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Abstract

Adaptive evolution strategies without crossover are used to de-
sign complete dominance-based controllers for linear multi-
variable plants. Such complete dominance-based controllers
comprise a pre-compensator and a set of single-loop con-
trollers, which can both be readily designed using the proposed
evolutionary approach. The effectiveness of this two-stage evo-
lutionary design technique is illustrated by synthesising a com-
plete dominance-based multivariable controller for the Rolls-
Royce Spey jet engine. The performance of this controller is
compared with that of a multivariable controller for the Spey
engine designed using a one-stage evolutionary design tech-
nique, which does not involve the prior achievement of diago-
nal dominance.

Keywords: Linear Multivariable Control, Transfer Function
Matrix, Diagonal Dominance, Genetic Algorithms, Adaptive
Evolution Strategies

1 Introduction

The use of diagonal dominance by Rosenbrock [1] was one
of the first frequency-domain techniques to be developed for
the design of linear multivariable controllers. The primary ob-
jective of this technique is to reduce plant interactions by the
introduction of a multivariable static pre-compensator, so that
the control system design can then be completed by using clas-
sical techniques to design a set of single-loop controllers for
the compensated plant. The principal techniques developed
for the achievement of diagonal dominance by the use of such
static pre-compensators are the pseudo-diagonalisation method
using least-squares optimisation (Hawkins [2]), the function-
minimisation method using conjugate-direction optimisation
(Leininger [3] ), and the ALIGN algorithm developed initially
in conjunction with characteristic-locus methods (Kouvaritakis
[4]).

However, none of these techniques for the achievement of diag-
onal dominance has been accepted universally for design pur-
poses. Indeed, the underlying optimisation techniques are of-
ten not powerful enough - even when diagonal dominance is

sought only at a single frequency for plants having relatively
few inputs and outputs. The situation rapidly becomes worse
when diagonal dominance is sought over an entire bandwidth
of frequencies for plants with large numbers of inputs and out-
puts. Furthermore, once a pre-compensator is found to achieve
the desirable levels of diagonal dominance, it is then necessary
to design a set of single-loop controllers for the compensated
plant. In the literature, this second part of the design is typi-
cally described as being the ