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rameter estimation, biotechnology, non-linear systems. metric coefficients and the kinetics is available. A systéma
approach is therefore necessary to find the best model struc-
Abstract ture and the best values of the model parameters with respect

to some imposed criterion. For instance, in terms of model
Dynamic mathematical models in biotechnology require, biglentification, the optimal structure is characterised tigim
sides the information about the stoichiometry of the biadaty mal correlations between parameters and maximal ideritifiab
reaction system, knowledge about the reaction kineticsdMo ity properties. In terms of state estimation and controlyho
lation phenomena like limitation, inhibition and actiatioc- ever, simplicity and (non-)linearity play important roles

curin pllfferent forms of competition W'th the_ key ENZYMES 1€ model identification strategy has recently been proposed b
sponsible for the respective metabolic reaction steps.idédre Bogaerts [5], which — under certain conditions — decougtles t
tification of a priori unknown reaction kinetics is often a Crit'estimation of stoichiometry and kinetics within a macrqsco
|cfalhtask ddu? to thg non;lmegrlty g\nd (over-)pa}ram(ﬁter?na modelling approach. Therefore, both model components can
O'btl e m?j (Ia gquatkllons Intro u?l'eh to acc_gum orfahF € P95 identified independently of each other. However, the ferm
sible modulation phenomena. The contribution of this Papglinn of the kinetic model used by Bogaerts [5] departs from
is to propose a general formulation of reaction kineticsams the commonly accepted models (exponential functions auste

gxt_ens/mn_of t.he M|cdh§ier:|.z-_l\_/lente%fn kmehcg, Véh'Ch _zallqws-l of rational models) and does not allow all the modulation-phe
itation/activation and inhibition effects to be describeith a rnena to be parcimoniously represented.

reduced number of parameters. The versality of the new mogg
structure is demonstrated with application examples. Following the above-mentionned identification stratedys t

contribution addresses the problem of deriving a general fo
mulation of the reaction kinetic model, which would be in
agreement with widely-used classical expressions, andhwhi

The dynamic model of a perfectly stirred tank bioreactosis-u Would allow the description of the main limitation/actiiat
ally derived from mass balances, which lead to a differéntiand inhibition effects with a minimum number of parameters.

1 Introduction

equation system for the concentration vecter R™: This paper is organised as follows: In section 2, some com-
dé(t) monly used models are introduced and discussed. A general
T Kr(c(t) —c(t)D(t) +u(t); c(to) =co- (1) modelling approach for limited and inhibited reaction Kiog

_ _ _ _ _is proposed in section 3 and its properties are discussee. Th
The matrix’ € R™*™ contains the information on the stoi-potential of the new formulation is illustrated by meansved t
chiometry of the reaction system and is usually time-irastti  examples in section 4. Section 5 concludes this paper.

The vector” € R™ contains the reaction rates of each individ-

ual reaction and is usually a non-linear vector functionhef t .

concentrations.D € R is the renewal (or dilution) rate and2 Cl cal Models

@ € R™ contains the reactor input conditions. The most famous model is certainly the phenomenologically
There is a large variety of mathematical descriptions oféhe Pased approach of Monod [7], which was found for the growth
action kinetics available in the literature, most of theraagd Of bacteria cultures on a single substrate:

heuristically to a specific phenomenon and often similartone

each other. A rather extensive list of models is given in [3].

Mathematical modelling of biological reaction systems dtifa s M X, (2)



Itis characterised by a maximum (specific) growth gatg. € individual reactions, one is often content to write the kime

R s expression as the product of individual phenomena suchas li

p(s) = umaxﬁ, (3) itation, activation and inhibition:
S
which is reached with an increasing substrate concentrati q = Gmax H Q; (cij) @)
R of the limiting substrate according to the constante R, j

often called half-saturation constant, becCau$&) = % (i ax.
Monod’s equation (3) is structurally identical to Michaeli
Menten kinetics [2] derived for enzymatically catalysedae
tions:

with 0 < «; < 1Vj. This expression usually represents an
extension of the Michaelis-Menten kinetics with modulaso
of non-competitive character.

S+E=ES-LP+E (4) Forexample, Batt and Kompala [4] have used the approach (7)

assuming reaction equilibrium in the first enzymatic stegh @n for the compartmental modelling of hybridoma cells with

rate-limiting irreversible reaction in the second step: a; = _ "% for limitation and (8)
(s d © A
g(S) = Qmax——F— - K;
s+ Ky a; = ——L_ for inhibition. 9
Ci; + Kj

Following the same line of thought, expressions for more-com
plex cases can be derived as shown in table 1. If no a priori knowledge is available about the structure, i.e.

The presence of modulators (or effectors) also influencethe f @ Systematic modelling approach is necessary for theesele
action rate. Inhibitors (or negative effectors) form anctiae tion of the reaction kinetics, a rather general formulationld
complex with at least one of the substrates or intermediatedherefore be written

the reaction chain. For the enzyma_tic system (4), the_relare a B " c; Kinni
ready three different patterns leading to the respectiveeq q= qmaxH ot Ko ot Kond (10)
tions shown in table 2. =1 e e
inhibition type | enzymatic Kinetic expression which result; i2n + 1 model parametgrs _for each copsidered
reaction path reaction. This obvious overparametrisation of the kinetie
— — pression will certainly lead to identifiability problems. dve-
competitive E+1=EI 4= T/ m over, due to the physical meaning of the modulation constant
uncompetitive | ES+1=ESI | ¢ = #ﬂﬁsm) Kiin and Kiy,1, Which are reasonable for positive values only,
E +I—= EI the identification method has to handle (lower bound) con-
o . _ Gmaxs/Ks straints. Finally, if the reaction ratgis insensitive to a compo-
non-competitive) S 41 = ESI | ¢ = (1+S/KS>(/1+Z'/KI> nenti, the solution for its modulation constantsAg;,, ; = 0
EI+5 = ESI and Ky, = oo, which could cause problems to the optimisa-

Table 2: Different types of reversible inhibition of enzytica tion algorithm.

reactions (4).
3 OnaGeneral Kinetic Model

As a special case, the non-competitive reversible autoinhi o o o
tion, i.e.1 = S, leads to the well-known Haldane equation [1]FOr the systematic identification of a model watpriori un-

.\ known kinetics, it is necessary to build up a model structure

Ks ) 1 _ Gmax ©6) capable of representing the most common biological phenom-
1+ KL) (1 T KL) 14 =+ K2 ena with the fewest parameters. This almost always resudts i

s ! compromise between the model generality and the level of de-

which is often applied to global reactions such as growth g€ription (parametrisation) that can be recovered in thdeho
biomass on an inhibitory substrate. identification step.

q = Qmax (

Many other laws have been reported in the literature for BmpA general kinetic model should at least be able to reprochee t
systems, especially single substrate — single biomassglesirfwo major tendencies of modulation:

product systems, most of them found heuristically in order t

describe a specific phenomenon. The choice among them is the positive effect (limitation, activation) of a comparne
often a question of taste, since many of them are ratherasimil ~ on the reaction rate, i.eq is monotonically increasing
There is therefore no real justification for the prefererfoaene with ¢;;

kinetic model over the others. Anyway, Monod’s law is the
most widely used kinetic expression due to its simplicitg an
its physical and phenomenological background.

* the negative effect (inhibition) of a component on the re-
action rate, i.eq is monotonically decreasing with.

