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Abstract  
 
A mathematical pendulum under Poisson and Gaussian 
excitations is considered. A bounded in magnitude control 
force is applied to the system in order to minimize mean 
system’s response energy. An optimal control law for the 
Boltza cost function may be found via Dynamic Programming 
approach, resulting in the Hamilton-Jacobi-Bellman (HJB) 
equation. Solution to the nonlinear HJB equation has been 
derived in two steps, as suggested by the recently introduced 
method of Hybrid Solution. Influence of viscous damping on 
synthesis of an optimal control law is investigated.   
 

1. INTRODUCTION 

 
Problems of stochastic optimal control are very important in 
different areas of science and engineering. One way of 
handling these problems is the Dynamic Programming 
approach, which reduces a problem of synthesis of optimal 
control law to solution of the Hamilton-Jacobi-Bellman (HJB) 
nonlinear, partial differential equation (Fleming, et. al., 1975; 
Kolmanovskii, et. al., 1996). Because of the specific structure 
of the latter, only few analytical solutions are known today 
(Bensoussan, 1988; Bratus, 1975; Chernousko, et. al., 1978). 
The viscosity solution to the HJB equation has been 
intensively studied by (Lions, 1982). Systems composed with 
continuous and discrete parts have been studied by 
(Bensoussan and Menaldi, 2000). Most recent results in 
discontinuous solutions to the HJB equation are discussed by 
(Bardi and Capuzzo-Dolcetta, 1997). 
A new Hybrid Solution method was introduced and 
successfully implemented as an alternative way of finding an 
optimal control law (Bratus et. al., 2000). An optimal control 
law for a single-degree-of-freedom (SDOF) system subjected 
to Gaussian white noise excitation was derived, using the 
characteristic approach (Melikyan A.A. 1998). An exact 
analytical solution to the Lagrange cost function has indicated 
that, for a steady-state response a dry friction provides the 
optimal control law for a system’s response energy reduction 

(Iourtchenko, 2000). This method was also successfully 
applied to a MDFO system (Bratus, et. al., 2000).  
In this paper, authors apply the foregoing method to a SDOF 
system subjected to Gaussian and Poisson excitation. 
Although an exact analytical solution within an “outer” 
domain shows that dry friction law is not the optimal one, it 
still can be used as an approximate one for small values of 
Poisson’s noise intensity. A problem of optimal control of a 
damped SDOF system subjected to Gaussian white noise is 
also considered.   
 

2. PROBLEM FORMULATION 

 
Consider a mathematical pendulum subjected to Gaussian 
white noise and Poisson excitations, governing by the 
following equation of motion 
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where )(tξ  and )(tη  are independent Gaussian and Poisson 
processes, the latter has a constant arrival rate λ , 

,  0u R R≤ >  is a control force. Consider a problem of 
minimization of a mean system’s response energy, where the 
Bellman function is taken as  
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with  being some positive constants.  and 1 and a

const
2a )(2 tσ

−γ  are intensities of Gaussian white noise and 
Poisson noise respectively. The Bellman function, defined by 
the latter expression should satisfy the following HJB 
equations  
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where, backward time tT −=τ  was introduced, as well as 
operation of minimization was performed 1 2 2
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The following notation has been used in formula (3) for one-
sided Poisson process  
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Both D+  and D−  domains are non symmetric with respect 

to the line 2x 0= . Furthermore,  is shifted downwards 

and starts from 

D−

2x 0= +  for large values of the Poisson 
noise intensity. Within these domains, the dry friction control 
law is the optimal one.  

  
The difference-differential equation (3) has to be solved with 
the following initial condition 4. DAMPED OSCILLATOR UNDER GAUSSIAN 

WHITE NOISE  
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All mechanical systems possess a certain energy dissipation 
mechanism. One of these is a viscous damping, described by 
the equation (1). It seems natural to presume that, its 
influence should be negligible for synthesis of optimal control 
law, if a damping coefficient α  is small. However, it is still 
interesting to confirm or refute this assumption, and give, if 
possible, some estimates for values of damping coefficient. 
These estimates will provide us with information, needed to 
make a decision on keeping damping term in the HJB 
equation or not. For this purpose, solution to the following 
HJB equation    

 
Solution to the Gaussian excitation only may be found in 
(Bratus et. al., 2000) for Mayer and in (Iourtchenko, 2000) for 
Lagrange cost functions. Solution to the Boltz cost function 

 may be developed as a linear combination 
of the above solutions 
( 1 20, 0a a≠ ≠ )
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3. ONE-SIDED POISSON PROCESS 
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Lets consider the HJB equation for one-sided Poisson process 
(3).  To derive solutions to Lagrange problem, it is sufficient 
to obtain solution to Mayer cost function and integrate this 
solution with respect to explicitly entering the solution 
backward time τ from zero to τ (Iourtchenko, 2000). 
Therefore, solution to Mayer problem only will be derived 
here. 

 
condition α << Ω

0
. The terminal cost function is considered 

first ( 1a = ). Let’s introduce a set of new variables 
 

 
Statement 1. The following function 
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Statement 2. The following function 
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provides an exact analytical solution within the “outer” 
domain  , defined as −+ DD ,
 



provides an analytical solution to the HJB equation (12) 
within the “outer” domain Γ , defined as 3
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It is easy to show that the solution (9) reduces to the one for 
zero value of a damping coefficient and with an absence of 
Poisson noise. 
 

5. NUMERICAL RESULTS 

 
To solve the HJB equation numerically, a bounded state-
space domain has to be selected first. It should satisfy 
conditions (6) or (10) for the corresponding problems over all 
period of simulation time. The HJB equation is solved within 
the “inner” domain numerically by finite difference method 
with an exact analytical solution imposed as boundary 
conditions.  
All numerical calculations are performed for constant values 
of the following parameters Ω = . It is convenient 
to introduce three dimensionless parameters for the system 
without viscous damping. Namely, parameter 

21,  2σ =

/Rµ σ= Ω  
that was introduced in (Bratus, et al., 2000) and two new 
parameters 2 / 2ρ λγ σ=

2/ 0H x∂ ∂ =

 and , where T  
is a natural period of the corresponding conservative system 
(1). First of these two parameters is a ratio of Poisson to 
Gaussian white-noise intensities. The second parameter is 
clearly a number of “events” occurring within a system’s 
natural period. Gaussian white noise is dominant in the 
system when value of parameter ρ is small and vice versa. 
Numerical simulation of a system (1) without Poisson noise, 
corresponding to the HJB equation (2) without last term, is 
presented in the beginning. Switching lines, defined by 
equality  completely define the optimal control 
law based on expression (4).  

2 /πnTϕ λ= = λ Ω n
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Figure 1. τ=0 (solid line), τ= 4π (dashed line), τ= 2π   
(dash-dot line), τ=π  (dotted line). 

Switching lines in phase plane at different instants of 
backward time τ and µ = 1414.  are demonstrated in Figure 
1. The value of the derivative is positive everywhere above 
the corresponding line and negative below it. 
Let’s consider the case of one-sided Poisson excitations. This 
problem is defined by the equation  (2) with corresponding 
initial conditions for the Mayer cost function. We will be 
interested to consider the case when R 0λγ− <

0.71, 0.7

. The results 
of numerical simulation are presented in Figure 2 for different 
values of backward time τ and 5, 3µ ρ= = =ϕ π . 
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Figure 2. Switching lines for τ=0 (solid line),  

/ 4τ π=  (dashed line), / 2τ π=
4

 (dash-dot line) and 
3 /τ π=  (dotted line) 

It is seen that switching lines are shifted significantly 
downwards from the line . It also should be stressed 
that, switching lines for 

2 0x =
01x <  much closer to each other then 

for , resulting in a non-skew-symmetric optimal control 
law. 
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Figure 3. / 4τ π= : α=0 (solid line), α=0.3 (dashed 

line), / 2τ π= : α=0 (dash-dot line), α=0.3 (dotted line). 



Finally, the influence of damping coefficient will be 
discussed here for the problem defined by equation (7). 
According to the paper by (Dimentberg et. al., 2000) a value 
of an equivalent damping coefficient for system with dry 
friction may be expressed as 2 /eq Rα π= Ω . The numerical 
results for values of 

eqα α<<  showed that the difference in 
position of corresponding switching lines is negligible, as it 
was expected. Thus, for the system with a small value of 
damping coefficient the optimal control law may be taken in 
the same form as for a system without damping term in the 
HJB equation. The results of numerical simulation for a case 
of eqα α≈  (same order of magnitude) are presented in Figure 
3 for values of 0.3, 0R .5α = =  and two values of backward 
time τ. Figure 3 clearly demonstrates how far the 
corresponding switching lines lie apart from each other for 
zero and nonzero damping coefficient. Apparently, if the 
applied control force has the same order of magnitude as a 
coefficient of system’s viscous damping, an optimal control 
law cannot be substituted by one for a system without 
damping and has to be calculated through the HJB equation 
with an analytical solution served as the boundary conditions. 
 

6. CONCLUSIONS 

The problem of stochastic optimal control of a SDOF system 
under Gaussian and Poisson excitations has been considered. 
Solution to the corresponding HJB equations has been 
derived based on newly developed Hybrid solution method. 
Numerical simulations have shown that the presence of 
Poisson noise may significantly change the optimal control 
law. However, for small values of Poisson’s noise intensity, a 
dry friction may be used as an approximate control law to 
simplify great computational efforts. Moreover, for a damped 
SDOF system, numerical simulation indicated that relatively 
small values of linear damping coefficient do not change a lot 
the optimal control law. However, it is not the true for the 
case of relatively large values of that coefficient.  
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