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Abstract

The performance of the activated sludge process is limited by the abil-
ity of the sedimentation tank to separate the activated sludge from
the treated effluent and to concentrate it. Apart from bad operating
strategies or poorly designed clarifiers, settling failures can be mainly
attributed to filamentous bulking. Image analysis is a promising tech-
nique that can be used for early detection of filamentous bulking. In
this work, correlations between image analysis information, i.e., the
total filament length per image, the mean form factor, the mean equiv-
alent floc diameter, the mean floc roundness, the mean floc reduced
radius of gyration and classical measurements (such as the Sludge
Volume Index (SVI)) have been sought and the potential of exploiting
this information in ARX type black box models to predict the onset of
filamentous bulking is presented.

1 Introduction

The activated sludge process is one of the most frequently used
processes for the biological purification of wastewater. Inthe
event ofbulking sludge, there exists an imbalance between the
floc forming bacteria and filamentous bacteria hence prevent-
ing formation of well settling sludge flocs [Jenkins et al., 1993].
As for now, the activated sludge process is monitored through
regular microscopic observation of the sludge by the operator.
In addition, sedimentation tests, such as the determination of
the Sludge Volume Index1 (SVI), are performed. However,
from a pragmatic point of view, microscopic observation is
time consuming and subjective (i.e., operator dependent).Im-
age analysis, a procedure through which the microscopic im-
ages are captured and converted into digital images which can
be analyzed on a computer, could provide anobjective means to
assist the operator’s decision making. Furthermore, mathemati-
cal models, capable of predicting the evolution of, e.g., the SVI
value, will be indispensable for the development of early warn-
ing and detection tools. Although filamentous bulking has been
studied intensively during the last decades [Jenkins et al., 1993,
Glasbey and Horgan, 1995, Cenens et al., 2002, Jenné et al.,

1volume in milliliters occupied by 1 g of a suspension after 30 minutes
settling

2003], the phenomenon is so complex (i.e., influenced by so
many different factors) that a first principles model is still lack-
ing. The aim of this research is to investigate whether image
analysis information (e.g., the total filament length, the mean
form factor etc.) is correlated with classical measurements
(such as the SVI) and whether this information can be exploited
in ARX models for predicting the onset of filamentous bulking.
Instead of developingstatic (instantaneous) correlation models
as reported by da Motta and coworkers [da Motta et al., 2002],
we will focus ondynamic ARX models.

2 Materials and methods

Lab-scale experiments were set up that mimic large scale con-
tinuous systems, and a daily recording of the sludge charac-
teristics, image information and settleability of the sludge was
performed.

2.1 Lab-scale activated sludge system

A lab-scale activated sludge system was designed and built
to simulate a full-scale installation. The laboratory set-up is
a continuous type activated sludge system in a classical con-
figuration: an aeration tank (5.5 L) followed by a sedimenta-
tion tank (3 L) and sludge recycle (Figure 1). The system was
inoculated with activated sludge from a domestic wastewater
treatment plant at Huldenberg (Belgium), and fed with syn-
thetic wastewater with sodium acetate as the sole organic sub-
strate [Houtmeyers et al., 1980], corresponding to a maximum
chemical oxygen demand (COD) of 1000 mgL−1. The biomass
was kept as stable as possible through wastage of mixed liquor
whenever necessary, yielding a sludge concentration between
2 and 3 gL−1, and a sludge loading of around 0.3 g COD g
MLSS−1 d−1. Compressed air was supplied abundantly in or-
der to meet the dissolved oxygen (DO) demands of the biomass
and to ensure homogeneous mixing in the aeration tank. The
DO varied between6 and8 mgL−1. Some standard measure-
ments, i.e., MLSS, SVI, SS and effluent COD were performed
and monitored daily for a period of 100 days. The daily acti-
vated sludge composition was monitored through microscopic
observation and digital image analysis.



Figure 1: Left: lab-scale activated sludge system. Right:
microscope (Olympus BX51) and video camera (Sony DXC-
950P) used for daily capturing of activated sludge images.

2.2 Image analysis procedure

The activated sludge images were captured using a light mi-
croscope (Olympus BX51) equipped with a 3CCD color video
camera (Sony DXC-950P); this equipment is shown in Figure
1. The magnification of the microscope objective used was 10
times. A fully automatic image analysis method for recog-
nition and characterization of both flocs and filaments in an
activated sludge sample has been developed in previous work
[Jenńe et al., 2002, Cenens et al., 2002], and is applied to the
captured images of this experiment.