For more complex reaction systems with litdepriori qual- The invariance of with respect ta:; should also be contained
itative knowledge on the exact enzymatic interaction on tlas a special case.



| case | enzymatic reaction path | kinetic function

reversible reaction E+S=ES=E+P q(s,p) = qs’”“{iﬁéf}’;”f‘}’f Ke
E+S;+Ses =ES; +So = ES;S»

two-substrate reaction E+51+5 =ES; + 51 = ES152 | q(s1,52) = 1+g+ﬂfﬂ;’;{2km+mkm
ESiS; -5 E+P

multiple reactions on one enzymeE + S; = ES; 2% E + P; Qi (S1,. .., 8p) = —diomaxsi/ B

14+>°70 1 s /K

Table 1: Some expressions for enzymatically catalysediceed?2].

3.1 Formulation case, which is often rather difficult to detect through ekper

) ) o mental data due to the non-injectivity of the resulting tiac
As the model of Monod is the most-widely accepted in biotechse with respect to the concentration of the auto-inhibiti

nology, the following model structure is inspired from thias- component. The use of a non-injective function would make

sical law: the identification problem more delicate.

g (c1,- - n) = Gjmax | [ e (ci) (11) 35 Continuity and Differentiability

=1
. The modulation functiomy;; (c;, K7;) in (12) is differentiable
with almost everywhere in the admitted range
. if K;; >0;
) — ci+K;fj2 iJ , 12 .
aij (ci) 1 otherwise. (12) Qi = {c; e R, K} €R|e; 20}, (14)
especially at the transitioR}; = 0
3.2 Structure
It is obvious that equation (12) is eqgivalent to a Michaelis- Sovis _2(7](2’2, if K5 >0,
Menten-like expression for positivE’’; with the Michaelis S = (C_J;i(f( . (15)
“ 0K} — i otherwise,

constanty; = K;‘f. NegativeK; result in a non-competitive
inhibition term with K; = K%, For K;; = 0, the influence
of the respective component on the reaction kinetics vasishwhich is particularly important for gradient-based op8ation

a(e)=1. algorithms used to estimate of the kinetic model parameters

(1+K;2ei)?

lim 8041-3- _ im (’)aij _ 8041-3-
K}—0— 8ij K7—0+ 8K;*j 8ij K
The advantage of the proposed kinetic model is the unbounded
range for the modulation constaris’;, whereas the modula- _ _ o _ _
tion constants in the classical laws are often constraiadmbt Only (c;, K;;) = (0, 0) is a discontinuity point. However, if the
positive. The representation of the two modulation effégts initial concentration of componeritis non-zero, the solution
one parameter reduces consequently the number of kinetic {94 ¢: of the system equation (1) will always remain non-zero,
rameters ta + 1 per reaction, which is particularly beneficial-€-
to the model identification procedure.

3.3 Number of Parameters

—0. (16)

*
ij_o

8qj
0K},

17 lc;=0

Ci70>0 A Qj(Ci:()):O AN

<ocoVj= ¢(t)>

3.4 Physical Constraints
7)

Some physical constraints have to be imposed in order to en-
sure that a componentwhich is consumed in the reactign and the critical point (0,0) will never be reached.
cannot be further consumed, when its concentration Vaﬂ'shérossing the critical poinK;‘j — 0for ¢;; = 0in the course of

Le.t vij be the respective sto.ichiometric coefficient, the mOdBérameter estimation can be interpreted as a binary decisio
lation constant<;; has to fulfill the respective component limiting or not? And therefordés t
reaction rate affected by the zero concentratioy) (= 0) or

vi; <0 A Kij >0 = g (;=0)=0 (23) not (Oéij —1)?

as a sufficient condition to guarantggt) > 0 V¢ Ve, o.

