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Abstract

A non-singular performance measurement for output feedback
designs is introduced. The observer backstepping design is
compared to the high-gain observer design through a nonlinear
output feedback system. If the initial error between the initial
condition of the state and the initial condition of the observer
is large, the high-gain observer design has better performance
than the observer backstepping design.

1 Introduction

In this paper we will be concerned with two major classes of
control designs using output feedback. The first class of con-
trollers are based on high gain observers with saturated con-
trols, see eg. [3, 6, 1]. We refer to this class of control designs
as Khalil designs. The second class of controllers are based
on backstepping techniques [8], and we refer to this class of
controllers asKKK designs.

TheKhalil designs are applicable to affine systems of full rela-
tive degree, whilst theKKK designs are applicable to an alter-
native class of systems, namely those which possess an output
feedback normal form. By considering systems which are both
full relative degree and have a output feedback normal form,
we can compare the behaviour of the controllers on common
systems1, as initiated in [7].

The results in [7] are purely numerical, and give rise to many
interesting questions, such as: When do theKKK designs re-
quire greater control effort than theKhalil designs, and vice
versa? When do theKKK designs have superior output tran-
sients to theKhalil designs, and vice versa? In particular, by
introducing suitable measures of performance and sensitivity
we would like to be able to characterize situations in which one
design is preferable to another. Such characterizations have ob-
vious consequences for design choices, and also should lead to
insight into the dynamics and trade-offs inherent in these con-
trollers. The second problem has been studied in [10]. Here we
will consider the former point, by considering a non-singular
cost functional penalizing both the output transient and the con-

1Note also that such systems are characterized in a coordinate free manner,
[8].

trol effort.

It should be observed that whilst there are many results con-
cerning the transient performance of the output, see eg. [8],
there is little work in the literature on non-singular costs for
non-optimal designs, see however [5], [4], [2] for related re-
sults and techniques.

For an output feedback systemΣ with input u and outputy,
and a controllerΞ mappingy 7→ u, we consider the following
cost which penalizes both the control and the output signal.

P (Σ,Ξ) = ‖y‖L2(Tη) + ‖u‖L∞(R+)

where the time setTη is defined by

Tη =
{
t ≥ 0

∣∣ |y(t)| > η
}

andη is a small positive number. Such a cost penalizes the in-
put and output response of the system whilsty(t) /∈ [−η, η],
hence for a closed loop whose goal is to regulatey to zero,
keepingy, u bounded, this cost is finite and is a reasonable
penalty on the transient behavior. Note that whilst that a direct
L2 penalty on the output could be considered for the designs
given, the relaxation of the output penalty is physically mean-
ingful, and considerably simplifies the technical treatment.

In Section 2 we show that aKhalil design out-performs with a
KKK design when the information on initial state is poor and
leads to a large initial observer error.

2 Performance of output feedback system

In this section we study the performances of aKKK design and
a Khalil design for a systemΣ(x0) which can be expressed in
the output feedback form

Σ(x0) : ẋ = Ax+ ϕ(y) +Bu, x(0) = x0 (1a)

y = Cx (1b)

where

x =


x1

x2

...
xn

 , x0 =


x01

x02

...
x0n

 , ϕ(y) =


ϕ1(y)
ϕ2(y)

...
ϕn(y)





A =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 0 1
0 0 0 · · · 0 0

 , B =


0
...
0
1



C =
(
1, 0, · · · , 0

)
andu is the control input,y is the measured output,x0 is the
initial condition of the state, and the functionsϕi are suffi-
ciently smooth and Lipschitz continuous.

Let us first consider a generic observer based controllerΞ(x̂0),
wherex̂0 is the initial condition for the observer. The perfor-
mance of the closed loop(Σ(x0),Ξ(x̂0)) is dependent on both
the initial statex0 and the initial condition for the observerx̂0.
Whilst the initial statex0 is the property of a system, the con-
trol designer has the freedom to chose the initial conditionx̂0

for the observer.

