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Abstract

In this paper, we build bounded error observers for a com-
mon class of partially known bioreactor models in two dimen-
sions. The main idea is to build bounded observers “between”
the high gain observer, which has an adjustable rate of con-
vergence but requires a perfect knowledge of the model, and
an asymptotic observer which is very robust towards uncer-
tainty but with a fixed rate of convergence. We build a two di-
mensional bounded error observer which reconstructs the two
states variables with an error depending on the knowledge of
the model; this error is as small as we want. Thus, we obtain
better convergence rate for the estimate states than the asymp-
totic observer.

1 Introduction

The bioreactor is a continuous device where microorganisms
consume a nutrient to grow. This nutrient is provided by a con-
stant inflow, and a blend of nutrient and of microorganisms is
retrieved in the constant outflow [1]. Generally, no reliable bio-
logical sensors for each variable of a biological system exist. In
this context, the idea of observers is very interesting to estimate
the concentration of the main chemical or biological species in
the bioreactor.

First of all we recall the general definition of observers. Con-
sider a dynamical system such that :����	��
����������	��
���� (1)

with
�������

,
����� �"!$#&%

,
�'���)(+*�,&%

.

An observer for (1) is a dynamical system� -�$� -��
 -�&��./���
whose task is state estimation. It is expected to provide an esti-
mate state

-�
of the state

�
of the original system. One usually

requires at least that 010 -�'23� 040 goes to zero as 5 tends to 6 ; in
some cases, exponential convergence is required [10].

Often, it happens that some functions of the state variables are
partially known in the dynamical model [9]. Then, we define a

bounded error observer giving
-�

with 010 -�$27� 040 bounded by
a “reasonable” constant; “reasonable” meaning that it is small
enough to have a good approximation of the unmeasured state.

In the following of the paper, we will consider a classical class
of bioreactor models, [1], describe by:8 �9 �;:<
>=?� 9 2A@ 9�=B��2DC):<
>=?� 9FE @G=IH � 2J@K= (2)

where
@L� MN is the dilution rate with O the volume of the

bioreactor and P the constant flow passing through the bioreac-
tor,

C
the growth yield,

=QH � is the input substrate concentration,:<
R=?�
is the specific growth rate per unit of biomass. Different

models exist in the literature; for example, one often use the
Monod model

:<
R=?�F� : � =S E = where
: � and

S
are the maxi-

mum growth rate and the half saturation constant, respectively.

We propose to adapt the observer design to the available knowl-
edge of the growth rate

:<
R=?�
. We first recall the classical ob-

servers built for the bioreactor model. When the growth rate:<
R=?�
is perfectly known, a high gain observer which have an

adjustable convergence rate is built; if
:<
R=T�

is unknown, then
an asymptotic observer which have a constant rate of conver-
gence is considered. Then, we propose an intermediate ap-
proach to deal with a partial knowledge of

:<
R=?�
where we ob-

tain a bound on the error depending on the knowledge we have
on the model, and where it can be adjusted in some way as in
[4]. We build some hybrid observers evolving between the two
limit cases : the high gain observer and the asymptotic one as
the asymptotic-Kalman observer proposed by [3]. We recall the
one dimensional bounded observer already obtained in [7] then
we propose a two dimensional bounded observer to improve
the first one. It can be seen in some way as a switch between
the high gain observer and the asymptotic one. Finally, we il-
lustrate all the results by simulation studies.

2 Classical observers for the bioreactor model

We recall some facts concerning the high gain observer and the
asymptotic one for the classical bioreactor model (2).

2.1 The high gain observer

First, we recall briefly the notion of an high gain observer for
general system. Consider the differential system (1) defined on
a domain U�V ���

where
��
��WX�./���.��Y 
Z��� E\[ 
��7�]�

that



is: 8 �� � Y 
���� E7[ 
Z���]���� � 
Z��� (3)

where
Y

, [ ��� � ���
and the observation function

�3� � ��)(
are smooth. Moreover if we assume that some hypotheses

hold [5], we can design high gain observer. Notice that for
biological system, this hypothesis are often verified [2]. Then,
we recall the high gain observer definition.

Proposition 2.1 For
�

large enough the following differential
system (4) is an exponential observer for (3) :-�$�LY 
 -��� E � [ 
 -�J��2������� 9
	���������� ����� 
>��
 -����2J� �

(4)

with
���

the solution of the equation
� ��� E���� ��� E ��� � � � � �

where

� �������� 
!#"$!&%'%'%(!!)!*"+%'%'%(!
...