N . 3.6 Mode Senstivities
Consequently, a substrate cannot have an inhibitory eiffiect

this approach. Although this is a possible scenario, our aphe differential equation for the output sensitivity wigsspect
proach for systematic kinetic modelling does not consilisr t to the kinetic parameter vectgy, (gmax, K *) is derived from



equation (1): Assuming that the reaction kinetics is completely unknaive,
d (02(t,7,) general kinetic model (11) and (12) is applied herefpand
— { — } itsm(n + 1) = 4 parameters

dt 0Py
_x <8q (E().7y) , 94 ((t,Py) . Py) 88(t,ﬁq>> P = [max K% K§ K] (27)
op, oc op, '
Pa Pa (18) are calculated uniquely by the set of equation given in t8ble
The respective partial derivatives are calculated asviclio Frmax = Hmax
5 n Kx =0
95 _ Haij (CuK:}) (19) K =Ké/2
8q_j,max 1 K* = K71/2
= p_~ By
0q; ° Oaij (ci, K
ng* = {j,max H Q5 (Ck, K}j_j) J;Tj) Table 3: Kinetic parameters of the general model for ideal ex
ij k=1, ki tj ample.
(20)
n P e As a second example, consider again the reaction scheme (24)
99 _ Ganax || s (cr K75) Baij (ci, K5) the kinetic expression
dc; ” AT Tk dc;
k=1, k#i S
(21) H = HPmax . (28)
s+ Ks (1+ £)
with I
K7 it K* >0 featuring a competitive inhibition by the product, whichedo
Doy (e K7) | Ty TEG >0, - on Kinet.
J ij) _ ) (et ”2) (22) not exactly fit the proposed general reaction kinetic stmect
dei ﬁ, otherwise, (11) and (12).
e . ’ Since the kinetic model structures are not equivalent, te p
and BK}]J. according to (15). rameters have to be estimated by minimising the followingf co
function:
3.7 Physical Units noot,
fO =73 [ @o-aEn’ @)
The unit of K;; depends on the respective case in (12) and te = J1g E ’

changes therefore in the following manner: ] o ) .
i.e. aleast-square criterion corresponding to the idesé od

[K*] = {[0]1/2, if K* >0, (23) continuous error-free concentration measurements.

—-1/2 .
[c] , Otherwise. The model parameters chosen for the reference system 24,28

are given in table 4.
4 Examples

| parameter] value |

The potentials and features of the proposed kinetic model ar Y 12
first illustrated by means of a small ideal-case example.-Con Yo /3
sider a reaction system with = 3 components, — one sub-
strate (S), one biomass (X) and one product (P), —rand 1 Hmax 1
reaction, — the biomass growth, — according to the following Ks 2
stoichiometry: . S| 3
?SS S X+ ?PP (24) Table 4: Numerical values of the reference model parameters

with known yield coefficientd’s andYp. Example 2 (non-ideal case).

g:ihr: :;22;& g)rlgv?/tmhlf;t(les: given by the extended Monod I%e reference system (24,28) is simulated for the expetiahen
conditions (initial conditions, inlet substrate conceatibn and

s K _ (25) dilution rate) described in table 5.

s+ Ks p+ Ki

M = Hmax
The cost function (29) is minimised in order to determine the
The resulting system of ordinary differential equationthire- four model parameterg,.x, K%, K§, K. Their values are

fore written: given in table 6 together with their interpretation in terofs
modulation.
PR 1 0 T . _
e —Yis p(s,p)x+ [ |sm| — |s| | D. (26) The costfunction value at the optimumfigp, opt) = 0.0100.
¢ YLP 0 D This value represents a measure of the error made with the



z(0) =1 1
s(0) =10
p(0) =0.1
Sin =10
0; 0<t<10
D()={0.05(—-10); 10<t<20
0.5: 20 < ¢ < 30

Table 5: Operational parameters for the reference systexa — E
ample 2 (non-ideal case).