2.3 Measurements

Once the objects in the image (i.e., the flocs and the filaments)
are distinguished from the background, several size and shape
related parameters can be computed. These parameters do
not only allow the discrimination between flocs and filaments
but can additionally be used for monitoring purposes to detect
changes in the (settling) characteristics of the sludge.

Size measurement.The size of the sludge flocs is an important
parameter with respect to the settling properties [Ganczarczyk,
1994]. The size of the flocs is expressed as the equivalent circle
diameterDeq, calculated from the real projected area A:

Deq = 2
√

A/π (1)

Shape measurements.It is mentioned in the literature [Eriks-
son and Hardin, 1984] that the shape of sludge flocs is related
to the settling properties. Many shape quantifying parameters
can be measured by means of image analysis [Russ, 1990, Pons
et al., 1993]. Three parameters are considered in this study:

• The form factor (FF) describes the deviation of an object
from a circle. It is particularly sensitive to theroughness
of the boundaries. A circle has an FF equal to one.

FF = 4π
area

perimeter2
(2)

• The roundness (R) is mainly influenced by the elongation
of an object. It varies between 0 and 1. A circle has an R

equal to one.

R =
4 · area

πlength2
(3)

• The reduced radius of gyration (RG) is also influenced by
the elongation of an object. A more elongated floc will
have a larger RG. A circle has an RG of

√
2

2
.

RG =

√

M2x + M2y

Deq

2

(4)

M2x andM2y are second order moments.

3 Results and discussion

3.1 Image analysis information versus SVI evolution

Correlations between image analysis information and the SVI
value are sought. Figure 2 depicts the evolution of the SVI
value, the number of filaments per image and the total filament
length per image with respect to time.
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Figure 2: (a) Evolution of the SVI value (—) and the number
of filaments per image (- - -). (b) Evolution of the SVI value
(—) and the total filament length per image (- - -).

As can be seen from Figure 2(b), the settleability of the sludge
was generally satisfactory in the period ranging from the 1st
to the 52nd day: the SVI values are lower than the critical
value of 150 mgL−1. However, it is worth mentioning that be-
tween the 10th and the 18th day, SVI values of more than 100
mgL−1 were recorded. Thereafter, within the period of one
week, the SVI gradually decreased to very low values (around
25 mgL−1), which lasted for approximately 20 days. Then, the
SVI rose again within 1 week, and on the 53rd day the crit-
ical value of 150 mgL−1 was exceeded, as a severe filamen-
tous bulking event occurred. During the following 33 days, the
sludge settling properties continued to be of very low quality,
yielding an SVI that ranged from 300 to 450 mgL−1.

Filament characteristics. Figure 2(a) illustrates that the evo-
lution of the number of filaments per image only seems to
have a relation with the SVI during the first 30 days of the
experiment. The following periods of very low and very high
SVI, respectively, show no instantaneous correlation between
the number of filaments per image and the settleability of the
sludge. This observation can be readily explained as follows.



In the period of low SVI (26th to 45th day), a large number of
very short filaments was present in the sludge, without having a
negative influence on the settleability. In the period of elevated
SVI (after the 53rd day), the overabundance of filaments caused
them to touch or overlap in the image. Under these conditions
filaments could not be distinguished as individual objects,thus
yielding a smaller filament number than would be expected. It
is therefore advisable to consider global characteristicsof fil-
aments instead of individual ones. On the other hand, Figure
2(b) shows a clear correlation between the total filament length
per image and SVI. It is to be noticed that the total filament
length increased strongly on the 51st day, which is two days
before the severe bulking event occurred.
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Figure 3: (a) Evolution of the SVI (—) and (a) the mean floc
roundness R (- - -) (b) the mean floc form factor FF (- - -) (c)
the mean floc reduced radius of gyration RG (- - -) (d) the mean
floc equivalent diameterDeq (- - -).

Floc characteristics. It is equally important to consider the
effect of floc characteristics on sludge settleability, because
sludge settling properties are not only associated with the
amount of filaments. In contrast with filaments, flocs can
be considered as individual objects, and several authors al-
ready associated individual floc shape with settling problems
[da Motta et al., 2002, Jenné et al., 2002]. Figure 3 shows the
evolution of the daily average floc size and the three shape de-
scriptors considered here together with the SVI. Looking at
the mean shape parameter values during the onset of the severe
bulking problem (around the 55th day), a change in all three
shape descriptors can be remarked. First, there was a decrease
in roundness on day 59 (Figure 3(a)), and a simultaneous in-
crease in reduced radius of gyration (Figure 3(c)). Hereafter,
both parameters stabilized at their lower and higher value,re-
spectively. This means that the activated sludge flocs evolved
from having a somewhat circular shape to a more elongated
one. This phenomenon may be explained by the high abun-
dance of filaments, causing a more stretched type of floc to be
formed, about four days after the bulking event started. Sec-

ondly, there was a change in the form factor of flocs, but unlike
the other two parameters, the form factor started decreasing be-
fore filamentous bulking occurred (Figure 3(b)). Together with
an SVI increase, which started on day45, the flocs evolved
slowly from smooth shapes to rougher ones, and finally the
form factor stabilized at the smaller value from the59th day
on. On the other hand, the mean floc equivalent diameterDeq

somewhat decreased on the19th day reaching its lowest value
on the42nd day and then increased thereafter as illustrated in
Figure 3(d). This trend can be interpreted as a deflocculation
followed by a flocculation of the floc forming biomass.

3.2 Modeling as a function of image analysis information

ARX models were identified so as to model the SVI evolution
(i.e., the model output) based on information gathered withthe
image analysis procedure (i.e., the model input(s)). Sincewe
are interested in modeling theonset of the bulking process, the
first 70 data points for both input and output were taken instead
of the entire103 days.

3.2.1 ARX models

ARX models relate the current outputy(t) to a finite number
of past outputsy(t − k) and inputsu(t − k).

y(t) + a1y(t − 1) + (· · · ) + anay(t − na) = b1u(t − nk)+

b2u(t − nk − 1) + (· · · ) + bnbu(t − nk − nb + 1) + e(t) (5)

with y(t) equal to the output response at discrete timet, u(t)
the input at discrete timet, na the number of poles,nb the
number of zeros,nk the pure time-delay (the dead-time) in
the system ande(t) a white noise signal.ai andbj are model
parameters, withi = 1 ... na and j = 1 ... nb. The model
structure is entirely defined by the three integersna, nb, and
nk.

ARX models are identified by means of the ARX command
in the System Identification Toolbox5.0.1 in MATLAB (The
Mathworks, Inc., Natick), which allows to specify a specific
focus during identification of the models. Three different op-
tions are available, i.e., a focus onprediction, simulation or
stability. Prediction means that the model is determined by
minimizing the prediction errors. With focus onsimulation,
the model approximation is such that the model will produce
as good simulations as possible, when applied to inputs with
the same spectra as used for the estimation. A stable model
is guaranteed. Finally, astability focus implies that the algo-
rithm is modified so that a stable model is guaranteed, but the
weighting still corresponds to prediction.

3.2.2 Optimization criteria

The criteria to be maximized are theR-squared (R2) and R-
squared adjusted (R2

adj) values, both of which are often ex-
pressed in percent (Equations (6) and (7)). The values obtained
from both criteria in this work reflect the percentage of output



variation explained by the model (i.e.,yh(t)). TheR2

adj crite-
rion differs from theR2 value in that it takes into account both
the number of data points N and the model parameters (degrees
of freedom) DF.

R2 = 100 ·

(

1 −

∑N
t=1

(y(t) − yh(t))2
∑N

t=1
(y(t) − mean(y(t)))2

)

(6)

R2

adj
= 100 ·

(

1 − (N − 1)

∑N
t=1

(y(t) − yh(t))2

(N − DF ) ·
∑N

t=1
(y(t) − mean(y(t)))2

)

(7)

with y(t) the measured output at discrete timet, yh(t) the
model output at discrete timet. Both performance indexes are
used to evaluate the adequacy of the model produced.

From Figure 2(b) a very strong correlation between the SVI
value and the total filament length per image could be noticed.
Therefore, this input will be considered as single input first.
Afterwards, other inputs (i.e., the equivalent diameter and the
mean floc shape descriptors) will be taken into account as well.

3.2.3 Single input models

Optimal combinations in the range of 1 to 20 for the number
of poles (na) and zeros (nb) (with nb smaller than or equal
to na) at fixed delaysnk of 0, 1 and 2 were sought. The re-
sults when the total filament length per image (F) is used as
the ARX model input are shown in Table1 with emphasis on
prediction, simulation andstability for both criteria ofR2 and
R2

adj . Since a focus onprediction does not guarantee model
stability, an additional stability check is performed. Theopti-
mal model without this stability check is shown on the1st row
while the2nd row shows the usually less optimal (with respect
to the criterion) but stable model. The values ofna, nb, and
nk with emphasis onsimulation and stabilization are similar
whether the system stability is explicitly accounted for ornot.

Focus na nb nk R2 na nb nk R2

adj

on (%) (%)
prediction 6 1 0 81.50 5 1 0 79.89

6 1 0 81.50 5 1 0 79.89
2 2 1 -2.94*104 2 1 1 -3.03*104

- - 1 - - - 1 -
2 1 2 -4.11*103 2 1 2 -4.24*103

- - 2 - - - 2 -
Simulation 9 4 0 90.33 9 4 0 88.30

11 9 1 83.16 11 9 1 76.76
11 8 2 76.21 8 8 2 68.46

Stability 16 13 0 91.30 16 13 0 85.37
16 16 1 77.47 6 3 1 71.09
16 13 2 70.90 7 6 2 56.61

Table 1: Optimal ARX models at fixednk values of 0, 1 or 2
and 1 model input, F.

As illustrated in Table1, the optimal model with0 delay (nk
equal to zero) and focus onprediction is also a stable one while
for higher delay values (nk equal to one or two), no stable

models can be found. The10th row, summarizes the ARX
models (with emphasis onstability) which correspond to the
highest value ofR2 (91.30%) andR2

adj (85.37%), respectively.
Figure 4 is oriented to reveal the performance of the16th-order
optimal ARX model (R2=91.30%) with emphasis onstability
in relation to the measured data.
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Figure 4: Measured (—) and modeled (- - -) SVI with the16th-
order optimal ARX model (R2=91.30%) with emphasis on
stability and1 model input F.

3.2.4 Multiple inputs models

Table2 summarizes the optimal combinations of the total fila-
ment length per image (F), the equivalent diameter (Deq) and
the mean floc shape descriptors, i.e., the roundness (R), there-
duced radius of gyration (RG) and the form factor (FF) used as
ARX model inputs with emphasis onprediction based on the
R2 criterion. Optimal combinations were sought in the order
range of1 to 15 and1 to 9 for 2 or 3 model inputs, respectively.
(It is worth mentioning that it was not possible to investigate
higher ranges for thena values). Again, the1st row shows
the optimal models without stability check while the2nd row
shows the optimal stable ones.

na
nb nk R2

(%)F Deq FF R RG F Deq FF R RG
4 1 - - - 1 2 - - - 2 84.98
7 1 - - - 1 0 - - - 0 81.27
8 4 - 3 - - 0 - 0 - - 91.78
8 5 - 6 - - 0 - 2 - - 86.22
12 5 - - 6 - 0 - - 1 - 83.71
7 1 - - 1 - 0 - - 0 - 81.32
10 3 10 - - - 0 1 - - - 88.54
7 1 7 - - - 0 2 - - - 81.72
9 2 - 9 7 - 0 - 2 2 - 95.20
9 2 - 8 7 - 0 - 2 2 - 94.57
9 8 1 - 1 - 0 1 - 1 - 95.14
9 1 9 - 4 - 0 1 - 2 - 86.16
6 4 3 2 - - 0 0 0 - - 94.90
5 5 5 5 - - 0 1 2 - - 91.06

Table 2: Optimal ARX models with 2 or 3 model inputs and
prediction focus.

The results in Table2, the9th row and the10th row, both indi-
cate that the9th-order ARX models with emphasis onpredic-
tion and3 model inputs (i.e., the total filament length per image
(F), the mean floc form factor (FF) and the mean floc round-
ness (R)) yield the highestR2 values of95.20% and94.57%,
respectively.

Table3 summarizes the optimal combinations of the total fila-
ment length per image (F), the equivalent diameter (Deq) and



the mean floc shape descriptors, i.e., the roundness (R), there-
duced radius of gyration (RG) and the form factor (FF) used as
ARX model inputs with emphasis onsimulation based on the
R2 criterion. Optimal combinations were sought in the order
range of1 to 15 and1 to 9 for 2 or 3 model inputs, respectively.

na
nb nk R2

(%)F Deq FF R RG F Deq FF R RG
8 2 - - - 8 0 - - - 2 91.44
10 10 - 4 - - 0 - 0 - - 92.80
9 5 - - 6 - 0 - - 2 - 91.61
8 2 8 - - - 0 2 - - - 86.89
8 4 - 8 8 - 0 - 2 2 - 98.52
9 3 8 - 7 - 0 2 - 2 - 93.93
9 2 8 9 - - 0 1 0 - - 96.31

Table 3: Optimal ARX models with 2 or 3 model inputs and
simulation focus.

The 5th row, shows that the8th-order ARX model with em-
phasis onsimulation and3 model inputs, i.e., the total filament
length per image (F), the mean floc form factor (FF) and the
mean floc roundness (R) has the highestR2 value of98.52%.
Figure 5 depicts the behavior of the8th-order model with F, FF
and R as the model inputs for the70-day test period.
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Figure 5: Measured (—) and modeled (- - -) SVI with the opti-
mal 8th-order ARX model with emphasis onsimulation and3
model inputs (F, FF and R).

The results in Figure 5 and Table3, confirm a strong agreement
to experimental data obtained. The8th-order ARX model out-
put with 3 model inputs (F, FF and R) andR2 of 98.52% lies
substantially closer to the measured SVI data. Figure 6 shows
the corresponding plot for the poles (denoted by×) and the
zeros (denoted by o).
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Figure 6: Location of the poles (×) and zeros (o) for the opti-
mal 8th-order ARX model with emphasis onsimulation and3
model inputs (F, FF and R).

Figure 6 illustrates that all the poles for the8th-order ARX
model with 3 model inputs (F, FF and R) with emphasis on
simulation andR2 of 98.52% lie in the unit circle implying a
stable model output.

Table4 summarizes the optimal combinations of the total fila-
ment length per image (F), the equivalent diameter (Deq) and
the mean floc shape descriptors, i.e., the roundness (R), there-
duced radius of gyration (RG) and the form factor (FF) used as
ARX model inputs with emphasis onstability based on theR2

criterion. Optimal combinations were sought in the order range
of 1 to 15 and1 to 9 for 2 or 3 model inputs, respectively.

na
nb nk R2

(%)F Deq FF R RG F Deq FF R RG
8 8 - - - 2 0 - - - 0 87.07
14 13 - 3 - - 0 - 0 - - 90.96
8 8 - - 2 - 0 - - 2 - 87.54
15 15 14 - - - 0 0 - - - 92.01
9 3 - 9 8 - 0 - 2 2 - 95.59
9 9 6 - 1 - 0 0 - 0 - 92.44
8 3 8 6 - - 0 2 2 - - 93.30

Table 4: Optimal ARX models with 2 or 3 model inputs and
stability focus.

It can be seen from the5th row, that again a model with F, FF
and R as the model inputs performs the best (R2 = 95.59%).
The model is now of order9.

Table5 summarizes the optimal combinations of the total fila-
ment length per image (F), the equivalent diameter (Deq) and
the mean floc shape descriptors, i.e., the roundness (R), there-
duced radius of gyration (RG) and the form factor (FF) used as
ARX model inputs with emphasis onprediction based on the
R2

adj criterion. Optimal combinations were sought in the order
range of1 to 15 and1 to 9 for 2 or 3 model inputs, respectively.

na
nb nk R2

adj

(%)F Deq FF R RG F Deq FF R RG
4 1 - - - 1 2 - - - 2 83.81
6 1 - - - 1 0 - - - 2 79.08
8 4 - 3 - - 0 - 0 - - 89.69
8 3 - 6 - - 0 - 2 - - 81.64
6 1 - - 1 - 0 - - 0 - 79.04
6 1 - - 1 - 0 - - 0 - 79.04
10 3 10 - - - 0 1 - - - 83.17
5 1 1 - - - 0 1 - - - 79.57
9 2 - 9 7 - 0 - 2 2 - 92.30
8 2 - 8 7 - 0 - 2 2 - 91.67
9 8 1 - 1 - 0 1 - 1 - 93.42
3 3 2 - 1 - 0 0 - 2 - 84.04
6 4 3 2 - - 0 0 0 - - 93.60
5 3 4 5 - - 0 1 2 - - 88.30

Table 5: Optimal ARX models with 2 or 3 model inputs and
prediction focus.

