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bility in probability. La Salle’s theorem. Jurdjevic-Quinn’ssections and is organized as follows. In section two, we briefly

theorem. Cascade systems. recall some results about stochastic stability and stabilization
which are closely related to the present paper. In section three,
Abstract we introduce the class of nonlinear stochastic differential

systems we are deeling with. In section four, we state and

The purpose of this paper is to apply the stochastic version@pve the main result of the paper.

La Salle's invariance principle in order to obtain sufficient con-

ditions for the asymptotic stabilization in probability of cascadg  Stochastic stability and stabilization.

nonlinear stochastic differential systems. This result extends

the one obtained in Florchinger [4] for partially linear stochag-et (w;),., be a standard Wiener process with value®Rih
tic cascade differential systems. defined on some complete probability spgQeF, P).

1 Introduction Denote by (:Et)t>o the stochastic process solution R

) . ) ) _ of the stochastic differential equation written in the sense of
The aim of this paper is to study the asymptotic stabilization jgp-

probability of cascade nonlinear stochastic differential systems ¢ ¢ ¢ ¢ ¢
by means of state feedback laws. rp =§ JF/O b (%) ds +/0 o (a5) dws (1)

. . . : whereb ando are meaurable functions mappiy into R
In connexion with various practical problems, the quesg;

. - L ) “andR™*4, ively, ishing in the origin.
tions of stability and stabilizability of nonlinear stochastic nd respectively, vanishing in the origin
_dlfferentlal systems have been considered by dlﬁergnt guthqrﬁe infinitesimal generator of the solutionﬁ:rf) of
in the last past years. A fundamental tool consists in the o _ ) _ >0
stochastic Lyapunov machinery developed by KhasminsFJﬁe stoqhasnc dn‘ferenn‘al equation (1) is the second order
in [8]. See for example the papers [6] and [3] and thdifferential operator. defined by:
references therein. An extension of the well-known result n n g 2
o : : . 0 1 0
of Jurdjevic-Quinn [7] allowing to compute explicitely state 1, — Zbi(x)i + = Z Z(givkgﬁk)(x) )
feedback stabilizers for stochastic differential systems affine in i=1 Oz~ 2 i,j=1k=1 Ow;0z;
the control has been established by Florchinger in [5].

The following facts, proven in Khasminskii [8] and Kushner
In general, the cascade connexion of two globally asymptoi®] will be used in the sequel.
cally stable in probability stochastic differential systems does
not yield an asymptotically stable in probability stochastidssume that there exist a positive constanand a Lya-
differential system. The resulting stabilization problem hasunov functionV, that is a proper and positive definite?
been investigated by Florchinger in [4] and Boulanger ardnction mappindR”™ into R™, such that:
Florchinger in [1]. The construction of the stabilizing control
laws in the above cited papers is an extension of the cancella-
tion procedure used in deterministic control theory, and maks: | .. ¢ r”.
use of a composite Lyapunov function like that introduced
in Saberi, Kokotovic and Sussmann [11] for deterministiishen,

LV (z) < eV (),

if the functionsf and o satisfy Lipschitz condi-
systems. tions on any ball inR", the stochastic differential equation

: . G .. (1) has a unique solution on the time inter{@l+oo] for any
In this paper, the asymptotic stabilization in probabllltymtia| condition¢ in R”.

of cascade systems obtained when connecting two nonlinear
stochastic differential sytems stable (but not necessarily bgth, qdition LV(z) < 0 for all z in R", then the equi-
asymptotically stable) in probability is obtained by mean G solutionz) = 0 of the stochastic differential equation



(1) is stable in probability. This means that: Then, the following result holds. (See also [2] for a more gen-

eral dependance of the coefficients on the control law)

lim P{sup xf‘ > r} =0

1€[—0 >0 )
Theorem 2.2 Assume that there exists a smooth Lyapunov

foranyr > 0. functionV defined orR” such that:

The equilibrium solutionz? = 0 of the stochastic differ- _
ential equation (1) is said to be asymptotically stable inl. LoV (z) <0 forall zin R".
probability if, and only if, it is stable in probability and:

2. The sefC =
P{ lim xsz}:l
t——+oc0 {LC c Rn/ngogjﬁoo . 'Lgkgf:LoV(x) =0,
for any initial condition¢ in R™. a o ‘
y 1 Loogﬁ,o"'Lokgjﬂ:AlV(x) -0,

A sufficient condition for the latter to hold is théf/ (z) < 0 :ZE {I\ll’v Ph ) 1
for all z in R™ \ {0}. € N,Vjo,....jr € {1,...,q}

va()vﬂ()a"'aak,ﬁk S {0,,]€}

Another powerfull tool to investigate the asymptotic be- such thath:0 o+ 0B =k
havior of the stochastic proces§ is the following stochastic
version of La Salle’s theorem proved by Kushner in [10]. is reduced to{0}.