| parameter]  value | interpretation | 03
[imax 2.0772 — 02
K% 1.1565 | limitation | Kjim,x = 1.3374 '
K¢ 1.9500 | limitation | K s =3.8025 = o1
K} —0.5219 | inhibition | Ki,, p =3.6716 <"
Table 6: Non-ideal case example: general kinetic model pa- oy~
rameter values and their interpretation.
-0.1
0 10 20 30

t
model structure. It approaches zero in the case of a total-equ

alence of the kinetic structures, as in the previous idese ca-igyre 2: Non-ideal case example: General model identified o
example and can be interpreted as the summed mean variafiggeturally different kinetic model. Top: comparison gea

o of all the considered components. The identified model hag,del (dashed) vs. reference model reaction rate (solith Bo
therefore a summed mean standard deviatien6f0.1, which - tom: deviation of general from reference model reactioe rat

is relatlvely low compared to the orders of magnitudes of the, (1) = ,, (7 (¢)) — & (E(t,7))-
concentrations.

This result is confirmed by the graphical comparison of the
model and the reference systems in figures 1 and 2.  Tdfethe experiment, where the model mismatch becomes appar-

” ; \ ent. Nevertheless, the integration smoothes these daviati

and the impact on the concentration trajectories beconges ne
2 ? 6 ligibly small, as time evolves.
15 6
" 10 ® 4 = Due to the different model structures, the identified valokes
5 ) 2 the general model parameters differ from their “correspond
0 0 . ing” reference values (cf. table 4) Though, the parameters i
°o o % o B ¢ 1 2 % taple 6 show the same tendencies as their reference counter-
parts: The product P is inhibiting with a “non-competitive*
2 . o hibition constant of 3.67, which is in the same range of value
02 008 01 as the “competitive” inhibition constant. Also, the linmgj ef-
5 q ° 2 o005 fect of the substrate S is correctly identified, althoughntioel-
0 008 ulation constant has a higher value than the reference param
01 01 ° eter. Additionally, biomass X is found to be limiting for the
02— 015 e oo —————  gpecific growth rate, however with a relatively low Michaeli

t t t constant compared to the biomass concentrations of theiexpe

ment. This limiting effect does therefore not play an impatt

Figure 1. Non-ideal case example: General model identifiggle in this specific experiment and could be neglectedske.
on structurally different kinetic model. Upper row: compar g zero for similar experiments.

son system with general kinetic model (dashed) vs. referenc

system (SOlld) Lower row: deviation of model system frorH is remarkable that the identified maximum SpeCifiC grOWth
reference systemé(t) = @ (t) — & (t, 7). rate is about twice the reference value as is the limitatam c

stant of the substrate. These multiplicative factors campte
deviations from the reference model are in a range of ab@ach other at low substrate concentratianghen the modula-
one percent for all the concentrations, and the maximunegeviion constants;? in the general kinetic formulation becomes
tion of the reaction rates is around ten percent at the beginndominant in the denominator ofs, i.e. when the kinetics fol-
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nents [6, 5]. The unknown reaction rat&sn (1) are then Brussels (1999).

eliminated by a linear combination of the differential etjolas
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The second step of such an identification procedure is theref[7] J. Monod,Recherche sur la Croissance des Cultures Bac-
dedicated to the identification of the underlying reactiorek teriennesHerman Editions, Paris (1942).

ics, which is often the most delicate task, since the nogalin

kinetic functions are often not known exacty. In such cases,

it is indispensable to choose a kinetic model structure with

relatively low number of unknown parameters in order to dvoi

identifiability problems, but with a sufficiently high potiad to

reproduce the majority of biological kinetic phenomenahsu

as inhibition and limitation.

A kinetic model representing a reasonable compromise is pro
posed in this paper. It is based on an extension of the
Michealis-Menten kinetics and is capable reproducingthmi
tion/activation and (non-competitive) inhibition effsctlt in-
cludes one parameter per reaction for scaling the maximum
reaction rate and parameters per reaction characterising the
modulation effect of each component. Its limited number of
kinetic parameters allows identifiability problems to blewat
ated. Two application examples, — one ideal case and one non-
ideal case, in which the kinetic model structures are dffier

— show the versatility of the proposed approach.
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