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Abstract

This contribution discusses the concept of stochastic control-
lability within the framework of linear interest rate models of
Heath-Jarrow-Morton-Musiela (HIMM) type that may be rep-
resented by an infinite dimensional stochastic differential equa-
tion. Despite the fact that not all such models are control-
lable, we nonetheless investigate the possibility of influencing
the drift term of the aforementioned differential equation by a
particular choice of control function. As a consequence, the
primary purpose of our study is to determine necessary and
sufficient conditions for the stochastic controllability of a spe-
cial subclass of the aforementioned models. In particular, we
find a control that transfers the said model from an arbitrary
interest rate to any other interest rate in the state space of for-
ward rate curves. In order to address this problem we introduce
deterministic and stochastic controllability operators related to
such interest rate models and solve a linear regulator problem
associated with the minimum energy principle.

1 Introduction and Preliminaries

Many situations in modern financial economics involve the use
of continuous time systems and control theory. In particular,
problems in stochastic control impact such areas as portfolio
selection (see, for instance, [12] and [15]) option pricing ([6]
and [10] and the references contained therein), loan manage-
ment (see, for instance, [16]) and insurance theory (see [9] and
[14] and many others). In this contribution, we consider a con-
nection between interest rate theory and stochastic control. In
the Heath-Jarrow-Morton-Musiela (HIMM) interest rate model
(see [8], [13] and [4]) the evolution of the forward rate curve is
explained in terms of a stochastic structure. This model can be
considered to be a unification in terms of the family of 1t6 pro-
cesses indexed by the continuum of the maturities of all contin-
uous interest rate models. The stochastic differential equations
that arise in this case involve interest rates that may be regarded
as a field of random variables that changes with respect to the
parameters of time ¢ and maturity 7T'.

The study of bond markets are underscored by the term struc-
ture of interest rates that are by nature infinite dimensional and
generally not directly observable. Emperically it is necessary
to devise curve fitting methods for the daily estimation of the

term structure. The aim of this paper is to investigate how in-
finite dimensional models of the term structure of interest rates
can be controlled and regulated by analytic means. In partic-
ular, we study the system theoretic concept of controllability
as it pertains to linear interest rate models of Heath-Jarrow-
Morton-Musiela (HIMM) type. Our motivation for considering
this problem is that we would like to develop a better under-
stand of the evolution of interest rates in time. Also, we know
that controllability has a role to play in minimality that in turn
has been shown in [3] to be of considerable consequence for
linear interest rate models. In particular, it is known that such
finite-factor term structure models are useful for practitioners.
Of the two groups of practitioners in the fixed income market,
namely the fund managers and the interest rate option traders,
the latter have a special interest in the low dimensionality of the
interest rate model since the number of factors usually equals
the number of instruments one needs to hedge in the model. It
is known that the daily adjustment of huge numbers of instru-
ments becomes infeasible due to transaction costs.

Next, we provide a few preliminaries about notation and ter-
minology. Dom A denotes the domain of the (bounded linear)
operator A and R(\, A) is the notation used for its resolvent
(M — A)71. If X and Y are Banach spaces then £(X,))
denotes the space of all bounded linear operators from &’ to
Y. For X a separable Hilbert space, we denote the space of
equivalence classes of all functions from [0, 77 to X that are
Lebesque measurable and square integrable with respect to
the Lebesque measure by Lo([0,T]; X). LT ([0,T]; X) is the

space of F;-adapted, X'-valued measurable processes (¢, w)
T

on [0,T] such that E/ [#(t,w)||* < oo. The notation

A= A{(ts): 0<L s0 < t < T} is used for the trian-
gular set over [0,T7]. B2(A, L(X,)Y)) denotes the class of all
L(X,Y)-valued functions on A that are strongly measurable
and square integrable with respect to the Lebesque measure on
A. For s < r < T, we denote the controllability operator cor-
responding to a specific type of stochastic and deterministic
system by II7 and T'T, respectively.

2 TheHJMM Interest Rate M odel

In this section, we provide a brief description of the HIMM
interest rate model and decide on the most economic Hilbert
space to be considered as a state space of forward rate curves.