Theorem 2.1 Assume that there exists a Lyapunov funciion

such that Then, the control law: defined orR™ by
LV(z) <0 -
for anyz € R™. Then, the stochastic processsolution of the w(z) = —hj(z) 5. (@)

stochastic differential equation (1) tends in probability to the

Iargesgt invariant set whose support is contained in the locisnders the stochastic differential system (2) asymptotically
LV (z7) = 0foranyt > 0. stable in probability.

From this result, an extension to stochastic differential sys-
tems of Jurdjevic-Quinn’s theorem [7] has been obtained By Problem statement.

Florchinger in [5]. Consider the stochastic procdas, y;) solution inR™ x R™

Consider the stochastic differential system described B{ﬁhe stochastic differential system

the 116 equation: dry = fl(fﬂt, yt)dt + 0 (l‘t, yt)dwt

" t . B 3
xf = §+/0 [b (xﬁ ) +h (xﬁ )“] ds @ dy: = (fa(ye) + h(ys)u) dt + ga(ye)dvy
¢
—|—/ o (x§“) dws, where
0

whereu is some measurable control law with valueRihand
h is a function mappin@®” into R™*", whose columns will be
denoted by, 1 <1 < r.

1. o andy, are given inR™ andR™, respectively.

2. (vt);>o and (wy),~, are independant standard Wiener
processes defined on the probability spdeeF, P), with

Denote by L, the infinitesimal generator of the stochas- X .
Y Lo 9 values inR? andRR?, respectively.

tic process solution of the stochastic differential system
deduced from (2) by setting = 0, and byg;, 1 < j < ¢, the

. . . . 3. uwis a anR"-valued measurable control law.
first order differential operators defined by: Y

no ) 4. f; andg; are smooth functions mappif®® x R™ into
g; = Z ol (x) oz R™ andR™* 1, respectively, vanishing in the origin.
i=1 v
Define also the first order differential operatars 1 < 1 < r,  °- f2, h andg, are smooth functions mappify™ into R™,
by: R™*™ andR™*P, respectively, vanishing in the origin.
" 0
A=) hl
! ; () oz,

Furthermore, assume that the following conditions are satisfied.



(A1) The unforced dynamics of the stochastic prodgss., and denoting byC, the infinitesimal generator of the closed-
are stable in probability. More precisely, there exist lop system obtained in this case, one has fofall) € R™ x
Lyapunov functionV, defined onR™ such that for all R™ :

R™:
ve LoW(z,y) = VoVi(z)fi(z,y) + VyVa(y)f2(y)
LoVa(y) = (VyVaf2)(y)
1"’T +V, Va(y)h(y)a(z, y)
+§ r((g292vyyv2)( ))
< 0 +5Tr ((9197) (2, 9) V2, Vi ()

(A2) There exist smooth functiong andg?, 1 < i < r, map- +5Tr (92(1)92(y)* Vi, Va(y)) -

pingR™ x R™ into R™ andR"™*?, respectively, vanishing .

in the origin, such that for allz, y) € R™ x R™: From the assumption (A2), we know that

VIV1(1')]C1(1'7ZJ) = val(m)f1($70)
1. fi(z,y) = fi(2,0) +Zzz ) fi(@,y)- r
+ Z (V4 Va()h(y))"),

2.
a(z.y)gi(z,9)* = gl 0)g(x,0)" Vo Vi(@) fi(z,y)
+Z«Zz )91 (z,y)gi (z, )" and
Tr (91 (2, y)91 (2, 9)* V3, Vi(2)) =
wherez(y) = (V,Va(y)h(y))*. Tr (g1(,0)g1(x,0)*V2, Vi (2))
(A3) There exists a Lyapunov functidn defined ornR™ such + - Y. Vo ().
that for allz € R™: ; (V2 (0)h(y))"),
LiV; = VIV ,0 7 7 *
1Vi(z) : 1(%) f1(x,0) . Tt (gi (2, y) gt (2, 1) V2, Vi (2)) ]
+§Tr (gl(x,O)gl(x,O)*VmVl(x)) X . .
< 0 The state feedback law = «(z,y) is defined in such a way
- 7 that:
4 Asymptotic stabilization of the composite sys- VyVa(y)h(y)a(e,y) =
tem.
In this section, the stochastic version of La Salle’s theorem B Z VyVa)h(y) ) VaVi(@)fi(z,y)
(theorem 2.1) will be used to obtain the asymptotic stabiliza-
tion of the stochastic differential system (3). 1

