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Abstract

The paper presents a robust tracking controller design for a
short-stroke permanent magnet motor as a linear drive. After
the model description, a flatness based control is presented to
force the system following a reference trajectory. Additionally,
a robust feedback control, based on system inversion, is used
to stabilize the tracking against external disturbance signals,
model and initial errors. Moreover, a particular PID control
scheme is proposed by using Karitonov’s approach.

1 Introduction and motivation

As an important mechatronic component electromagnetic ac-
tuators are widely used in many industrial applications. For
linear motion control more and more mechanical or hydraulic-
mechanical components have been replaced by electromag-
netic devices due to their high efficiency, excellent dynamic
behavior and small size. In combination with microproces-
sor control high dynamic and high precision movement can be
efficiently realized by such mechatronic actuators. Generally,
there is a large variety of different electromagnetic actuators
for linear motions, for instance in [2, 5, 6]. For long strokes
AC linear motor concept is often preferred while for micro and
nano meter applications special designs based on piezoelec-
tric or magnetostrictive principles have been frequently inves-
tigated. For moving distances between 5 and 20 mm, however,
DC linear motors have proven to be advantageous [2]. This
paper considers a DC permanent magnet linear motor which is
based on the voice coil principle with low mass and high dy-
namic. The objective of this paper is to show the controller de-
sign scheme for tracking of smooth motion trajectory. Section
2 is devoted to the model description and problem statement.
In section 3 some structural properties of the system, such as
flatness, input and disturbance relative degrees, are shown. A
strategy of control is derived in section 4. The simulation re-

sults close the paper.

2 Model Description

Fig. 1 shows the geometry of the permanent magnet linear mo-
tor investigated. The geometry is based on an axis-symmetric
design. The device consists of an outer and an inner iron part.
Permanent magnets are mounted on the inner iron parts. Their
magnetization is indicated by the element arrows. The coils are
placed within the air gap, between the permanent magnets and
the outer iron part. They are connected in series and fed by a
variable voltage source. Linear motion is engaged due to the
Lorentz force produced in the coils. The coils form the moving
part of the actuator and will be referred to the armature in the
following sections.
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Figure 1: Design principle of the linear motor

Linear actuators based on the principle described above are
usually called voice-coil motors. They are especially designed
to have a very high dynamic due to its high force and low mass.



In the application reported here we developed such an actua-
tor to quickly control a gas valve over a distance of about 8
mm within a few milliseconds, while the effective length of the
whole actuator is about 100 mm and the its diameter about 50
mm. Besides the very high acceleration required for the ap-
plication large gas pressures against the motion while opening
the valve have to be taken into account as system disturbance.
These gas pressures, resulting in a disturbance force of some
hundred Newton, depend on the changing states of the physical
system and are not predictable. Furthermore, soft-landing in
case of valve closing is an important issue as well.

2.1 Electrical circuit of the linear motor

The electrical circuit of the actuator can be described by the
well known coil equivalent circuit in Fig. 2. The coils are
connected in series. Since the permanent magnets are polarized
inversely1, the coils also have to be winded inversely in order to
produce Lorentz force in one common direction. The electrical
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Figure 2: Electrical equivalent circuit of the actuator

system is given by

uin = RCoili+ LCoil i̇+ uq (1)

where uin represents the input voltage, i the coil current and
RCoil and LCoil the resistance and the inductance of the coil
windings. The inductance is depending on the armature po-
sition and can be derived from finite-element analysis. The
induced voltage

uq = lBgv (2)

is generated due to the armature speed v. In equation 2, pa-
rameter l represents the coil lead length and Bg represents the
magnetic flux density in the air gap which is a function of both
the armature position and the coil current. A vectorial expres-
sion of the induced voltage is not required since the geometry
boundaries are perpendicular, see Fig. 1. Equation 1 can be
written in state-space representation

i̇ = −
RCoil

LCoil

i+
uin − uq

LCoil

(3)

in order to provide the first system equation for assembling the
complete model.

1when seen in direction of movement

2.2 Magnetic circuit of the linear motor

Since the actuator has an axis-symmetric design, half of the
geometry can be used for magnetic modelling. An equivalent
magnetic circuit diagram is used in order to determine the mag-
netic quantities of the actuator. Fig. 3 shows the equivalent
magnetic circuit diagram of one half of the linear motor (com-
pare to the geometry, Fig. 1). The magnetic flux within the
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Figure 3: Equivalent magnetic circuit of the linear motor

actuator is inhomogenous. The application of linear magnetic
circuit diagram is usually only correct to homogenous fields.
However, by defining a precise circuit diagram and by tuning
this diagram according to a finite-element program, correct re-
sults can be obtained. Four leakage reluctances approximate
the leakage flux within the actuator. These are placed at the
air paths around the coils. Rather than determining the leak-
age reluctances analytically we used finite-element analysis in
order to obtain realistic leakage reluctance figures. The coils
magnetic sources

ΘCoil = Ni, (4)

where i represents the coil current and N the number of wind-
ings, act on the inner iron part. However, their magnetic re-
sistance takes effect in the air gap. Since the coils are winded
inversely (see subsection 2.1), their generated magnetic flux
also propagates inversely. The calculation of the magnetic re-
luctances Rm in Fig. 3 is based on equation 5 (well known
from magnetic fundamentals).

Rm =
lm

µA
, (5)

where lm is the magnetic flux path, µ the permeability and A
the cross-section area through which the flux penetrates. The
magnetic voltage source ΘM of the permanent magnet is deter-
mined by

ΘM = Hchm (6)

where Hc is the coercive force of the permanent magnet and
hm its width in direction of polarization.
The magnetic equivalent circuit in Fig. 3 can be solved by us-
ing Kirchoff’s laws, for instance. As the result, the magnetic



fluxes Φ of the circuit are available. Having derived the mag-
netic fluxes in Fig. 3, the flux densities

B =
Φ

A
(7)

are calculated. From the calculation of the flux densities within
the air gap, the forces are used as input signals for the mechan-
ical system, which will be shown in the next subsection. In
order to provide updated permeability-data for the nonlinear
iron parts, the field strength

HFe =
VFe

lphiFe

(8)

in the iron parts has to be calculated. Parameter lphiFe repre-
sents the magnetic flux path in the iron. The magnetic poten-
tials VFe in the iron parts are given by

VFe = RmFeΦFe (9)

The values HFe can be derived from BH-saturation curves.

2.3 Mechanical circuit of the linear motor

The mechanical system is given by

0 = FL − Fa − Ffric + F0, (10)

where FL represents the Lorentz force

FL = lBgi (11)

and F0 stands for the disturbance force acting on the armature.
As mentioned before this disturbance force can have a very
high value (up to 400 N) compared to the relatively small size
of the actuator. However, this disturbance decays rapidly after
the valve has been opened slightly. In a first approximation the
disturbance force can be modelled as a reducing exponential
function with unpredictable amplitude and time constant. Be-
cause of this large disturbances and also parameter uncertain-
ties due to the nonlinear magnetic conditions a robust control
is required to ensure the overall system stability. The viscose
friction force Ffric can be derived from

Ffric = Kdv, (12)

whereKd is the damping coefficient and v is the velocity of the
moving part of the actuator. The force required for acceleration
is given by

Fa = ma, (13)

where m is the mass of the moving part and a its acceleration.
The mechanical system can be set up in state-space representa-
tion

FL − Ffric + F0

m
= a = v̇ = s̈, (14)

with the actuator position s, in order to provide to complete the
system equations for describing the linear motor.

2.4 Assembly of the system equations

Having shown the modelling of the actuator in the previous
sections the model’s system equations can be summarized as
follows:

i̇ = −
RCoil

LCoil

i+
uin − lBg(s, i)v

LCoil

(15)

ṡ = v (16)

v̇ = lBg(s, i)i+
−Kdv + F0

m
(17)

Equation (15) represents the electrical system of the actuator.
Equations (17) and (16) both describe the mechanical behavior
of the actuator, where equation (17) also contains the magnetic
system. The system equations are nonlinear due to the satura-
tion of the iron materials and the leakage fluxes.

3 Some structural properties

In many industrial applications the linear movement along a
reference trajectory is desired, even in presence of perturba-
tions like parameter uncertainties and external disturbances.
The generation of such a reference trajectory can follow some
special aspects of system consideration like the smoothness of
the motion or minimization of the loss energy. Moreover, on-
line adaption of reference trajectory is also often considered in
connection with some overall control strategies (e.g. adaptive
or predictive control). For the considered application, another
system property, namly soft-landing of the valve, is required
to ensure a long operation life. This means that the armature
velocity is to be kept less than some pre-defined value (in our
case about 0.1 m/s) when the actuator comes to the end position
and no overshoot is allowed.

The system described in Fig. 1 and represented by the math-
ematical relationships (15), (16) and (17) presents some struc-
tural properties which should be useful to perform the control
system.

3.1 Flatness based control

Roughly speaking, a system is differentially flat if it is possible
to find a set of outputs equal in number to the number of inputs,
such that all states and inputs are expressed in terms of those
outputs and their derivatives. To be more precise, if the system
has state variables x ∈ <n, and inputs u ∈ <m then if the
system is flat then the outputs y ∈ <m have the following
form

y = y(x,u, u̇, . . . ,up) (18)

and

x = x(y, ẏ, . . . ,yq); u = u(y, ẏ, . . . ,yq). (19)

Differentially flat systems are useful in situations where ex-
plicit trajectory tracking is required. Since the behavior of the
flat system is given by the flat output, it is possible to plan



trajectories in output space, and then map these to appropriate
inputs. The basic approach of two degrees of freedom design
is to initially separate the nonlinear controller synthesis prob-
lem into design of a feasible feedforward tracking control for
the nominal model of the system, followed by a feedback regu-
lation around that trajectory using controllers which guarantee
performance in the presence of uncertainties. The splitting of
the problem in two steps has several advantages. The method
allows to design advanced controllers which help to achieve ro-
bust performance.
In order to show that our system represented by (15), (16) and
(17) is ¤at, we choose the position s as the ”guess-output”, then

y = s⇒ s = y, ṡ = ẏ, (20)

i =
1

lBg(s, i)
(
kd

m
v + v̇) (21)

and
uin = −LCoil i̇+RCoili+ uq (22)

The condition required in (19) is satisfied. The relationships
(21) and (22) define the inverse magneto-mechanical and elec-
trical systems respectively. According to the flatness of the
system the linearizing trajectory of the model (16) and (17) is
the following,

id =
1

lBg(s, i)
(
kd

m
ṡd + s̈d),

where sd is the desired trajectory and id the desired coil cur-
rent. The next step is to build a control law which, in presence
of external disturbances and uncertainties on the parameters,
keeps the system around the desired trajectory.

3.2 Input and disturbance relative degrees

For sake of simplicity, the standard Lie derivative notation is
used, see [3]. For a vector x ∈ <n, a real-valued function h(x)
and a vector field f , the derivative of h(x) along f is denoted
by

Lfh(x) =

n
∑

i=1

∂h(x)

∂xi

fi(x) =
∂h(x)

∂(x)
f(x).

The function

LgLfh(x) =
∂Lfh(x)

∂x
g(x)

means taking the derivative of h first along a vector field f(x)
and then along a vector field g(x). The function Li

fh(x)
satisfies the recursion relation

Li
fh(x) =

∂Li−1
f h(x)

∂x
f(x)

with L0
fh(x) = h(x). In particular, suppose that the dynamic

system is representable in the following way

ẋ = f(x) + g(x)u(t) + p(x)d(t), (23)

where x is the state vectors, f(x) is the vectorial map of the
dynamic of the system, g(x) and p(x) are the vectorial map
of the input and of the disturbance respectively. To be more
precise, in our presented case

f(x) =













−RCoil

LCoil
i

v

lBg(s, i)i+
−Kd

m
v













, g(x) =





−1
LCoil

0
0



,

p(x) =





0
0
−1
m



.

Definition 1 The nonlinear system represented in (23) has in-
put relative degree equal to r if

LgL
i
fh(x) = 0 0 ≤ i < r − 1, (24)

LgL
r−1
f h(x) 6= 0. (25)

In the same way, the system has disturbance relative degree
equal to r if

LpL
i
fh(x) = 0 0 ≤ i < r − 1, (26)

LpL
r−1
f h(x) 6= 0. (27)

¤

According to the definition, the considered system in (15), (16)
and (17), with voltage uin as input, has input relative degree
equal to 3. Considering Fo as external disturbance, then its dis-
turbance relative degree is 2. Thus, the disturbances rejection
can not be reached with Isidori approach as the perfect localiza-
tion of the disturbance in the zero dynamic of the system is not
possible, see [3]. In the following some further considerations
regarding the structural properties of the system are shown:

• Input relative degree:

h(x) = s; ∂h(x)
∂x

=
(

0 1 0
)

.

Lgh(x) =

(

0 1 0

)













−1
LCoil

0

0













= 0.

It yields with easy calculations LgL
2
fh(x) 6= 0.

• Disturbance relative degree:

Considering F0 as the input disturbance then

h(x) = s; ∂h(x)
∂x

=
(

0 1 0
)

.



Lph(x) =
(

0 1 0
)





0
0
−1
m



 = 0.

Lfh(x) =
(

0 1 0
)









−RCoil

LCoil
i

v

lBg(s, i)i+
−Kd

m
v









= v.

To conclude

LpLfh(x) =
(

0 0 −1
)





0
0
−1
m



 = 1
m
.

Thus, the disturbance relative degree is equal to 2. ¤

This result shows that a perfect localization of the
disturbance through a combination of the state variable
is not possible because the disturbance relative degree is
less than the input relative degree , see [3].

4 Control law

A linear PID controller is implemented in order to limit the
effect of the disturbance without using an estimator of the dis-
turbance. Linear PID controllers are in industrial applications
very often used because their low cost and easy implementa-
tion. It is straightforward to observe that by applying the equa-
tion (22) to the system, in absence of the disturbance and para-
metric uncertainties, the exact feedforward linearisation is ob-
tained. Now, instead of (22) let us consider the following input
for feedback PID control:

ud∗ = −LCoil i̇d +RCoilid + λ1

∫

e2dt+
3
∑

i=2

λiei, (28)

with e1 = iCoil − id, e2 = s − sd and e3 = v − vd. The
term uq (induced voltage) was neglected and

∑3
i=2 λiei(t) =

λ2(s − sd) + λ3(ṡ − ṡd), with λ1 and λ2 two suitable con-
troller parameters. Once xd is defined, through the equation
(21) the desired current is obtained. Using the control law in
(28) the structure of the error equation, without considering ex-
ternal disturbances and model uncertainties, becomes the fol-
lowing:

ė1 = −

(

RCoile1 + λ1

∫

e2dt+
∑3

i=2 λiei − lBgvd

)

LCoil

ė2 = e3

ė3 = −
kd

m
e3 −

lHcdmRsubs(s, iCoil)

2ACoilm
e1,

with ṡd = vd. From the error structure and through easy calcu-
lations it is possible to determinate the constant λ1, λ2 and λ3

such that the error dynamic is stable. More, thanks to the con-
tribution of lBg(s,iCoil)

LCoil
vd on the above equation, it is straight-

forward to show that, after a transient period, even though in
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Figure 4: Control scheme.

presence of model uncertainties, the position error and the ve-
locity error follow the profile of the desired velocity. As con-
sequence if the parameters λ1, λ2 and λ3 are chosen so that the
dynamic is high enough, then at the time tf , the £nal time of
the desired trajectory, almost perfect soft landing is achieved.
The case with disturbance opens again the stability problem as
in [1]. In fact, because of the presence of the current varying
terms the error equation becomes as following:

ė1 = −

(

RCoile1 + λ1

∫

e2dt+
∑3

i=2 λiei − l∆Bgvd

)

LCoil

ė2 = e3

ė3 = −
kd

m
e3 −

lHcdm∆Rsubs

2ACoilm
e1,

where ∆Bg = [B−g B+
g ] and ∆Rsubs = [R−subs R+

subs]
define the boxes which characterize the interval uncertainty
and thus represent the so called interval polynomial. Never-
theless, the stability could be analyzed with the well known
Kharitonov’s Theorem [4]. The error interval polynomial due
to the integral differential equation is a polynomial of forth or-
der with two interval boxes, the Kharitonov’s stability test in-
volves just four polynomial tests. For sake of brevity the test is
not reported here. In a heuristic way also the settling time and
the overshot of the error through the bound of the boxes are
tested. In fact, it is known that in general functions like settling
time and overshot are not convex functions on the bounded
boxes.

5 Simulation results

Simulation results are performed by using real actuator data.
Tracking of smooth trajectories has been carried out with errors
not more than±60 micro meters even in presence of high value
exponential disturbance force (maximum value equal to 400
N ), depicted in Fig. 5. In Fig. 6 some typical simulation results
are reported. The performance of the controller is obviously
satisfied. It is useful to remark that the simulation is performed
without any a-priory knowledge of the disturbance.
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Figure 5: External disturbance.

6 Conclusions

The paper deals with the control design problem based on the
flatness property for a permanent magnetic machine. A decen-
tralized inverse model is performed in order to obtain low level
of the input control. Classical PID-Controller are adopted to
compensate for the perturbation due to the parameter uncer-
tainties and to the large external disturbances without a-priori
knowledge. Future works involve a self-tuning of the PID
control parameters using observed external disturbance and an
overall optimal tracking strategy.
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Figure 6: Picture I: desired/obtained trajectory (solid/dasched
line). Picture II: desired/obtained velocity (solid/dasched line).
Picture III: Input voltage. Picture IV: Currents.
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