2.1 Basic Description

As was described in [8], the HIM interest rate model for the for-
ward curve z — r(t, z) is fixed by the structure of its volatility
o and the market price of risk. In this case, r(¢, z) is the nota-
tion used to denote the forward rate at time ¢ with maturation
date £ + z. In this model, we consider a default free, friction-
less bond market with perfectly divisible bonds on a filtered
probability space (Q, F, {Fi}t>0, P) . Furthermore, denote
the price at time ¢ of a zero coupon bond maturing at ¢ + z by
p(t,z), where z is time to maturity and

p(t7 1") = €xp {_y(ta .’IJ)} s

where the period yield y(¢, z) is defined by
y(t,z) = / r(t, s)ds.
0

T
The expression / -(t, s)ds denotes integration with respect to

0
time to maturity z. Also, r(¢, z) the forward rate contracted at
t maturing at ¢ + z has the form

_ Ologp(t, x)
Oz

Moreover, we denote the short rate by R(t), where R(t) =
r(¢,0). As is well-known the HIMM approach addresses the
question of the modelling of the dynamics for the entire for-
ward rate curve. Here the yield curve r is the state variable
rather than the short rate R.

T'(t, 1") =

As regards notation, in the ensuing discussion the forward rate
at time ¢ with maturation date ¢ + z, is simply denoted by r(¢).
From [7], we know that every classical HIM model can more
or less be realized as a stochastic differential equation (SDE)
of the form

{ dr(t) = (Ar(t) + D)) dt + a(r(t))dW (1), 2.1)
r(0) = r*(0), '
where W is an m-dimensional Wiener process,

o(r(®)dW(t) = > o;(r())dW;(t) and the initial curve
{r*(0,z) : z > 0} is interpreted as the observed forward rate
curve. This equation evolves on some open convex subset ¢/ in
a separable Hilbert state space ‘H of forward rate curves. More
specifically, we have for A, D € L(U,#) and ¢ that

A:%:DomAC’H—WH; D:UCH-—>H;
, Om) iU CH —=H™,

o= (o1, 02, ...

respectively. Also, the model must be arbitrage-free which
leads to the existence of an equivalent local martingale mea-
sure Q ~ P. In this case D(¢) in the drift term from (2.1) can
be written in terms of the volatility o and be specified as

2.2)

Here (2.1) is commonly referred to as the HIMM equation
and (2.2) is called the HIMM drift condition. This means that
the pricing formula for interest rate sensitive contingent claims
only depend on ¢. Furthermore, the deterministic counterpart
of the stochastic linear HIMM interest rate model (2.1) may be
represented as

dr(t) = (Ar(t) +D(t))dt,
{ r0) = r(0). (23)
We assume that our state space H is separable. Further-

more, from [7] we know that H is continuously embedded in
C(]0, 00); R). In other words, for any choice of z € [0, co) the
pointwise evaluation » — r(z) is a linear functional on # that
is continuous. Furthermore, H contains the constant function
1. We also insist that the family of right shifts

Ser =r(t + z) for t € [0, 00) (2.4)

forms a strongly continuous semigroup on 4 with generator

%. Furthermore, we may assume that the domain of % has
the form

{h €HNC (0,00} R): &

sehen}.

3 Controllability of Linear HIMM Interest

Rate Models

In this section we investigate the possibility of influencing the
HIMM interest rate model (2.1) by postmultiplying D (%) in the
drift term (2.2) by a positive function u : [0, 00) — U, where
U is the open convex subset described earlier.

3.1 Partially Observable HIMM Interest Rate Models

It is often not possible to observe the interest rate directly. For
this reason, at the outset, we choose a partially observable infi-
nite dimensional HHIMM model of the form

{ r(t) = (Ar(¢) + ()u(t))dt+o'dW(t),
dz(t) = CF(t)+ FdW (%), (3.5)
0 = r*(0),

where D(¢) in (2.1) acting on u that belongs to some admissible
control setU,q CU, o , C and F are given by

D) :Uyg CH =M, o :QVE 1,
C:UcH—-R™ F:R™—R™,

respectively. The process z usually stands for an observable
quantity such as a stock price or an index or a combination
of the two. For the sake of our analysis we will investigate
the situation where W (¢) is an m-dimensional Wiener process
on some separable Hilbert space £ with covariance operator Q
and W( t) is a vector-valued Wiener process on R™ with co-
variance operator @). Also, the volatility o in (3.5) is a Hilbert
Schmidt operator from Q1/2€ into 4 with the Hilbert-Schmidt



norm || - ||2. Furthermore, we assume that D(¢) is a bounded
linear operator from 4,4 with generic element u(¢) to . Also,
Q and F are invertible and Q—1, F and F~1 € L(R™). For
each z € La(Z,U) in (3.5) from Theorem 5.6 of [11] we know
that there exists a process ¥(-) € LZ([0,T]; L(RF,R™)) with
the property that z € Ly(Z;,U) is given by