It is intuitive that good performance results from initializing
the observer statêx0 to be close to the actual initial statex0.
Of course, in practice, the initial state is often unknown, so it
can be hard to initialize in this manner. Nevertheless standard
practice is to try to minimize

‖x̃0‖ = ‖x0 − x̂0‖

according to the best information available. However, we may
well not possess complete information concerning the value of
the initial condition of the state, that is we do not exactly know
x0, and hence we have to takex̂0 to be the best estimate tox0.
Then we are interested in studying the situation in which our
estimate ofx0 is not accurate and‖x̃0‖ is large, in particular
how does poor information onx0, (which causes ‘bad’ choices
of x̂0), affect the performance of the controllers?

2.1 KKK design

We first consider aKKK design [8] which achieves global reg-
ulation of the output. Although theKKK design has a global
region of attraction (in(x0, x̂0)), we will prove that the per-
formance of the controller can degrade arbitrarily as the initial
error ‖x̃0‖ becomes large for any fixed initial state condition
x0.

TheKKK design [8] for systemΣ(x0) is as follows.

Firstly, an observer is defined by

˙̂x = Ax̂+ k(y − ŷ) + ϕ(y) +Bu, x̂(0) = x̂0 (2a)

ŷ = Cx̂ (2b)

where

k = (k1, k2, · · · , kn)T , ki > 0, 1 ≤ i ≤ n

is chosen such thatA− kC is Hurwitz.

Then define

ξ1(y) =y
α1(y) =− c1ξ1 − d1ξ1 − ϕ1(y)

ξi(y, x̂1, · · · , x̂i) =x̂i − αi−1(y, x̂1, . . . , x̂i−1)

αi(y, x̂1, · · · , x̂i) =− ciξi − ξi−1 − di

(
∂αi−1

∂y

)2

ξi

− ki(y − x̂1)− ϕi(y)

+
∂αi−1

∂y
(x̂2 + ϕ1(y))

+
i−1∑
j=1

∂αi−1

∂x̂j
(x̂j+1 + kj(y − x̂1) + ϕj(y))

i = 2, 3, · · · , n

whereci, di, 1 ≤ i ≤ n are positive constants. The controller
is then defined as

ΞO(x̂0) : u = αn(y, x̂1, · · · , x̂n)
˙̂x = Ax̂+ k(y − ŷ) + ϕ(y) +Bu, x̂(0) = x̂0

ŷ = Cx̂.

The following result summarizes the standard properties of this
closed loop.

Proposition 1. Consider the closed loop system
(Σ(x0),ΞO(x̂0)). For any initial data x0 ∈ Rn and
x̂0 ∈ Rn, the following hold:
1. The signalsx, x̂, u andy and bounded;
2. The output is regulated to zero:

lim
t→∞

y(t) = 0;

3. The performance is finite:

P
(
Σ(x0),ΞO(x̂0)

)
<∞.

Proof. The proof of 1, 2 can be found in [8]. Letm(Tη) denote
the Lebesgue measure of the setTη. Note thatm(Tη) < ∞
sincey(t) → 0 ast→∞ hence,

‖y‖L2(Tη) ≤ m(Tη)
1
2 ‖y‖L∞(R+) <∞

by 1. The boundedness of the performance follows directly.

We now establish the critical performance property for the
KKK design, which states that the performance gets arbitrar-
ily large as the initial observer error increases.

Theorem 1. For any choice of the controller gainski, 1 ≤ i ≤
n, and for any fixed initial statex0 of the systemΣ(x0), the
performance of the controllerΞO(x̂0) has following property:

lim sup
‖x̃0‖→∞

P
(
Σ(x0),ΞO(x̂0)

)
= ∞. (3)



Proof. For the convenience of notation, the following defini-
tions are introduced:

ξi(0) = ξi(y, x̂1, · · · , x̂i)|t=0

αi(0) = αi(y, x̂1, · · · , x̂i)|t=0

j = 1, 2, · · · , n.

To prove this theorem, it suffices to show

lim sup
‖x̃0‖→∞

‖u‖L∞(R+) = ∞

Sinceu(t) is continuous, to establish the above equation, we
only need to show

lim sup
‖x̃0‖→∞

u(0) = lim sup
‖x̃0‖→∞

αn(0) = ∞. (4)

LetC ⊂ Rn−1 be a compact set, define

Cr =
{
x̂0 ∈ Rn

∣∣(x̂01, · · · , x̂0,n−1) ∈ C; x̂0n = r
}
.

Consider the initial data of the observerx̂0 ∈ Cr. Becausex0

is fixed, if we can prove that

lim
r→∞

sup
x̂0∈Cr

αn(0) = ∞ (5)

then (4) will hold.

By a lengthy calculation (omitted for brevity), we can show
thatαn(0) is of the form:

αn(0) = r

n∑
j=2

(
−cj − dj

(
∂αj−1

∂y

∣∣∣∣
t=0

)2
)

+ F (x1(0), x̂1(0), · · · , x̂n−1(0))

whereF is a constant independent ofr.

Becausecj anddj are all positive numbers, andF is indepen-
dent ofr, we have established (5) as required.

2.2 Khalil design

It is well-known that by a suitable coordinate transformation
the systemΣ(x0) can also be written as integrator chain with a
matched nonlinearity. Concretely, we define a coordinate trans-
formation

T : Rn → Rn, z = T (x)

by

T : z1 = x1, z2 = x2 + ψ1(x1), · · · ,
zn = xn + ψn−1(x1, x2, · · · , xn−1)

where

ψi(x1, · · · , xi)

=ϕi(x1) +
i−1∑
j=1

∂ψi−1

∂xj
(xj+1 + ϕj(x1)) , 1 ≤ i ≤ n. (6)

Then in thez coordinates,Σ(x0) is of the form

Σ(z0) : ż = Az +B(ψ(z) + u), z(0) = z0 (7a)

y = Cz (7b)

where
z0 = T (x0)

ψ(z) = ψn

(
T−1(z)

)
(8)

ψn(x) = ψn(x1, · · · , xn).

Remark 1. Σ(z0) andΣ(x0) actually present the same sys-
tem in different coordinates, but, for convenience, we will use
Σ(x0) andΣ(z0) to denote (1) and (7) respectively.

Remark 2. It can be seen from the definition of transform that
T is invertible. Further more, bothT andT−1 are smooth since
ϕi, 1 ≤ i ≤ n are smooth. Hence, the mappingT is a global
diffeomorphism inRn.

Remark 3. Since the outputy is unchanged by the transforma-
tion T , and the control inputu is independent of the change of
variables, the performanceP independent ofT .

Hence theKhalil designs considered in [3, 6, 1] can be applied
to the systemΣ(z0). Typical results establish semiglobal reg-
ulation of the output. TheKhalil designs utilize a high gain
observer and a nonlinear separation principle [1] which allow
the observer and a globally bounded state feedback controller
to be designed separately, and then combined using certainty
equivalence, to ensure semiglobal results and closeness of the
output feedback controllers trajectory to the underlying state
feedback controller’s trajectory. For the systemΣ(x0), if ϕi

and its higher derivatives are globally bounded, it is straight-
forward to design a globally bounded state feedback controller
for Σ(z0), achieving bounded performance. Hence through the
high gain observer we can design an output feedback controller,
which, for fixed initial condition of the statez0 = T (x0) and
any initial condition of the observer̂z0 also has bounded per-
formance. Furthermore, if the initial error

‖z̃0‖ = ‖z0 − ẑ0‖

becomes large, this design still achieves a bounded perfor-
mance independent of the initial condition of the observer.

To design an output feedback controller, we first give a state
feedback controller forΣ(z0). The controller

u = −ψ(z) + v (9)

feedback linearizes the systemΣ(z0), yielding

ż = Az +Bv, z(0) = z0 (10a)

y = Cz. (10b)

We first design a bounded state feedback controller for the lin-
ear system (10). From [9] we have following lemma.



Lemma 1. The system (10) is null controllable with bounded
control (ANCBC) if and only if
1. A has no eigenvalues with positive real part;
2. The pair(A,B) is stabilizable in the ordinary sense.

