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Abstract

An important step in processing of Semi Solid Metals(SSM) is
the inductive reheating of the raw material. Using conventional
technologies the heating process behaviour is unsatisfactory in
terms of reproducibility and disturbance rejection. But repro-
ducibility is a stringent requirement for achieving good quality
in the forming process that follows the reheating. In indus-
trial application open loop control is often used but the control
trajectories are generated by costly experiments. In order to
improve the performance of the open loop control problem and
to take constrains on the heating behaviour into consideration,
this paper presents a flatness based method to calculate a tra-
jectory for the manipulated variable. The parametrization of
the solution is determined by using a Taylor-series expansion
around the flat output. In this way a trajectory can be calculated
which guarantees that the target temperature is reached as fast
as possible and at the same time no overheating of the outer
regions occurs. First simulation results are shown for the open
loop control case.

1 Introduction

Thixoforming of SSM(Semi Solid Metal) is a new innovative
production process that was first proposed by Spencer, Flem-
ings et. al. in the 70th. Materials are formed in the semi solid,
semi liquid state. This forming technology allows parts be-
ing produced with very good structural material properties as
well as complex shape. One disadvantage is the increase in
control effort as the material property ”semi-solid” exists only
in a very small temperature band. The first step in the com-
monly used thixoforming process is the reheating of a piece of
raw material called the billet. The workpiece then is formed
on either a forging or a die casting machine. Thixoforming
requires the heating of aluminum or other alloy billets to a
jelly-like stage between the solidus and liquidus temperature
of the material. A uniform billet temperature must be obtained
prior to forming in order to obtain good forming results. Al-

though induction heating can meet these requirements and has
been used for many years in a variety of metalworking appli-
cations, prediction and control of the SSM reheating process
is not straightforward. Actually open loop control systems are
dominating implementations of the process. This is due to a
combination of the complexity of the equations describing the
process and the non-linearities associated with the workpiece
materials. The induction heating process involves interaction
of heat transfer, electrical and magnetic effects. The billet is
supposed to be heated to the target temperature as fast as pos-
sible and at the same time it must be guaranteed that the outer
area of the billet does not overheat and begins to melt prema-
turely. Conventionally the open loop trajectories are generated
by costly experiments in order to achieve the desired state of
the billet. In this paper we will show that it is possible to cal-
culate a trajectory for the manipulated variable which satisfies
the given constrains on the heating cycle and one can guaran-
tee that the target temperature is reached without overshooting.
In figure 1 the principal setup of the induction plant is shown.
The plant consists of two interacting subsystems, the induction
coil with its magnetic field and the billet with the heat transfer
occurring inside. In the following the equations which describe
these two subsystems are derived.

2 THE HEATING PROCESS

2.1 The Induction Process

The main part of the plant is the resonant circuit which consists
of the capacity connected via a transformer with the induction
coil. Energy is fed into the circuit by a converter whose fre-
quency is automatically adapted in order to match the charac-
teristic frequency of the resonant circuit. The heating power
is brought into the billet by eddy currents, which are induced
mainly near the billet surface by the alternating magnetic field
of the induction coil. The manipulated variable of the process
is the electrical power of the converter, which in effect means
the coil current is varied since the coil voltage is constant.
Figure 2 shows the coil setup with billet. The eddy current
density Jϕ(r) determines the ohmic drop within the billet. If
the power distribution of these losses is known it is possible to



Figure 1: The induction heating plant

calculate the heating of the billet. In order to be able to de-
termine the current density, the magnetic field strength Hz(r)

Figure 2: Induction coil with billet

within the billet has to be known. The geometry of the induc-
tion coil has been optimized in order to ensure a homogeneous
magnetic field distribution inside the coil even at face surfaces
[5]. For that reason no variation of the field strength in z di-
rection occurs and since the billet is symmetrical to its middle
axis the Maxwell equations in cylindrical coordinates take the
following form
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∂2Hz

∂r2
+

1

r

∂Hz
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− κµjωHz (1)

Eφ =
1

κ

∂Hz
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ω is the circular frequency of the coil current, κ the electric
conductivity and µ the magnetic permeability. We assume that
the variation of the converter power is quite slow compared to
the circular frequency ω of the coil current. In that case the
quasi-stationary field equations are valid and the variation of

the peak value of the coil current can be neglected for the cal-
culation of the field distribution. The solution to 1 is a Bessel
function of the first kind and zero order. The eddy current den-
sity Jϕ(r) is related to the magnetic field strength Hz(r) via

Jφ(r) = κEφ(r) = −∂Hz

∂r
. (3)

The solution to 3 can be approximated by an exponential func-
tion if the penetration depth δ

