;

sulting closed-loop system, see [9]. 2. The output is regulated to zero:

Consequently, the state feedback controller

tlim y(t) =0;
Eor o u=—(z) = Y &'sat(hy(2)) (12) 3. The following limit
=1
. . - li te)=Z(t

globally asymptotically stabilizes the origin of systéitz). 20 2(te) = 2(t)
Now we design a output feedback controller #fz). Fol- holds uniformly irt for all ¢ > 0, wherez(t, €) is the solution of
lowing [3, 1], we define the high gain observer as the closed systefE(zo), E (o) (20)); and z(¢) is the solution

R R R R R of the state feedback control closed systettry), =s).

2=A2+H(y—%4)  2(0) =% (13) 4. The performance is finite:
where = 5

m=ne = (252 ) (14) P S o) <

N S \ele2? en

ande is a positive constant to be specified. The positive coRI00f- Take any compact sét € R" andC' € R™ such that
stantsa;, 1 < i < n, are chosen such that the roots of thé € C andzo € C, then 1, 2, 3 follow directly from Theorem
1 and Theorem 2 in [1]. As to 4, the finiteness|gf| > (1, ) is

equation ) . : .
obtained from 2. Note that is continuous and is bounded by
S ons™ bty 15+ = 0 1. Hence [l (=) is also finite. S0P (2(20), Er(e)(20))
is finite. O

are in the open left-half plane.

To apply the nonlinear separation principle, the state feedbd¢@w it is straightforward to uniformly bound the performance
controller is required to be globally bounded. Generally, thi system®(z) for theKhalil design.

property can be achieved by saturating the controller outside ) )
some set. But in our case we are interested in the initial co1€0rem 2. Letzo be fixedzo = T'(zo), a('l()j consider the sys-
dition of the observer becoming large. Instead, we introdut@MX(z0). Assume thap; € C"*(R), ;" € L*(R), 1 <

further assumptions op; to ensure that is globally bounded. @ < n7; 1 < k < n. Then there is a positive constaff,
such that for any, there existg > 0 for which the controller

Lemma 2. For systen®(z), supposey; € C"~*(R), %(‘k) €  Em(e(%0) achieves a uniformly bounded performance:

L>(R), 1 <i<mn; 1<k <n,theny defined by equation
(8) lies in L>(R™). P(2(20), 2o (%0)) < M. (16)



Proof. First note that The primary contribution of the paper is to provide rigorous
statements and proofs of the intuitively reasonable trade-offs in

P(E(ZO)’ EH(@('%O)) performance between the differing classes of designs. The re-
_ / ly|2dt + ||ul| sults have been expressed in qualitative terms only, the purpose
T, Le=®e) of the paper is to illustrate the asymptotic differences between

) the designs. A more quantitative approach is challenging, as
=/ |21 (¢, €)[7dt + [Jul[ Lo (r,)- (17) achieving tight bounds on non-singular performance is diffi-
T cult. This is an interesting avenue for future research.

From Lemma 2, we know that(2) is bounded. So, the control
input« has a bound which is independentiaf By Proposi- References
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