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Abstract

This paper presents a method to determine the flat output of
some one dimensional boundary controlled distributed sys-
tems.
Once the flat output determined, the parametrization of the so-
lution is achieved using a Taylor-expansion in the space coor-
dinate variable of the flat output. The procedure is illustrated
by two problems related to heat transfer, described respectively
by a parabolic and a hyperbolic partial differential equation.

1 Introduction

One problem of open loop control is, using a model of a
process, to define the time shape of the manipulated variable
such that the controlled variable takes a desired trajectory be-
tween two stationary states.
This problem simplifies a lot if the system is flat. For this kind
of system, all the state variables and inputs are parametrized by
the so called flat output. So if the flat output is also the output
of the system, then the time shape of the manipulated variable
is directly defined by injecting the desired trajectory of the con-
trolled variable in the parametrization.
The concept of flatness has first be defined [1] for systems
gouverned by ordinary differential equations and could be ex-
tended to boundary controlled one dimensional distributed sys-
tems [4].
For the last case the flat output is a function of the solution of
the pde in a fixed space coordinate. From the knowledge of
the author there is no method to find out the flat output of such
a system. Some cases have been studied, specially parabolic
equations and can help by similarity to determine the flat output
of some other systems. Concerning the parametrization some
results are known: for parabolic equation [3], a power series
expansion in the space coordinate of the flat output is used and
its coefficients are determined by substituting this series in the
pde. For hyperbolic equations [5], Mikusiński operators are
used but can only be applied for linear pde.

In this paper, we present a simple condition to determine the
space location of the flat output for some one dimensional pde.
The parametrization of the solution is then achieved using a
Taylor-expansion about the space coordinate of the flat output.

2 The method

Consider the following example taken from [4]:
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Figure 1: Heat conduction in a rod

A rod is heated on its surface x = 1 and insulated on its other
surfaces. The heat conduction equation is given by:

∂T (x, t)

∂t
= a ·

∂2T (x, t)

∂x2
(1)

The boundary conditions are given by:

∀t ∂T
∂x
(0, t) = 0

∀t > 0 T (1, t) = u (t)
(2)

The rod is supposed to be in a stationary state for t < 0, so the
initial condition can be set at zero: T (x, 0) = 0.
Transforming into the Laplace domain, equation (1) becomes:

s · T̂ (x, s) =
∂T̂ 2

∂x2
(x, s) (3)

The solution of this ordinary differential equation under con-
sideration of the boundary condition (2) is then given by

T̂ (x, s) =
cosh

(
x ·
√
s
a

)

cosh
(√

s
a

) · û (s) (4)

With

T̂ (0, s) =
û (s)

cosh
(√

s
a

) (5)

equ. (4) can be rewritten as

T̂ (x, s) = cosh

(
x ·

√
s

a

)
· T̂ (0, s) (6)



Setting y (s) = T̂ (0, s) and transforming back into the time
domain gives the parametrization of the solution

T (x, t) =
∞∑

i=0

(
1

a

)i
·
x2·i

(2 · i)!
· y(i) (t) (7)

u (t) =
∞∑

i=0

(
1

a

)i
·
y(i) (t)

(2 · i)!
(8)

yf (t) is a flat output because it determine, by a series involving
infinitely many derivatives of it (equ.8,7), the solution of (1).
On the basis of this example, we can state that:

A one dimensional distributed system with one boundary con-
trol is flat, if the substitution for one given boundary condition
with one in x = xf which equals yf (t) fixes as many boundary
conditions in the point xf as necessary to solve the system.
The flat output is then yf (t) and its space coordinate is given
by xf

To determine the parametrization, the solution T (x, t) is
expanded in a Taylor-series about the point x = xf , and using
the pde of the system all the derivatives of the solution with
respect to the space coordinate x are replaced by a function of
derivatives of the flat output.

In the example above, substituting T (1, t) = u (t) with
T (0, t) = yf (t) alloys with ∂T

∂x
(0, t) = 0 to solve (4) with

only boundary conditions in x = 0. Thus T (0, t) is a flat out-
put.
The Taylor-expansion of T (x, t) about the point x = 0 is given
by:

T (x, t) = T (0, t) +
∂T

∂x
(0, t) · x+

∂2T

∂x2
(0, t) ·

x2

2!
+ . . .

(9)

with T (0, t) = yf (t) and ∂T
∂x
(0, t) = 0. The pde (4) states that

derivating twice with respect to x is equivalent to derivating
ones with respect to t :

∂2T

∂x2
=
1

a

∂T

∂t
(10)

Thus form ∈ N the following relation is valid:

∂2mT

∂x2m
=
1

am
∂mT

∂tm
,
∂2m+1

∂x2m+1
=
1

am
∂m

∂tm

(
∂T

∂x

)
(11)

Calculating the limit of this expressions as x approaches 0
gives:

∂2mT
∂x2m (0, t) =

1
am
∂mT
∂tm (0, t) =

1
am
dmyf (t)
dtm

∂T 2m+1

∂x2m+1 (0, t) = limx→0
1
am

∂m

∂tm

(
∂T
∂x

)
= 1
am

∂m

∂tm

(
lim
x→0

∂T
∂x

)
= 0

(12)

Consequently the parametrization is given by

T (x, t) =
∞∑

n=0

(
1

a

)n
·
x2·n

(2 · n)!
· y(n) (t) (13)

It is worth to notice that the since ∂T∂x (0, t) = 0 the solution of
(4) is even

T (x, t) = T (−x, t)

which implies directly that:

∀m ∈ N
∂T 2m+1

∂x2m+1
(0, t) = 0

3 The one dimensional heat transfer equation

We consider again the one dimensional heat equation for sim-
ple shapes like the rod, the cylinder or the sphere heated on
their surfaces.

The general equation for this shapes is

1

a
·
∂T

∂t
(r, t) =

∂2T

∂r2
(r, t) +

m

r
·
∂T

∂r
(r, t) (14)

withm = 0 for the rod,m = 1 for the cylinder andm = 2 for
the sphere.

We consider the system to be in a stationary state for t <
0, T (x, 0) = 0 and the following boundary conditions:

T (1, t) = T (−1, t) = u(t) (15)

This conditions imply that the solution of (14) is even. Due to
this symmetry, we get another boundary condition which is:

∂T

∂r
(0, t) = 0 (16)

This condition implies also that all the odd derivatives of the
temperature T (r, t) with respect to r in the position x = 0
must vanish:

∂3T

∂r3
(0, t) =

∂5T

∂r5
(0, t) = . . .

∂2·n+1T

∂r2·n+1
(0, t) = 0 (17)

The pde is of order 2 so we need two boundary conditions at
same space coordinate to get a flat output:
Here it is obvious: If T (0, t) = yf (t) is given, then because of
∂T
∂r
(0, t) = 0 the system is determined. Thus yf(t) = T (0, t)

is a flat output.

To determine the parametrization of the solution of the pde sys-
tem (14), the temperature T (r, t) is expanded in a Taylor series
about the position r = 0:

T (r, t) = T (0, t) + ∂T (0,t)∂r · r1! +
∂2T (0,t)
∂r2 · r

2

2!

+∂
3T (0,t)
∂r3

· r
3

3! + . . .+
∂nT (0,t)
∂rn

· r
n

n! + . . .

(18)



Due to the symmetry (equ 16-17), this expression simplifies to

T (r, t) = T (0, t) + ∂
2T (0,t)
∂r2 · r

2

2! + . . .

=
∞∑

n=0

∂2nT
∂r2n

(0, t) · r
2n

(2n)!

(19)

The next step in to find a relation between the derivatives of
the temperature with respect to x in the position x = 0 and the
derivatives of the flat output yf (t).

Derivating

∂2T

∂r2
(r, t) = −

m

r
·
∂T

∂r
(r, t) +

1

a
·
∂T

∂t
(r, t) (20)

with respect to x (2n) times becomes

∂2n+2T

∂r2n+2
(r, t) = −m ·

∂2n

∂r2n

(
1

r
·
∂T

∂r
(r, t)

)
+
∂2n

∂r2n

(
∂T

∂t
(r, t)

)

(21)

Therefore

∂2n+2T
∂r2n+2

(0, t)

= lim
x→0
−m ∂2n

∂r2n

(
1
r
· ∂T
∂r
(r, t)

)
+ ∂2n

∂r2n

(
∂T
∂t
(r, t)
)

= −m · lim
r→0

∂2n

∂r2n

(
1
r
· ∂T
∂r
(r, t)

)
+ ∂
∂t

(
∂2n

∂r2n
(0, t)

)

= −m · lim
r→0

∂2n

∂r2n

(
1
r ·
∂T
∂r (r, t)

)
+ ∂
∂t

(
∂2n

∂r2n (0, t)
)

(22)

A simple calculation shows that

lim
r→0

∂2n

∂r2n

(
1

r
·
∂T

∂r
(r, t)

)
=

1

(2n+ 1)
·
∂2n+2T

∂r2n+2
(0, t)

(23)

implying the following recursive relation

∂2n+2T

∂r2n+2
(0, t) =

2n+ 1

2n+ 1 +m
·
∂

∂t

∂2nT

∂r2n
(0, t) (24)

from which we get

∂2nT

∂r2n
(0, t) =

1 · 3 · . . . · (2n− 1)