δ =

√
2

µκω
(4)

is small compared to the radius RB of the billet. In this case
the penetration depth is defined as the distance from the sur-
face at which the current density dropped to 37 percent of its
maximum value. Since the heat transfer process is slow com-
pared with the frequency of the induced eddy currents, only
the rms-value of the current density Jϕ(r) can be used for the
calculation of the power distribution. The rms-value of the is
described by the following equations:

Jrms(r) =
1√
2
|J | = J0e

−
(RB−r)

δ (5)

and
J0 =

H0

δ
and H0 =

w

LC

I0 (6)

w describes the number of coil windings, LC the length of the
coil and I0 the peak value of the coil current. The induced
volume power density Φ̇(r) is described by the following term

Φ̇(r) =
1

κ
J2

rms = Φ0e
−2

(RB−r)
δ = g(t) · f(r)

with f(r) = e−2
(RB−r)

δ , g(t) =
w2

κδ2LC
I20(t) (7)



In figure 3 the behaviour of the current and volume power den-
sity in dependency of the radius r are shown.

Figure 3: Eddy Current and volume power density

2.2 The Heat Transfer Equations

To be able to calculate the trajectory for the converter power,
the thermal behaviour of the billet has to be described. Con-
sidering the cylindrical symmetry of the billet (see figure 2),
the heat transfer inside the billet represents a two dimensional
problem that can be described by the following equation in
cylindrical coordinates:

ρcv
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+ Φ̇(r) (8)

where Φ̇(r) is the heat-generation term which represents the
induced volume power density described by 7. ρ describes the
density, cv represents the specific heat capacity and λ corre-
sponds to the heat conduction coefficient of the material. These
parameters are regarded to be constant and thus any tempera-
ture dependencies are neglected. Since the coil geometry en-
sures a homogeneous magnetic field strength along the z axis
and heat losses occur mainly along the jacket of the billet, the
heat transfer in axial direction can be neglected and 8 can be
written as follows:

ρcv
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= λ
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= λ
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∂2ϑ(r, t)

∂r2
+ g(t) · f(r)

At the beginning of the heating cycle the billet temperature is
supposed to be uniformly equal to the environment temperature
ϑe, which leads to the initial condition:

ϑ(r, 0) = ϑe , 0 ≤ r ≤ RB . (10)

Due to the rotational symmetry with respect to the point r = 0,
no heat transfer through the axis can occur which leads to the
first boundary condition:

∂ϑ(0, t)

∂r

∣
∣
∣
∣
r=0

= 0 , t ≥ 0. (11)

The second boundary condition is determined by the heat flow
from the jacket to the environment, i.e. for r = RB , and is
described by

Q̇s(t) =
∂ϑ(RB , t)

∂r
= −α

λ
(ϑ(RB , t) − ϑe(t)) , t ≥ 0

(12)

where α denotes the heat-transfer coefficient. ϑ(RB , t) =
ϑs(t) corresponds to the temperature of the billet jacket and ϑe

to the environment temperature which is supposed to be con-
stant. Due to the oxidation of the billet surface radiation losses
can be neglected. Without loss of generality we set ϑe = 0 in
following.

3 DETERMINATION OF FLAT OUTPUTS

The approach used in this paper is based upon the concept of
flatness of systems which has been introduced by [3]. Using
the flat outputs it is possible to calculate trajectories for the
system which guarantees that the outputs follow the desired
behaviour. There are a lot of applications of flatness to systems
with concentrated parameters [4] and lately to distributed sys-
tems too. Examples of flatness for heat transfer problems can
be found at [2] and [1]. These systems are boundary controlled,
i.e. the system is influenced by a final controlling element at the
boundary of the system.
The system described by 9 is controlled by the heat-generation
term Φ̇(r) and thus the results mentioned before cannot be ap-
plied directly to the given problem. The flat output of the sys-
tem can be determined if we identify a place where by using
the boundary conditions and the behaviour of the temperature
in that place all derivatives of the pde are determined.
If we regard the point r = 0 of the system we can determine all
derivation terms of the pde by using the first boundary condi-
tion 11 and fixing the behaviour for g(t) and θ(0, t) over time.
Thus these variables are candidates for the components of the
flat output. But the system is only flat if the dimension of the
flat output is equal to the dimension of the manipulated vari-
ables. Obviously g(t) is the first manipulated variable and the
environment temperature ϑe(t) can be interpreted as the sec-
ond one since it affects the system behaviour as well. ϑe(t)
cannot be influenced but is supposed to be known. That means
the system is flat and the solution to 9 can be parametrized by
the temperature at the axis yf1(t) = ϑ(0, t) and the coil current
yf2(t) = g(t).
In order to determine the parametrization, we develop the solu-
tion ϑ(r, t) to 9 in a Taylor-series around the point r = 0:
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(13)



