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Abstract

A new recursive algorithm is proposed for finding the mini-
mum of an objective function whose gradient is not obtainable
directly but is approximated from the noisy observations of
the function. The algorithm is based on the simultaneous
perturbation stochastic approximation method (SPSA) com-
bined with randomly varying truncations, and provides the
estimate, which is convergent under weaker conditions than
the conventional SPSA. Numerical simulation studies illustrate
the applicability of the proposed algorithm.

1 Introduction

Many engineering problems such as system design, model-
ing and control can be reduced to optimization (maximization
or minimization) problems of a certain mathematical objective
function under some constraints. Generally, the solution to
the optimization problem corresponds to finding the parameters
where the gradient of the function with respect to the concerned
parameters is zero. Sometimes, the information of the gradient
of the objective function cannot be available exactly or difficult
to compute. In such cases, we have to consider approaches that
rely on the gradient approximations evaluated from (noisy) ob-
servations of the objective function.
One of such approaches is Kiefer-Wolfowitz stochastic approx-
imation [3]. It is an optimization version of Robbins-Monro
stochastic approximation method [4] developed to find a root
of a regression function. Since Kiefer-Wolfowitz stochastic
approximation is based on standard finite difference gradient
approximations, it may sometimes be called by finite differ-

ence stochastic approximation (FDSA). It requires 2p observa-
tions of the objective functions at each iteration, and there may
be difficulties in computation burden for higher dimensional
problems. In contrast to this FDSA, Spall [5] proposed a new
stochastic approximation method called by simultaneous per-
turbation stochastic approximation (SPSA) that is based on the
gradient approximation relied on only a pair of observations.
Hence, in this approach, the required number of observations
is independent of dimension of the problem.
Though these approaches are applicable to wide class of ob-
jective functions and observation noise processes, the idea of
a randomly varying truncations introduced by Chen [2] is em-
ployed, in this paper, to extend the applicable class of objective
functions and observation noise processes. Numerical simula-
tion studies illustrate the usefulness of the proposed idea.

2 Function Optimization by Finite Difference
Stochastic Approximation and Simultaneous
Perturbation Stochastic Approximation

Consider function minimization problem for an objective
function f (θ) : Rp → R1, (p≥ 1). Here, we assume the value
of the objective functionf (θ) cannot be obtained directly but
with observation noisew as follows.

y(θ) = f (θ)+w (1)

Let g(θ) be the gradient of the objective functionf (θ), if avail-
able, i.e.,

g(θ) =
∂ f (θ)

∂θ
(2)

then the parametersθ ∗ that provides the minimum off (θ) sat-
isfies g(θ ∗) = 0. Stochastic approximation method provides
the estimateθ recursively by using the approximate of the gra-
dientĝ(θ) constructed by the noisy observations off (θ)

θ̂k+1 = θ̂k−akĝ(θ̂k) (k = 0,1, · · ·)
θ̂0 : initial estimate (3)



Figure 1: Observation points in FDSA

with a suitable gain sequence{ak}.

2.1 Finite Difference Stochastic Approximation

Conventional stochastic approximation method for function
optimization, which was first proposed by Kiefer and Wol-
fowitz [3] and then extended by Blum [1] to multi-dimensional
functions, uses the approximate of gradientg(θ) : Rp → Rp by
the finite difference,

ĝk(θ̂k) =
1

2ck

 ỹ(1+)
k

− ỹ(1−)
k

...
ỹ(p+)

k
− ỹ(p−)

k

 (4)

with the noisy observations off (θ) at the observation points
θ̂k±ckul , (l = 1,2, · · · , p)

ỹ(l+)
k

= f (θ̂k +ckul )+w(l+)
k

ỹ(l−)
k

= f (θ̂k−ckul )−w(l−)
k

(l = 1,2, · · · , p) (5)

whereul is a unit vector of the direction of thel th coordinate
in Rp (l = 1,2, · · · , p) and {ck} is a positive scalar number
sequence. We call this stochastic approximation method as
the finite difference stochastic approximation (FDSA). Figure
1 shows the observation points for the case ofp = 2 in FDSA.
Theorem 1 gives sufficient conditions for the estimateθ̂k by

FDSA (3), (4) to converge almost surely to the pointθ ∗ that
provides the minimum of the objective functionf (θ).

[Theorem 1]
Assume

A0: The third derivative off (θ) is finite.
A1: The pointθ ∗ ∈ Rp is an asymptotically stable solution of

the differential equation

dθ(t)
dt

=−g(θ)

whereg = ∇ f .

A2: Let θ(t|θ0) be a solution of the differential equation in
A1 with initial condition θ(0) = θ0, and D(θ ∗) = {θ0 :
lim
t→∞

θ(t|θ0) = θ
∗} (i.e., this means thatD(θ ∗) is the do-

main of attraction of the differential equation in A1).
Then, there exists a subsetS⊆ D(θ ∗) such thatθ̂k ∈ S
infinitely often for almost all sample processes.

A3: sup
k
‖θ̂k‖< ∞ a.s.

A4: {w(+)
k

−w(−)
k
} is a martingale difference sequence, i.e.,

E[w(+)
k

−w(−)
k
|θ̂0, θ̂1, · · · , θ̂k−1] = 0.

A5: {ak},{ck} are positive number sequences satisfying

lim
k→∞

ak = 0, lim
k→0

ck = 0,

∞

∑
k=1

ak = ∞,
∞

∑
k=1

(
ak

ck
)2 < ∞

Then the estimatêθk by FDSA converges the minimum point
θ ∗ with probability one, i.e.,

Pr{ lim
k→∞

θ̂k = θ
∗}= 1

2.2 Simultaneous Perturbation Stochastic Approximation

Since FDSA needs 2p observations to estimate gradient vec-
tor g(θ) in each iteration, the computation burden to estimate
the gradients becomes larger for higher dimension problems.
Spall [5] proposed a new stochastic approximation method
called SPSA (simultaneous perturbation stochastic approxima-
tion), which approximates the gradient vector with only a pair
of observations of the objective function in each iteration. The
difference of the number of observations between FDSA and
SPSA isp-fold and is important in higher dimension problems.
The SPSA gradient is approximated by

ĝk(θ̂k) =
1

2ck

∆−1
k1
...

∆−1
kp

(ỹ(+)
k

− ỹ(−)
k

) (6)

with a pair of observations

ỹ(+)
k

= f (θ̂k +ck∆k)+w(+)
k

ỹ(−)
k

= f (θ̂k−ck∆k)−w(−)
k

(7)

where the components∆kl (l = 1,2, · · · , p) of the perturbation
∆k are independent Bernoulli random variables taking values
+1 and−1 with probability 1/2. The observation points for
the case ofp = 2 in FDSA is shown in Fig.2. Convergence
conditions for SPSA are given in Theorem 2.

[Theorem 2]
In addition to the conditions of Theorem 1, we assume the fol-
lowing.

θk

θ１

θ２

+1-1

+1

-1

u 1 ckθk +

u 2 ckθk +



Figure 2: Observation points in SPSA

A6: There exist positive constantsC0 andC1 such that

E[w2
k] < C0, E[ f 2(θ̂k±ck∆k)] < C1

Then the estimatêθk by FDSA converges to the minimum point
θ ∗ with probability one, i.e.,

Pr{ lim
k→∞

θ̂k = θ
∗}= 1

3 SPSA with Randomly Varying Truncations

To relax the convergence conditions given in Theorem 2, we
combine Chen’s idea of randomly varying truncations [2] origi-
nally developed to the Robbins- Monro type stochastic approx-
imation method for finding the solution of regression functions
with SPSA for function minimization. The new stochastic ap-
proximation method, SPSA with randomly varying truncations,
will be called, hereinafter, as RTSPSA.
Let {K j} be an increasing positive number sequence satisfying

K j > 0, K j < K j+1, lim
j→∞

K j = ∞ (8)

and θ̂ ∗ be a rough estimate ofθ ∗. In RTSPSA, a preliminary
estimate{θ̃k} is generated by the conventional SPSA,

θ̃k+1 = θ̂k−akĝ(θ̂k) (k = 0,1, · · ·)

ĝk(θ̂k) =
1

2ck

∆−1
k1
...

∆−1
kp

(ỹ(+)
k

− ỹ(−)
k

) (9)

ỹ(+)
k

= f (θ̂k +ck∆k)+w(+)
k

ỹ(−)
k

= f (θ̂k−ck∆k)−w(−)
k

Then, the estimate is obtained by

θ̂k+1 = θ̃k+1I
[‖θ̃k−θ̂∗‖≤Kσk

]
+ θ̂

∗I
[‖θ̃k−θ̂∗‖>Kσk

]

σk =
k−1

∑
i=1

I
[‖θ̃k−θ̂∗‖>Kσi

]
(10)

σ0 = 0

where Ix is the indicator function such thatIx = 1 (if x is
true), Ix = 0 (if x is false). This implies that the preliminary
estimateθ̃k+1 is replaced by a priori estimatêθ ∗ if the devi-
ation between them exceeds the thresholdKσk

determined by
the number of truncations until the iteration and the prelimi-
nary estimate is used as the estimate otherwise.
The convergence conditions are relaxed by applying the ran-
domly varying truncations as in the following theorem.

[Theorem 3]
Under the following conditions C0 through C4, RTSPSA esti-
mate converges to the maximum pointθ ∗ with probability one,
i.e.,

Pr{ lim
k→∞

θ̂k = θ
∗}= 1

C0: f (θ) is twice continuously differentiable, andθ ∗ is a
point that gives the global minimum off (θ). Moreover,

inf
‖θ−θ∗‖=s

f (θ) > f (θ̃) holds forθ̃ such that‖θ̃ −θ
∗‖< s.

C1: Let{ak} and{ck} are positive number sequences satisfy-
ing.

lim
k→∞

ak = 0, lim
k→0

ck = 0,

∞

∑
k=1

ak = ∞,
∞

∑
k=1

ar
k < ∞, r ∈ (1,2]

C2: Components of the perturbation∆k are mutually indepen-
dent identically distributed random variables satisfying
0 < |∆kl | < C, E[∆kl ] = 0 for a suitable positive constant
C.

C3: Observation noisewk is decomposed into sum of two com-
ponents as

wkl = ekl +νkl

such that
∞

∑
k=1

akek+1,l

ck∆k+1,l
< ∞,

lim
k→∞

νk+1,l

ck∆kl
= 0 (l = 1,2, · · · , p)

4 Numerical Simulations

The proposed RTSPSA is applied to find the minimum of
the functions.

[Example 1]
Consider the following function:

f (θ) = ‖θ‖2 +0.1
5

∑
i=1

θ
3
i +0.01

5

∑
i=1

θ
4
i
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(a)ak = 0.27/k; σ2 = 0.0001 (b) ; ak = 0.27/k; σ2 = 1

(c) ak = 0.4/k; σ2 = 0.0001 (d) ; ak = 0.4/k; σ2 = 1

Figure 3: Behaviors of mean square errors (Example 1)

whose minimum is attained atθ ∗ = (0, · · · ,0)T . Observation
noise wk is normally distributed with mean 0 and variance
σ2. Initial estimate and the rough estimate are both set as
θ0 = θ̂ ∗ = (10, · · · ,10)T , and gain constants are chosen as
ak = 0.27/kor ak = 0.4/k ck = 0.06−1/6, K j = 3.6 j+1,
[Example 2]
We consider a higher dimensional function,

f (θ) = ‖θ‖2 +0.1
15

∑
i=1

exp(
θi

15
)

Its minimum is attained at θ ∗ = (−0.033259, · · · ,
−0.033259)T . Observation noisewk is normally distributed
with mean 0 and varianceσ2. Initial estimate and the rough
estimate are set asθ0 = θ̂ ∗ = (−1, · · · ,−1)T and gain constants
are chosen asak = 1/kor ak = 2/k, ck = 25.22k−5/12, K j =
1.3 j+1. Mean squared errors for 100 simulation runs are
compared with those of (a) FDSA and (b) conventional SPSA.
Simulation results indicate that RTSPSA is superior to both
FDSA and conventional SPSA in convergence speed and also
in stability for larger observation noise cases. Furthermore, it
is found that introduction of the randomly varying truncations
prevents over-correction by using larger gain as well. It is

founded from other simulation results not shown here that
randomly varying truncation prevents the estimate from
divergence for bigger gain constant case.

5 Conclusions

This paper presents a new stochastic approximation proce-
dure, simultaneous perturbation stochastic approximation with
randomly varying truncations (RTSPSA), for finding the min-
imum of the objective function. This approach is applicable
when the gradient of the objective function is not available ex-
actly but is approximated with noisy observations. By intro-
ducing the idea of randomly varying truncations, the conver-
gence conditions for the applicable objective functions and ob-
servation noise processes are relaxed. Numerical simulations
confirm this. Investigation of the optimal choice for the design
parameters in the RTSPSA is necessary for practical use, and
it is under study by considering the asymptotic distribution of
the estimation estimate[6].
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(a)ak = 1/k; σ2 = 0.0001 (b)ak = 1/k; σ2 = 1

(c) ak = 2/k; σ2 = 0.0001 (d)ak = 2/k; σ2 = 1

Figure 4: Behaviors of mean square errors (Example 2)
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