(1 +m) · . . . · (2n− 1 +m)
·
∂nT

∂tn
(0, t)

(25)

Finally

T (r, t) =
∞∑

n=0

r2n

(2n)!
· f (m) · y(n) (t) (26)

Rod T (r, t) =
∞∑

n=0

r2n

(2n)! · y
(n) (t)

Cylinder T (r, t) =
∞∑

n=0

(
r
2

)2n y(n)(t)
(n!)2

Sphere T (r, t) =
∞∑

n=0

r2n

(2n+1)! · y
(n) (t)

(27)

This procedure can be extended, for the same kind of boundary
conditions, to other shapes and to nonlinear heat equations (e.g
with temperature depending heat capacity).

This example shows that the symmetry of the solution of the
heat equation plays a important role to figure out the flat output
and the parametrization of the solution.

4 The heat exchanger equation

This example is taken from [5].

Co-current Heat Exchanger

x = 0
T (0,t) = u(t)2

T (0,t) = 01

x = 1

T (0,t) = u(t)2

Figure 2: Co-current heat Exchanger

The co-current heat exchanger can be described by the follow-
ing system of first order pde’s [2]:

∂T1

∂t
(x, t) + v1 ·

∂T1

∂x
(x, t) = a1 · (T2 (x, t)− T1 (x, t))

∂T2

∂t
(x, t) + v2 ·

∂T2

∂x
(x, t) = a2 · (T1 (x, t)− T2 (x, t))

(28)

T1 (x, t), T2 (x, t), v1 and v2 denotes the temperature profile
and the velocity of, respectively, the fluid 1 and 2. This system
is considered to be in a stationary state for t < 0 meaning the
initial conditions are vanishing

T1 (x, 0) = 0 and T2 (x, 0) = 0 t < 0 0 ≤ x ≤ 1 (29)

The purpose of this system is to control the temperature profile
T1(x, t) of the fluid 1 using as manipulated variable the tem-
perature at the boundary x = 0, T2(0, t) of the fluid 2. Thus
the boundary conditions are taken to be

T1 (0, t) = 0 and T2 (0, t) = u (t) (30)

The dimension of the manipulated variable ist one. Applying
the main result of this paper, we will be able to determine a flat
output in a point x = xf if by adding a boundary condition in
xf equals to yf (t) we have enough boundary condition in this
point to solve the system (28).

Frrom the first boundary condition in x = 0 we get

T1 (0, t) = 0 and
∂T1

∂t
(0, t) = 0 (31)

Therefore the system of pde (28) in x = 0 becomes

∂T1

∂x
(0, t) =

a1

v1
· T2 (0, t) (32)



and

∂T2

∂x
(0, t) = −

a2

v2
· T2 (0, t)−

1

v2
·
∂T2

∂t
(0, t) (33)

Thus T2(0, t) or ∂T1
∂x
(0, t) are possible flat outputs for this sys-

tem:
If T2(0, t) is given then the first equation (32) implies that
∂T1
∂x (0, t) is determined. If T2(0, t) is given, so is ∂T2∂t (0, t)

and the second equation (33) implies that ∂T2
∂x
(0, t) is deter-

mined.
We choose yf (t) = T2(0, t) as a flat output.
To determine the parametrization of the solution of the pde sys-
tem (28), we assume as in the case of parabolic pde that the
temperature T1(x, t) and T2(x, t) can be expanded in a Taylor
series about the position of the flat output x = 0:

T1 (x, t) = T1 (0, t) +
∂T1

∂x
(0, t) · x+

∂2T1

∂x2
(0, t) ·

x2

2!
+ . . .

(34)

T2 (x, t) = T2 (0, t) +
∂T2

∂x
(0, t) · x+

∂2T2

∂x2
(0, t) ·

x2

2!
+ . . .

(35)

The next step is to determine an expression between the deriv-
ative of the temperatures with respect to x in the position x = 0
and the flat output.
For that we derive the system (28) n − 1 times with respect to
x:

∂n−1

∂xn−1

(
∂T1

∂x
(x, t)

)
= −

1

v1
·
∂

∂t

(
∂n−1T1

∂xn−1
(x, t)

)

+
a1

v1
·

(
∂n−1T2 (x, t)

∂xn−1
−
∂n−1T1 (x, t)

∂xn−1

) (36)

∂n−1

∂xn−1

(
∂T2

∂x
(x, t)

)
= −

1

v2
·
∂

∂t

(
∂n−1T2

∂xn−1
(x, t)

)
+

a2

v2
·

(
∂n−1T1 (x, t)

∂xn−1
−
∂n−1T2 (x, t)

∂xn−1

)

(37)