Due to the symmetry of the given problem, the solution ϑ(r, t)
to 9 must be an even function with respect to the point r = 0.
This means that all odd derivatives with respect to r at the point
r = 0 must be equal to zero:

∂2n+1ϑ(r, t)

∂r2n+1

∣
∣
∣
∣
r=0

= 0 , for n = 0..∞ (14)

Now only even derivation terms occur in 13 and have to be
calculated in order to determine the solution. By rearranging 9
one obtains an expression for the second derivation with respect
to r:
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In order to be able to substitute the corresponding expression in
the Taylor series 13, equation 15 must be evaluated at the point
r = 0:
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The higher order derivatives in 13 can be determined by the
2nth derivation of 15 and then evaluating the expression at r =
0.
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with n = 0..∞

Evaluating this expression at r = 0 yields:
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By using the following substitution, a recursive formula for the
calculation of the derivatives can be determined:

a2n(t) =
∂2nϑ(0, t)
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For n = 0, a0(t) = ϑ(0, t) is determined and the recursion
formula can be used to calculate the higher order derivatives of
15. Thus the Taylor series 13 can be written as follows:

ϑ(r, t) = a0(t) +
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with
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These calculations show that the solution ϑ(r, t) is
parametrized if all the a2n(t) are known. As 21 shows,
the a2n(t) are dependent on ϑ(0, t) and its time derivatives,
g(t) and its time derivatives and f(r) and its derivatives
with respect to r. Since f(r) is known from 7, the Taylor
series 20 is determined if ϑ(0, t) and g(t) are known. This
means that the solution ϑ(r, t) is parametrized by the middle
temperature of the billet yf1(t) = ϑ(0, t) and the coil current
yf2(t) = g(t) as mentioned before.
The aim of the control is to ensure that the flat output yf1(t)
follows a desired trajectory by determining the needed trajec-
tory of the input variable g(t). The environment temperature
ϑe(t) cannot be manipulated and is supposed to be constant.
Only a trajectory for the temperature at the middle axis ϑ(0, t)
can be fixed since the second flat output g(t) is at the same
time the manipulated variable.
Usually the control trajectory can be calculated without
integration, but since the system is not boundary controlled,
integration is needed in order to determine the trajectory g(t).
By inserting the Taylor series 20 into the second boundary
condition 12, it is possible to calculate g(t) in such manner



that a given trajectory for yf1(t) = ϑ(0, t) is fixed:

∂ϑ(RB , t)

∂r
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λ
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If the Taylor series is truncated at an order of N , we obtain
a linear ODE of (N

2 − 1)th order with g(t) as the dependent
variable. The solution to this ODE provides the desired trajec-
tory for g(t) which then guarantees that the flat output yf1(t)
follows the predetermined trajectory. The ODE for g(t) can be
limited to the first couple of derivations since the high order
derivations are weighted by the factor 1

n! of the Taylor-series
and thus have little effect for the solution.

4 NUMERICAL SIMULATIONS

In this section the results of the presented method are shown on
the basis of numerical simulations concluded with Maple. The
Taylor series is being developed up to an order of 8. For sake
of simplicity all material constants are set to one.
For the flat output yf1(t)) = ϑ(0, t) the following trajectory
is desired. The given trajectory is a polynomial of sufficient
smoothness in order to avoid a non smooth control trajectory:
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Figure 4: Desired trajectory for yf1(t)

The following figure shows the calculated trajectory for the ma-
nipulated variable g(t):
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Figure 5: Calculated trajectory for g(t)

Below he numerical solution and the Taylor series of an order
of 8 for the calculated g(t) are shown :
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Figure 6: Numerical solution for ϑ(r, t)
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Figure 7: Taylor series for ϑ(r, t)

It can be seen that the numerical solution and the Taylor series
match each other quite well. There is still a small deviation of
the numerical solution from the Taylor solution towards r =



1 and the calculated course for g(t) leads to a slightly higher
steady state temperature as the Taylor series. But this effect can
be reduced by using a higher order Taylor series.
The curve below shows the desired temperature behaviour for
a transition time of 10 seconds:
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Figure 8: Desired trajectory for yf1(t)

The following figure shows the calculated trajectory for the ma-
nipulated variable g(t):
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Figure 9: Calculated trajectory for g(t)
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Figure 10: Numerical solution for ϑ(r, t)
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Figure 11: Taylor series for ϑ(r, t)

5 CONCLUSION

We presented a method to determine the flat outputs for a
distributed system which is manipulated by a heat-generating
term. The parametrization of the solution by means of the flat
output has been shown and the calculated control trajectory has
been applied to the system via numerical simulations. These
simulations indicate that it is possible to achieve the desired
behaviour of the middle temperature by applying the calculated
trajectory to the system.
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