-3 Z (VyVa()h(y)"),
First, note that defining the components of the state feedback
law u = o(z, y) by: Tt (g} (2, 9)g} (2,9)* V2, Vi (2)) ]
ai(z,y) = —val({t)ff(x, y) @) Thus, one gets:
_%Tr (gi(x,y)gi(x,y)*vix‘ﬁ(x)) an(x7y)

V. Vi(2) fi(z,0)
1 <4 < r, one renders the equilibrium solutigf, 0) of the . )
stochastic differential system (3) stable in probability, as stated +5Tr (912, 0)g1 (2,0)* V3, Vi (2))
in the following proposition.

+VyVa(y) f2(y)

Proposition 4.1 Under the assumptions (Al)-(A3), the state
feedback law: = «a(z, y) defined by (4) renders the stochastic
differential system (3) stable in probability.

+3Tr (92(y)92()* V2, Va(y))

= LiVi(z) + LaVa(y).
: (5)
Proof. Setting Taking into account (Al) and (A3), this implies that



forall (z,y) € R™ x R™ and the desired conclusion follows. forall (z,y) € R™ x R™.

Introduce now forl < [ < p the first order differential opera-

tors defined by Let (x¢,v:):>0 be a trajectory of the composite system

such that
Gio(y) = Vye(y)9a(y) Lo:W(w,y:) =0
. forallt > 0.
wheregs(y), 1 < I < p, denotes the columns of the matrix
92(y)- In view of inequalities (6) and (10), this implies that
Then, the main result of this paper can be stated as follows.
LiVi(zy) = LaVa(y:) =0 (11)
- . aswellas
Theorem 4.2 Assume that the coefficients of the stochastic dif- () = 0 (12)
ferential system (3) are smooth functions satisfying to the as- ) =
sumptions (Al) and (A2) and that the sets forallt > 0.
{z e R"/LiVi(z) = 0,k € N*} (7) In view of (12), it can be seen that the stochastic process

(z¢),~, Obeys to the stochastic differential equation
{yeR"/Glzi(y) =0,1<i<r1<l<pkeN} (8) -

are reduced to the origin ifk™ andR™, respectively. dzy = fi(we, 0)dt + g1(2+, 0)dw.

Then, the stochastic differential system (3) is asymptotica, . . . L . .
stabilized in probability by the feedback law definedh x %Xar“”g with (11), recursive applications 06 formula yield
R™ by: oranyk € N*:

U((E,y) = Oé(l',y) - Z(y) (9) Lllc+lvl(wt) =0.

Proof Let u be the state feedback control law defined oMoreover, other conditions have to be satisfied by the pair

R™ x R™ by (9). (z¢,ye) . In particular, one has for anye Nandl <[ < p:
- k _

It is convenient to define the functiof, on R* x R™ Gr'z(y) =0,

by:

z as it can be again verified by recursive applications 0&It
Jaa.) = foly) + h(y)alz,y). o d i

The infinitesimal generatof,, . of the composite stochasticTherefore, we may conclude from (7) and (8) that the
differential system stochastic proces&e,, y;) verifying L. W (z,y;) = 0 for
all ¢ > 0 is identically (0, 0). The result follows from theorem

d Ty o\ _ 2.1. O
Yt

£z, ve) Remark 4.3 The assumptions (7) and (8) in theorem 4.2 seem
( s ) dt to be quite natural in the sense that they discribe properties

Falze, o) of the components of the cascade stochastic differential system
(2) when these components are uncoupled and unforced. Nev-

— ( h( ())Z( ) > dt ertheless, it is clear that the asymptotic stabilization of (2) can
Be)2Y be achieved by a direct and full application of the sufficient
condition stated in theorem 2.2.
+ g1(we, yt) 0 d Wy
0 g2(yt) Ut
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