From Table5, one can deduce that the5th-order model with
emphasis onprediction and3 model inputs (i.e., the total fila-
ment length per image (F), the mean equivalent diameter (Deq)
and the mean form factor (FF)), gives to rise to the highestR2

adj

values of93.60% (the13th row).

Table6 summarizes the optimal combinations of the total fila-
ment length per image (F), the equivalent diameter (Deq) and
the mean floc shape descriptors, i.e., the roundness (R), there-
duced radius of gyration (RG) and the form factor (FF) used as
ARX model inputs with emphasis onsimulation based on the
R2

adj criterion. Optimal combinations were sought in the order
range of1 to 15 and1 to 9 for 2 or 3 model inputs, respectively.



na
nb nk R2

adj

(%)F Deq FF R RG F Deq FF R RG
8 2 - - - 8 0 - - - 2 88.63
3 3 - 2 - - 0 - 0 - - 90.14
8 2 - - 2 - 0 - - 2 - 88.50
3 3 1 - - - 0 2 - - - 83.60
8 2 - 8 8 - 0 - 2 2 - 97.59
4 4 1 - 1 - 0 1 - 2 - 91.72
9 2 7 7 - - 0 2 2 - - 94.15

Table 6: Optimal ARX models with 2 or 3 model inputs and
simulation focus.

It is observed in Table6, 5th row, that the8th-order model with
emphasis onsimulation and3 model inputs (i.e., F, FF and R)
generates the highestR2

adj value of97.59%.

Table7 summarizes the optimal combinations of the total fila-
ment length per image (F), the equivalent diameter (Deq) and
the mean floc shape descriptors, i.e., the roundness (R), there-
duced radius of gyration (RG) and the form factor (FF) used
as ARX model inputs with emphasis onstability based on the
R2

adj criterion. Optimal combinations were sought in the order
range of1 to 15 and1 to 9 for 2 or 3 model inputs, respectively.

na
nb nk R2

adj

(%)F Deq FF R RG F Deq FF R RG
8 8 - - - 1 0 - - - 2 82.90
8 8 - 4 - - 0 - 2 - - 87.20
8 8 - - 1 - 0 - - 2 - 83.74
14 13 1 - - - 0 0 - - - 84.17
9 3 - 9 8 - 0 - 2 2 - 92.57
8 8 7 - 1 - 0 0 - 0 - 88.93
8 3 7 5 - - 0 2 2 - - 89.83

Table 7: Optimal ARX models with 2 or 3 model inputs and
stability focus.

The results in Table7, 5th row, show that the9th-order ARX
model with emphasis onstability and3 model inputs (i.e., F,
FF and R) is the highest with anR2

adj of 92.57%.

4 Conclusions

In the search for an early detection tool for filamentous bulking
in activated sludge systems, a number of ARX model structures
have been presented and tested to model the sludge volume in-
dex SVI (i.e., the output) as a function of image analysis infor-
mation (i.e., the inputs). Based on the two performance quality
criteria expressed in percent, i.e.,R2 andR2

adj , multiple model
inputs namely,3 model inputs (i.e., the total filament length
per image (F), the mean floc form factor (FF) and the mean
floc roundness (R)) generated the relatively higher values ir-
respective of the emphasis taken into account. More to that,
the8th-order model with emphasis onsimulation and3 model
inputs (i.e., F, FF and R) and anR2 of 98.52% describes the
sludge volume index SVI (i.e., the output) best thus far (Figure
5). It correctly reproduces the main dynamic characteristics
the measured sludge volume index SVI (i.e., the output). The
obtained models will be validated with new experimental data
from ongoing experiments. Furthermore, the development of
state space models is envisaged with the same inputs as ex-
ploited here. The results in this paper encourage further work

on model development for monitoring and control purposes.
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