T
z=E(z|2:) =Ez +/0 P(s)dW (s). (3.6)

3.2 Admissible Control Sets

The set-up of the admissible control set i, 4 is described below.
Consider a Q-measurable function z on Q to L, ([0, T]; U). For
0 < t < T, denote by z; the restriction of z to [0, ¢] x € and
by ¥(z;) denote the X-algebra generated by z;(s), 0 < s < .
LetU,, = La(Q, X(2:), Q,U). The set

7]
Ung = / U, dt

={z € Ly([0,T);U) : 2t € U,, for almost every t € [0,T]}

is the Hilbertian sum of subspaces ¢/,, which by [2] is indepen-
dent of the choice of control. It follows that for u € i,4 that
the stochastic system (3.5) is well-defined and w is a feedback
control that obeys laws of the type where u(t) = (¢, 2¢) is
admissible for ¢ being measurable, nonanticipative and satis-
fying a uniform Lipschitz condition.

Next, we introduce the X-algebras Z; Y(2;) and ZP
Y(29), generated by z:(-) and 22(-), respectively. Also, we
consider an important subclass U2, C U,q (see [5] for more
details) defined by a linear feedback on the observation

Usg = { u(t) = w(t) + /OtK(t, s)dz(s) } cUu, (3.7)

where w(-) € La([0,T);U) and K (-,-) € Ba(A, L(RF,U)).
We contend that this choice of the control u transfers (3.5) from
an arbitrary interest rate ro to an arbitrary element h of /.

3.3 An Appropriate Subclass of HIMM Interest Rate
Models

From [17] it is easy to deduce that if u(-) € U,q4 then for 7(¢)
from (3.5) the Kalman filter

r(t) = BE{r(t)| Z:} = E{7(t)| 2}
is the mild solution of the linear HIMM interest rate model

{ dr(t) (Ar(t) + D(t)u(t)) dt + o(r(t))dW (t)
r(0) r*(0),

' (3.8)

where D(t) and u(¢) are given by (2.2) and (3.7), respectively.
Also, we have that

a(r(-))

We assume that the linear operator P may be chosen in such a
way that the volatility (3.9) is (locally) Lipschitz continuous in

= P()C*(FQF*)~'F. (3.9)

r. From [7], in this case, we have that o and D(¢) in (3.8) are
(locally) bounded.

The general problem that is discussed in the rest of this section
may be stated as follows.

Can we find a control u that drives the HIMM interest rate
model given by (3.8) from an arbitrary interest rate ro to any
other interest rate h contained in the open convex subset 2/ of
the separable state space H of forward rate curves ?

Strong solutions of (3.8) are very seldom encountered in the
context of interest rate models. Under the conditions specified
in the previous paragraph (see [17]) for more details), we are
able to write the mild solution r(&; ro, u) of (3.8) explicitly as

t
r(t;ro,u) = Str*(0)+/ St_sD(s)u(s)ds
0

¢
+/ Si_sa(r(s))dW (s). (3.10)
0

In addition, we note that a deterministic counterpart of (3.8)
may be given as
drq(t)

o Arg(t) + D(t)v(t),
ra(0) ra(0),

with a solution of the form

(3.11)

ra(t)

t
Sirg(0) + / S;_sD(s)v(s)ds. (3.12)
0
3.4 Controllability Operators for Linear Interest Rate
Models

Our strategy for solving the controllability problem for the lin-
ear HIMM interest rate model described above is based on an
analysis of the stochastic controllability operator

HZ : L2(ZT7U) — L2(ZT7U)
corresponding to (3.8) and its solution (3.10) given by
T
()= [ S DODE"S; Bl{Z)d, (319
where S; and D(t) are given by (2.4) and (2.2), respectively.

Moreover, the related deterministic controllability operator T'7
corresponding to (3.11) and its solution (3.12) has the form

T
I7{} = / St_sD(H)D(t)* S, dt. (3.14)

Next, we state and prove an important lemma.

Lemma 3.1 For each z € Lo(Z;,U) there exists a process
¥(-) € LZ([0,T]; L(RF,R™)) with the properties that

1. the stochastic controllability operator

T
Mz =T¢Ez +/ TTo(s)dW (s);
0

(3.15)



2. for all A > 0, we have that
R\, -T2z = R\, -THEz

/R)\l,—l“ Yo (5)dW (s). (3.16)

Proof. The proofs of these facts are as follows.