...
...

...!)!,!&%'%'%-"!)!,!&%'%'%(!
.0/////1 and � � 
32 254647498?�

���
can be analytically computed

��� 
;:�3< � � 
 2=8T� H?>A@� HB>C@9D�E 
(: E < 2GFG�IH
;:�2J8T�IH4
B< 2J8T�IH
In (4), � denotes the diffeomorphism, globally defined onU ( KML denotes the Lie derivative of

�
along the field

Y
)�ON 9 � 
>��
 9 � K L ��
 9 �QP7P6P K � D�EL ��
 9 � � � .

In particular, assuming that the rate of growth is given by the
“Monod model”, we get the differential standard equations :RST SU �=B� 2DC : � = 9S E = 2A@G= E @G= H ��9 � : � = 9S E = 2J@ 9V � = (5)

We obtain the following high gain observer for the system (5)
applying the Proposition (2.1) [5]:RT U �-=B� 2DC�: � -9 -=S E -= E @ 
>= H � 2 -=?��2GF � 
 -= 2 V ��-9 � : � -= -9-= E S 2J@ -9FE 
3F � S -9
 S E -=?� -= E �XW -= E SC): � -= � 
 -=D2 V �
Simulations

We take for our parameters values :
=QH � �ZYX2 , @��[2QP\8 , CA�]8 ,:<
>=?�3� =86^_2 E = and

-:<
>=?��� 2`P a =87^_2 E = . Moreover, we take� �cb
. In the two following simulations,

�
is fixed and

=
is

measured. In dotted line we can see the high gain observer
when the growth rate is partially known, in plus line the high
gain observer when the model is perfectly known, in plain line
the model. Moreover, we take

-= 
(2 � �d8e2
,
-9 
(2 � �[Ff2 .
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Figure 1: In dotted line the high gain observer when the growth
rate is partially known, in plus line the high gain observer when
the model is perfectly known, in plain line the model

A very strong peak appear at the beginning of the simulations.
The value of the gain

�
and the big initial output error are the

causes of this phenomenon. Moreover, to obtain this exponen-
tial observer, the model must be perfectly known : we can see
that the observer converges towards the model rapidly. If we
don’t know the model (

:<
>=?�
is replaced by

-:<
R=T�
in the observer

equation), we can see that the error does not go to zero.

Therefore, in some cases, we want to obtain a better bound for
this error.

2.2 The asymptotic observer

The main idea of the asymptotic observer is to eliminate the
unknown function. Consider the dynamical system (2) and as-
sume g � C 9 E =

. We suppose that
=

is exactly measured and
the function

:<
>=?�
is unknown [1].

The dynamics of g is given by the following equation :�g �	@K= H � 2A@ g (6)

An asymptotic observer for (6) is given by
�-g � @G= H � 2\@ -g . If

we consider the error h � -g 2 g , we can immediately conclude
that

�h � 2D@ h that is to say the asymptotic observer converges
towards g with a constant convergence rate given by

@
. We can,

moreover reconstruct 9 considering
-9 � -g 2�=C . The advantage

of this kind of observer is its robustness in comparison with
the high gain observer but its convergence rate is fixed by the
model.

3 Bounded error observer

We define a bounded error observer as an observer such that
we no longer require the error between the estimate state and
the original model to converge to zero but to be bounded by a
“reasonable” constant, “reasonable” meaning that this constant



is small with respect to the measurement errors; we impose that
this bound is zero if the model is perfectly known.

Definition 3.1 A bounded error observer of (1) will be a dy-

namical system
�-� � -��
 -��X�./���

with ���������� 010 -� 2&� 010 #�!
,!

a positive real constant depending on the knowledge of
�

such that
! �[2

if
�

is perfectly known.

In this paper,
!

depends in particular on the difference between:<
>=?�
and

-:<
>=?�
. Indeed, we know the bounds of the growth rate

such that

0 -:<
R=?��2\:<
>=?� 0 ,	�
with

�
a positive real constant. Moreover,

we assume that
-:<
(2 �)�L:<
(2 � �O2

.

3.1 A one dimensional bounded error observer

First, we build a one dimensional bounded error observer. We
suppose that

=
is measured. Then, we want to reconstruct the

biomass variable 9 . Consider the system :RT U �=B�"2DC):<
>=?� 9 2J@K= E @G= H ��9 �;:<
R=T� 9 2J@ 9V �L=
and make the change of variable


>=  9 � � 
R=? g � withg �LC 9FE � = where
�

is a fixed real constant.

The dynamics of g is :�g ��
'8 2 � �Z:<
R=T�RC 9 2A@ g E � @G= H � (7)

Proposition 3.1 The system
�-g ��
'8 2 � � -:<
>=?�RC -9 2W@ -g E � @G= H �

is a bounded error observer of (7) where
-:<
R=T�

is chosen such
as 0 -:<
>=?�K2 :<
>=?� 0 ,
�

with
� ������ 2

and
�

is a gain (
� � 8

).

Proof See [7].

Comments

This bounded observer has a constant error depending on
�
.

The error is equal to zero if
� � 8

and is fixed if
�

is large.
Then, when

�
is time dependent (large at the beginning of the

integration and equal to
8

at the end), this bounded observer
can be seen as a switch between the high gain observer and the
asymptotic one.

The major problem of this bounded observer is that we can not
improve the gain to have a better convergence rate. Indeed,
as we don’t reconstruct the measured variable we cannot use
the measured error as a control parameter. Now, we want to
improve this with the following view : when the error between
the measurement and the observed variable is large, a kind of
high gain observer is considered; when the error is smaller
enough, a kind of asymptotic observer is considered. Thus, we
construct a two dimensional bounded error observer.

3.2 A two dimensional bounded error observer

To build this observer, we use the same idea that for the one di-
mensional bounded observer, that is to say a high gain bounded
observer to go to a bounded error rapidly then an asymptotic
like one to converge to an error as small as we want.

We consider the system:RT U �= � 2DC):<
>=?� 9 2A@G= E @G=IH ��9 �;:<
>=?� 9 2A@ 9V �L=
We only have a partial knowledge on

:<
R=T�
that is to say that0 -:<
>=?��2A:<
>=?� 0 #
�

.

We make the change of variables

>=  9 � � 
R=? g � withg �	C 9FE =

. We obtain the new dynamical system :�� ����������������� ��!��"���#�%$&�(')$&�+*-,.'/�0��1�����#�%�1�����2� ��!3�4�5��!.�6�7$&!8'"$&�+*9,:;�<� (8)

Proposition 3.2 The dynamical system8 �-=B� 2 -:<
>=?� 
 -g 2 -=?��2J@ -= E @K= H � 2 S E � 
 -=D2�=?��-g � 2D@ -g E @K= H � 2 S W �XW 
 -=+2J=?� (9)

with
�

a positive constant gain,
S E

and
S W constant gains verify-

ing (10),
S W depends on the error

-=D2�=
such that

S W � 2 when-= 23= ,6=
,
=

a fixed small constant, is a bounded error observer
for (8) where

-:<
>=?�
is chosen as: 0 -: 
>=?� 2 :<
R=?� 0 #��

with
� ���

,�>�J2
.

First of all, we suppose that the hypotheses in [6] hold.To prove
the proposition, we need the following lemma.

Lemma 3.1 There exists
="� 2

a chosen constant, such that= 
32 �7�6=
implies

= 
 5 �7��=
and

:<
>= 
 5 � �?�&:<
@=I�
for all 5 .

The proof is easy using standard technics for invariant regions
[8].

Thanks to this lemma, we could always choose
=

such that-:<
R=?�A� -:<
@= � �CB
. We recall also that it is well known that the

variables
=

and 9 are bounded.

Proof

The ideas are the same as in [6] for the high gain observer.

Consider h the error in
=
, and g such that h �ED hGF � -=D2�=hIH � -g 2 g
J .

It verifies the following equation :

�h � D 2 S E � 2 -:<
>=?�2 S W � W 2 J h E D -:<
R=?��2A@ 22 2D@ J hE 
Z:<
>=?��2 -:<
>=?� �/
 g 2�=?� D 82 J



Taking h E ��� D�E� h � D E� h FE��� h H J with
� �+� D � 22 �XW J .