Now since all the eigenvalues ofA are zero, namely, without
positive real parts, and the pair(A,B) is stabilizable, the sys-
tem (10) is null controllable with bounded control, and, fur-
thermore, there exists bounded state feedback controllers for
the system (10). An explicit example [9] of such a bounded
state feedback controller is given by

v = −
n∑

i=1

δisat(hi(z)) (11)

where0 < δ ≤ 1
4 , eachhi : Rn → R, 1 ≤ i ≤ n, is a linear

function, andsat(·) is the saturation function defined by

sat(w) =

 −1, w < −1
w, −1 ≤ w ≤ 1
1, w > 1.

This controller achieves global asymptotic stability for the re-
sulting closed-loop system, see [9].

Consequently, the state feedback controller

Ξs : u = −ψ(z)−
n∑

i=1

δisat(hi(z)) (12)

globally asymptotically stabilizes the origin of systemΣ(z0).

Now we design a output feedback controller forΣ(z0). Fol-
lowing [3, 1], we define the high gain observer as

˙̂z = Aẑ +H(y − ẑ1) ẑ(0) = ẑ0 (13)

where

H = H(ε) =
(α1

ε
,
α2

ε2
, · · · , αn

εn

)T

(14)

andε is a positive constant to be specified. The positive con-
stantsαi , 1 ≤ i ≤ n, are chosen such that the roots of the
equation

sn + α1s
n−1 + · · ·+ αn−1s+ αn = 0

are in the open left-half plane.

To apply the nonlinear separation principle, the state feedback
controller is required to be globally bounded. Generally, this
property can be achieved by saturating the controller outside
some set. But in our case we are interested in the initial con-
dition of the observer becoming large. Instead, we introduce
further assumptions onϕi to ensure thatψ is globally bounded.

Lemma 2. For systemΣ(x0), supposeϕi ∈ Cn−i(R), ϕ(k)
i ∈

L∞(R), 1 ≤ i ≤ n; 1 ≤ k ≤ n, thenψ defined by equation
(8) lies inL∞(Rn).

Proof. Sinceϕi ∈ Cn−i(R), ϕ(k)
i ∈ L∞(R), from (6) we

have thatψn(x) is continuous and inL∞(Rn). Note that the
mappingT is a global diffeomorphism, we know thatψ(z) also
is continuous and inL∞(Rn).

Suppose that the conditions of Lemma 2 are satisfied, then the
state feedback controller (12) is globally bounded, so an output
feedback controller for systemΣ(z0) can be taken as

ΞH(ε)(ẑ0) : u = −ψ(ẑ)−
n∑

i=1

δisat(hi(ẑ)) (15a)

˙̂z = Aẑ +H(y − ẑ1) ẑ(0) = ẑ0. (15b)

For the systemΣ(z0) and the output feedback controller
ΞH(ε)(ẑ0), relevant properties of the closed loop are summa-
rized below.

Proposition 2. For systemΣ(z0), suppose thatz0 = T (x0), x0

is fixed,ϕ(0) = 0, and the assumption of Lemma 2 is satisfied.
Then for anỹz0 = z0−ẑ0 there existsε∗ such that for allε : 0 <
ε < ε∗ the output feedback controllerΞH(ε)(ẑ0) guarantees:
1. The signalsz, ẑ, u andy are bounded;
2. The output is regulated to zero:

lim
t→∞

y(t) = 0;

3. The following limit

lim
ε→0

z(t, ε) = z̄(t)

holds uniformly int for all t ≥ 0, wherez(t, ε) is the solution of
the closed system(Σ(z0),ΞH(ε)(ẑ0)); and z̄(t) is the solution
of the state feedback control closed system(Σ(z0),Ξs).
4. The performance is finite:

P
(
Σ(z0),ΞH(ε)(ẑ0)

)
<∞.

Proof. Take any compact setC ∈ Rn andĈ ∈ Rn such that
z0 ∈ C andẑ0 ∈ C, then 1, 2, 3 follow directly from Theorem
1 and Theorem 2 in [1]. As to 4, the finiteness of‖y‖L2(Tη) is
obtained from 2. Note thatψ is continuous and̂z is bounded by
1. Hence,‖u‖L∞(R+) is also finite. So,P

(
Σ(z0),ΞH(ε)(ẑ0)

)
is finite.

Now it is straightforward to uniformly bound the performance
of systemΣ(z0) for theKhalil design.

Theorem 2. Letx0 be fixed,z0 = T (x0), and consider the sys-

temΣ(z0). Assume thatϕi ∈ Cn−i(R), ϕ(k)
i ∈ L∞(R), 1 ≤

i ≤ n; 1 ≤ k ≤ n. Then there is a positive constantM ,
such that for anỹz0 there existsε > 0 for which the controller
ΞH(ε)(ẑ0) achieves a uniformly bounded performance:

P
(
Σ(z0),ΞH(ε)(ẑ0)

)
< M. (16)



Proof. First note that

P
(
Σ(z0),ΞH(ε)(ẑ0)

)
=
∫

Tη

|y|2dt+ ‖u‖L∞(R+)

=
∫

Tη

|z1(t, ε)|2dt+ ‖u‖L∞(R+). (17)

From Lemma 2, we know thatψ(ẑ) is bounded. So, the control
input u has a bound which is independent ofẑ0. By Proposi-
tion 2, if ε is small enough, thenz1(t, ε) tends uniformly int
to z̄1(t), which is independent of̂z0 and uniformly bounded.
Hence,z̄1(t) has a bound that is independent ofẑ0. Similarly
the the measure of the time setTη is also independent of̂z0
and finite. Hence the integral in (17) is finite and the bound is
independent of̂z0. Therefore, we can find a constantM such
that (16) holds.

2.3 Comparison

Theorem 1 shows that for fixed initial statex0, when the initial
error‖x̃0‖ becomes large, the performance of theKKK design
is not uniformly bounded even ifϕi and its higher derivatives
are globally bounded. On the other hand, Theorem 2 shows for
the Khalil design, ifϕi and its higher derivatives are globally
bounded, then for any initial error̃z0, through the high gain
factor, we can design a globally bounded controller, achieving
a uniformly bounded performance.

Hence we obtain the following comparative result:

Corollary 1. For the systemΣ(x0) or Σ(z0), let ϕi ∈
Cn−i(R), ϕ(k)

i ∈ L∞(R), 1 ≤ i ≤ n and consider the con-
trollers ΞO(x̂0) andΞH(ε)(ẑ0). Then there existε > 0 and x̂0

such that for anŷz0 we have:

P
(
Σ(z0),ΞH(ε)(ẑ0)

)
< P

(
Σ(x0),ΞO(x̂0)

)
.

Proof. The result follows directly from Theorem 1 and Theo-
rem 2.

3 Conclusion

Through the comparison of performances forKKK andKhalil
designs, we have established the following result:

For output feedback system, the performance ofKKK design is
sensitive to the initial datum of the observer. The performance
of the KKK design is not uniformly bounded in the initial er-
ror between the initial datum of the state and the initial datum
of the observer. When the initial error becomes large, the per-
formance becomes large. Whereas, for theKhalil design, for
any initial error, by choosing small high-gain factor, we can
design a globally bounded controller, achieving an uniformly
bounded performance. Therefore, if the initial error is large or
in the case that we have poor information for the initial datum
of the state, theKhalil design has better performance than the
KKK design.

The primary contribution of the paper is to provide rigorous
statements and proofs of the intuitively reasonable trade-offs in
performance between the differing classes of designs. The re-
sults have been expressed in qualitative terms only, the purpose
of the paper is to illustrate the asymptotic differences between
the designs. A more quantitative approach is challenging, as
achieving tight bounds on non-singular performance is diffi-
cult. This is an interesting avenue for future research.

References

[1] A. Atassi and H. Khalil,A separation principle for the
stablization of a class of nonlinear systems, IEEE Trans-
actions on Automatic Control44 (1999), no. 9, 1672–
1687.

[2] F. Beleznay and M. French,Overparameterised adap-
tive controllers can reduce nonsingular costs, Systems &
Control Letters, 2003.

[3] F. Esfandiari and H. Khalil,Output feedback stabilization
of fully linearizable systems, International Journal of Con-
trol 56 (1992), no. 5, 1007–1037.
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