1. We note that a consideration of the definition of the
stochastic controllability operator IIT in (3.13), the
stochastic version of Fubini’s Theorem and (3.6) leads to
the required representation

Iz = TIE:z

T
+ / Sr_:D(t)D
0

= ITE:

o [ [ o

2. The proof makes use of (3.6) and (3.15).

t
)*Sp_, / Wb(s)dW (s)dt

()" S7_ydtep(s)dW (s).

|

3.5 Regulator Problem for Linear HIMM Interest Rate
Models

We define a linear regulator problem related to the minimum
energy principle. The problem is to minimize

T
J(u) = E||r(T; ro, u) — h|[ + AE / lu()|2dt, (3.17)
0

over all u(-) € U,q, where r(T';rg,u) is a stochastic interest
rate; b € Lo(Z7,U) and A > 0 are parameters; and h has the

representation
T
+ / h(s)dW (s)
0

Next, we investigate the existence of a unique optimal control
u*(-) € U,q at which the functional (3.17) takes on its mini-
mum value.

Lemma 3.2 There exists a unique optimal control u*(-) € Uyq
at which (3.17) takes on its minimum value and

u*(t) = —D(t)*S5_,
x {R(A, =Tg)(Stro — E(h))

t
+/0 R(X, =Tq) [S1—s0(r(s)) — h(s)]dW (s)} ;

(3.18)

T(Ta To,u)‘) - E(h)) (319)

+ / “ AR, T[Sy (r(8)) — h(s)]dW(s).
0

h = AR\, =T¢)(Stro —

Proof. The problem of minimizing the functional (3.17) has
a unique solution u*(-) € U,4 which is completely character-
ized by the stochastic maximum principle (see [1]) and has the
following form.

w*(t) = =X 'D(t)* Sy E {r(T, o, u
Using this in (3.10) we have that

—h|Z}. (3.20)

T
r(T,ro,u) = STr0+/ St_so(r(s))dW(s)
0

—ATMOg (r(T, o, u) — ).
Hence, it follows that
)‘T(Ta To,u)‘)
T
=2A (STTO +/ ST—sU(T(S))dW(3)>
0
—I0§ (r(T, ro, u*) — h)

which implies that

A + e (T, 7o, ut)
T
= (STro +/ ST_Sa(r(s))dW(s)> + T h.
0

Consequently, it follows from Lemma 3.1 that

r(T,ro,u?) —h = AAI +IIT) 1

T
(sm+ / ST_Sa(r(s))dW(s)>
0

FOA+T)Y (A + 17 — ADR — h

Thus (3.19) holds. Substituting (3.19) into (3.20) we obtain
(3.18) in the following way.

urMt) = -AT'D@)*SH_E
X {)\R(A, T3 (Srro — Eh) + /T AR\, -T'T)
0
(S1—s0(r(s)) — h(s)) AW (s)|2:} .
This proves the lemma. (|

3.6 Complete and Approximate Controllable HIMM In-
terest Rate Models

Suppose for the definitions of complete and approximate con-
trollability of the linear HIMM interest rate model that the
reachability subspace

R(t,ro) = {r(t,ro,u) : u € Upq}-

Definition 3.3 The linear HIMM interest rate model (2.1) is
completely controllable on [0,T] if for (3.8) all the points
in Lo(Z7p,U) can be reached from the initial interest rate 7o
attime 7T, i.e., if R(T,ro) = Lo(Zp,U). Also, (2.1) is ap-
proximately controllable on [0,T] if for (3.8) R(T,ry) =
Ly(Zp,U).




Lemma3.4 1. If the stochastic HIMM interest rate model
in (2.1) is approximately controllable on [0,T] then its
deterministic counterpart (2.3) is approximately control-
lable onevery [s,T], 0 < s < T.

2. If the deterministic model (2.3) is small time approxi-
mately controllable on every [s,T], 0 < s < T then the
stochastic HIMM interest rate model in (2.1) is small time
approximately controllable on [0, T7].

Proof.

1. By approximate controllability we have
E[|AR(\, =TI])z|]* = 0.
From (3.19) in Lemma 3.1 we conclude that

EIAR(\, TIE)2l? = [AR(A, ~TT)Ez| (3.21)
k T
+EY D) / IAR(A, ~T7)gh;(s)|Pds = 0
j=1 0

which for all (-) € LZ([0,T]; L(R¥,U)) has the result
that

k

T
B 0,0 [ INRO,-T)w(s)|Pds .

i=1

This implies that a subsequence { A} exists such that for
alheld

[|AsR(Ag, =TT)R||2 = 0, almost everywhere on [0, 7.

Because of the continuity of R(\,—I'T) this property
holds for all 0 < s < T and the result follows.

2. By small time controllability we have
[IAR(\, SR — 0as A — 0.

Since by the Lebesque Dominated Convergence Theorem

k

> DiOIARA, ~TI)w;(s)I1* < [l ()]

j=1
it follows from (3.21) that
E|AR(\, -T13)z||> = 0as A — 0F.

O

We note that in the case where S; = e4? the generator is ana-
lytic and hence we have the following result.

Theorem 3.5 The linear stochastic HIMM interest rate model
(2.1) is approximately controllable on [0, 7] if and only if it is
small time approximately controllable.

Proof. This result follows from the definitions of approximate
and small time approximate controllability and Lemma 3.4. [

3.7 Stochastically Controllable Linear HIMM Interest
Rate Models

Next, we define the stochastic controllability of linear HHMM
interest rate models. For this, we have to introduce the set

AL (t,r0) =
{helU:3u €Uy, Q(|r(t,ro,u)—hl||*> <€) >p}

and A(T, o) = Ne>o, 0<p<1 AL (T, 79). Moreover, it is a well-

known fact that A(T',79) = A(T, 7). The following definition
is an important one.

Definition 3.6 The linear stochastic HIMM interest rate
model (2.1) is stochastically controllable if for (3.8)

A(T, 7‘0) = A(T, 7‘0) =U.

Theorem 3.7 The linear stochastic HIMM interest rate model
(2.1) is approximately controllable on [0, 77 if and only if it is
small time stochastically controllable with the control set 247 .

Proof. If (2.1) is approximately controllable then by Lemma
3.4 it is approximately controllable on each [s,7’] and hence
AR(A, =TTy - 0 strongly as A — 0. Furthermore, Lemma
3.2 claims that for any fixed h € U that is nonrandom there
exists a Guassian control (3.18) in &7 ; with the property that

r(T,ro,u*) = b = AR(\, =I§)(Str0 — ER)

T
+ / AR\, =TSy _ o (r(s))dW (s).
0

We conclude that E||r(T', 7o, u*)—h||> = 0as A — 0. Inthis
case, the small time stochastic controllability of the HIMM in-
terest rate model in (2.1) with control set /¢, is a consequence
of Chebychev’s inequality.

Conversely, let h € U and consider
{€n 1€, >0, €, = 0}and {p,: 0<p, <1, p, = 1}.

In this case, we are assured of the existence of a sequence
{u} € U, with the property that

Q{||7(T,r0,u™) — h||* < €} > pn.

From this we deduce that for any ¢ > 0 there is a number N
such that 0 < €, < €2. Furthermore, we have that

Q{||r(T,ro,u™) — h||> > €} < 1 — p,

for all n > N. This inequality suggests that (T, ro,u™) con-
verges to & in probability which in turn implies that for any
€ > 0, it follows that

Q{||r(T,ro,u™) — h|| > €} = 0, asn — oo.
In this case, for all z € &/ we have

lim Eei(T(T,ro,u"),w) — Eei(h,w).
n—oo



Since r(T', ro,u™) is a Guassian random variable (as the solu-

tion (3.10) of (3.8) corresponding to the Guassian control ™),

from the convergence of characteristic functions and the guas-

sian properties of r (T, ro,u™) and h it follows that
Eei(T(T,ro,u"),w) — ei(mn,w)—1/2(Anw,w)

and limy,_, oo €¥mn @) =1/2Anz,2) — eilh.2)  Ag 3 result we

may deduce that for all z € ¢/ we have

(mp,z) = (h,z) and (A, z,2) = 0asn — oo,

where m,, = Er(T,ro,u™) and A, = cov (r(T,rg,u"™)).
Convergence in the first instance results in the sequence
{my,} € U converging weakly to & in Z/. Mazur’s Theorem
implies that we can construct the sequence

n n
hn:E carmy, ¢f >0, E g=11i=1,2, ...
i=1 i=1

of convex combinations of m; = Er(T,ro,uf), i =

1, 2, ..., nsothat h,, converges to h in the strong topology
n

of U. Next, we write @™ = > _ cfus, n=1, 2, ... Itfollows

directly that u™ € U,q. Béz’;use of the affineness of (3.8), it
follows that h,, = Xn:c?Er(T, ro,u’) = Er(T,ro,u"). Next,
if 5" — Ba® € V then hy, = y(T, ro, ") and as a result

Jim {|y(T,ro,u™) = bl = lim [|hn — h[[ = 0.

By the equivalence in Lemma 3.4, the result holds. |
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