We obtain the following equation for h E :

�h E � � D�E� D 2 S E � 2 -:<
>=?�2 S W � W 2 J � � h E
E � D�E� D -:<
R=?��2A@ 22 2D@ J � � h E
E � D�E� 
�:<
R=?��2 -:<
R=?� � 
 g 2�=?��D 82 J

That is to say :

�h E � � D 2 S E 2 -:<
R=T�2 S W 2 J h E E D -:<
R=T�)2A@ 22 2D@ J h EE 
Z:<
>=?� 2 -:<
R=?� � 
 g 2�=?� D E�2 J
Consider the matrix � � D 2 2 -:<
R=?�2 2 J , � � 
'8 2 �

. Then,

there are a real constant � � 2
, a vector � ��� W

, � � ��
 S E S W �
and a symmetric, positive definite

F�� F
matrix

�
depending the

bounds of
-:<
R=T�

only such that :� 
 � 2 � � � E 
 � 2 � � � � � # 2 �	� @ (10)

A proof of this lemma can be see in [6]. We can notice that� 2 � � is stable, that is to say
S E � 2

and
S W , 2

. With
matricial notation, we obtain the equation for h E :

�h E � � 
 � 2 � � � h E E�
 h E E 
Z:<
>=?��2 -:<
>=?� �/
 g 2J=?��D E�2 J
Consider a Liapounov function O � EW h � E � h E . We want to
prove that

�O , 2
. We have :�O , 2 �� W 010 h E 040 WW E�� 
 � �IP � 
 
 �IP 010 h E 010 WW
E E� 040 h E 010 W P � 
 � �IP 0 :<
>=?��2 -:<
>=?� 0 P 0 g 2J= 0

where � 
 � �
, � 
 
 � are the induced matrix norm correspond-

ing to the Euclidean one that is to say

� 
�� � �;!4� 9 ��� �  � � � * h�� 5 
�� � � � �
We can remark that in our case � 
 
 � is equal to

-:<
>=?�D2	@
which is between

-:<
�=I�<2&@
and

-: ����� 2\@
using lemma (3.1).

Moreover, the states variables are bounded :

�O , 
 2 � �F E�� 
 � �IP � 
 
 � � 010 h E 040 WW E C � 9 ����� � 
 � �� 010 h E 010 W
As all the norms are equivalent in

� �
, we have � E 010 h E 040 � #

040 h E 010 W # � W 010 h E 010 � . Hence:

�O ,OF � WE 
 2 � �F E�� 
 � �IP � 
 
 � � O E F � W C � 9 ����� � 
 � �� � O

Thus :�OF � O � @ � O@ 5 , � WE 
 2 � �F E�� 
 � � P � 
 
 � � � O E � W C � 9 ����� � 
 � ��
Using the Gronwall lemma :

� �! �#" � �%$I�#� &('*),+.-0/1�2�3 �54 �
6 & '7 � � 6�89 ' 3 �54 �;: 3 �5<;�2� ��=�> � ?A@ �CB�ED	F ?HGJI5K F ?HL,IMIAN� & ' ),+.- /1�2 3 �54(�

6 & '7 � � 6�89 ' 3 �54 �;: 3 �5<;�2�
Let us denote the previous equation :

� O ,PO 
 5 �
We must make another change of variable to conclude on the
convergence of h .
We can prove by a simple computation that O �RQ ��;S h � h with�

a positive real constant chosen such that
� D�E� � � D�E� 2 Q ��TS � @

positive. Finally we conclude:

� h � h , � W
� O 
 5 �

We can go asymptotically as fast as we want to a bounded error
by chosen

�
large:B :>! ����� 010 h 010 , F � W C(� 9 �U�V� � 
 � �

� WE � � (11)

We switch to an asymptotic like observer taking
S W �d2 when
 -= 2 =T�

stays during some time less or equal than
=
,
=

a fixed
small constant. We obtain the new bounded error observer for
(2): �-=B��2 -: 
R=?� 
 -g 2 -=?��2J@ -= E @K= H � 2 S E � 
 -=D2�=?��-g �"2D@ -g E @K= H � (12)

The equation of the error become:

�h � D 2 S E � 2 -:<
R=T�2 2 J h E D -:<
>=?��2J@ 22 2D@ J hE 
�:<
R=T�)2 -:<
R=T� � 
 g 2�=T�3D 82 J
Thus solving the second equation and injecting it in the first
one, we obtain :�hIF � 2 S E � hIF 2 -:<
>=?� hGH 
32 � h DXW �E 
 -:�
>=?��2J@ � hIF E 
Z:<
>=?�)2 -:<
>=?� �/
 g 2J=?�hIH � hIH 
(2 � h DYW �
We call this observer an asymptotic like one because the con-
vergence rate of hIH is fixed by the model and is equal to

@
;



moreover, hIH goes asymptotically to zero. Let us considered0 h F 0 . It dynamics is given by
�0 h F 0 � = [ %<
 h F � �h F that is:�0 h F 0 � = [ %<
 h F � 
Z:<
>=?��2 -:<
>=?� �/
 g 2J=?�E 
 -:<
>=?��2J@ 2 S E � � 0 h F 0 2�= [ %<
 h F � -:<
>=?� h H 
(2 � h DYW �

But
= [ %<
 hIF � #d8 and for all

=
,
-:<
>=?� 2J@ 2 S E � ,[2

by chosen�
large,

S E � 2
we get :�0 h F 0 #��GC 9 ����� E 
 -: ����� 2J@ 2 S E � � 0 h F 0 E -: ����� 0 h H 
32 � 0 h DYW �

Hence:

0 hIF 0 # 
 0 hIF 
32 � 0 E -: ����� 0 hIH 
(2 � 0-: ����� 2 S E � � h���������	� DYW6D�
  �� �E �GC 9 �����2 -: ����� E @ E S E � h���������	� DYW6D�
  �� �
E -: ����� 0 h H 
32 � 02 -: ����� E S E � h DYW � E �GC 9 �����2 -: ����� E @ E S E �

Thus : B :R! ��� � 0 hIF 0 # �KC 9 �����2 -: ����� E @ E S E � (13)

We remark that for
S E �

large , we get
B :R! ����� 0 h F 0 �d2 with a

convergence rate as large as we want.

Comments :

Before the switch between the two different observers, one can
see that the error of the first is a fixed bound (11). Then, to ob-
tain a faster convergence rate than the asymptotic one, the ini-
tial output error between the bounded observer and the model
must be bigger than this fixed bound. Under this condition,
the first bounded observer which can be seen as a high gain
observer goes rapidly towards the bound (11), then when the
observation error is small enough we switch to the asymptotic
like observer.

One can notice that the final error bound (13) depend on
�
,

that is to say if
�

is large this bound goes to zero, and we go as
fast as we want as near as we want : it is the idea of “practical
observer” [4]. Thus, a static small final error can be observed.

Simulations

We take for our parameters values :
= H � �ZYX2 , @��Z2`P?8 , and the

difference
�

between
:<
R=T�

and
-:<
R=?�

equal to
2`P F

. Moreover,
we take

S W � 2=8XP Y
when the absolute value error between the

observation and the model of the substrate is bigger than
2QP\8

else we take
S W � 2

. The other gains are
� � b

and
S E � Y

.
We take for initial conditions

-=?
32 �D� 862
,
-g 
(2 �+� bX2

that is to
say

-9 
32 � �ZFf2 .
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Figure 2: In dotted line the biomass error and the substrate
error of the asymptotic observer in plus line and of the two
dimensional bounded observer in dotted line
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Figure 3: In dotted line the two dimensional bounded observer,
in plus line the asymptotic one, in plain line the model

The peak which appears at the beginning of the simulations
returns non positive observer variables; it is the same phe-
nomenon that for the high gain observer when the gain and the
output error are large.

We can see that the two dimensional observer converges faster
than the asymptotic one; indeed, if we choose g 2 -g � 2`P?8
(see the second part of Figure(1)), we can see than the two
dimensional observer reaches this bound for 5�� Y_Y

and the
asymptotic observer reaches this bound for 5���� Y and after
this bound the two dimensional bounded observer is always
below the asymptotic one.

4 Conclusion

The purpose of bounded observers is simply to provide a tool
allowing the state variable estimation when the model is poorly
known, that is usually the case in biology.



Then, we build observers reconstructing variables with a rea-
sonable error. In one dimension, the convergence rate of this
observer can not be improve because we cannot consider the
output error as a control parameter. Thus we build a two dimen-
sional observer and we obtain a faster convergence rate than the
asymptotic observer if the initial error is large enough.

A way to improve the convergence seems to build an adaptive
version of the two dimensional observer. Some simulations
studies seem to show this result; an theoretical proof is
currently in study. In this paper, we only consider two dimen-
sional system, a generalization to higher dynamical system is
evidently possible.
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