Defining

fi (t) =
∂iT1

∂x
(0, t) gi (t) =

∂iT2

∂xi
(0, t) (38)

we get from equ.((36 ) and (37) the following recursion formu-
lae:

fi (t) = −
1

v1
·
dfi−1 (t)

dt
+
a1

v1
· (gi−1 (t)− fi−1 (t))

gi (t) = −
1

v2
·
dgi−1 (t)

dt
+
a2

v2
· (fi−1 (t)− gi−1 (t))

with

f0 (t) = 0 and g0 (t) = yf (t)

Thus the Taylor expansion of T1(x, t) (34) and T2(x, t) (35)
becomes

T1 (x, t) =
∞∑

i=0

fi (t) ·
xi

i!
(39)

T2 (x, t) =
∞∑

i=0

gi (t) ·
xi

i!
(40)

This results are illustrated by a simulation.
yf (t) is chosen to be a polynomial of class C11. The Taylor-
expansion for T1(x, t) and T2(x, t) were broken after 10 terms
so that the continuity of the temperatures profiles is insured.
To compare the solution given by the Taylor expansion, the sys-
tem (28) was solved numericaly with Maple using the boundary
condition

T1 (0, t) = 0 and T2 (0, t) = yf (t) (41)

yf(t)
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Figure 3: yf (t) = T2(0, t)

T1: Taylor expansion
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Figure 4: T1(x, t) : Taylor-Expansion



T1: numerical solution
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Figure 5: T1(x, t) : Numerical result

T2: Taylor expansion
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Figure 6: T2(x, t) : Taylor-Expansion

T2: numerical solution
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Figure 7: T2(x, t) : Numerical result

The temperatures profiles calculated with the Taylor-expansion
agree with the corresponding one calculated numerically by
Maple quite well.

x = 0

T (0,t) = u(t)2

x = 1

T (0,t) = u(t)2

T (1,t) = 01

Figure 8: Counter-current heat Exchanger

4.0.1 Counter current Heat Exchanger

The equations describing a counter-current heat exchanger are
given by:

∂T1

∂t
(x, t) + v1

∂T1

∂x
(x, t) = a1 · (T2 (x, t)− T1 (x, t))

∂T2

∂t
(x, t)− v2

∂T2

∂x
(x, t) = a2 · (T1 (x, t)− T2 (x, t))

(42)

The initial conditions are set at 0

T1 (x, 0) = 0 T2 (x, 0) = 0 t < 0 0 ≤ x ≤ 1 (43)

and the boundary conditions are given by

T1 (1, t) = 0 and T2 (0, t) = u (t) (44)

Like in the co-current case we get from the first boundary con-
dition

∂T1

∂t
(1, t) = 0 (45)

and the system of pde (42) becomes in x = 1

∂T1
∂x
(1, t) = a1

v1
T2 (1, t)

∂T2
∂x
(1, t) = a2

v2
T2 (1, t) +

1
v2
· ∂T2
∂t
(1, t)

(46)

Therefore similarly to the co-current case, possible flat outputs
of this systems are ∂T1

∂x
(1, t) or T2 (1, t).

The parametrization is then given by

T1 (x, t) =
∞∑

i=0

fi (t) ·
(x−1)i

i!

T2 (x, t) =
∞∑

i=0

gi (t) ·
(x−1)i

i!

(47)

with

fn (t) =
a1
v1
· (gn−1 (t)− fn−1 (t))−

1
v1
· dfn−1(t)

dt

gn (t) = −
a2
v2
· (fn−1 (t)− gn−1 (t)) +

1
v2
· dgn−1(t)dt

(48)

and if yf (t) = ∂T1
∂x
(1, t)

f0 (t) = 0 f1 (t) = yf (t) g0 (t) =
v1

a1
f1 (t) (49)



if yf (t) = T2 (1, t)

f0 (t) = 0 g0 (t) = yf(t) f1 (t) =
a1

v1
· g0 (t) (50)

The method can also be applied if equ.(42) is nonlinear (the
coefficients ai(T (x, t)) are a function of the temperature) or
time-varying (the coefficients vi(t) are a function of the time.

5 Conclusion

We presented a method to figure out the flat output and the para-
metrization of the solution for some pde. This method was also
applied to many other systems (moving boundary problems,
heat equation with a heat-generation term, telegraph equation,
etc...) with success independantly if the system were linear or
not.
As it will be shown in further papers, the parametrisation of the
solution with the Taylor-expansion can also be used to design
a PID controller or to find easily a solution to some pde (for
example for the cross-current or the spiral heat exchanger).
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örtlich verteilten Parametern: Ein flachheitsbasierter Zu-
gang. at-Automatisierungstechnik, 48:399–406, 2000.


	Session Index
	Author Index



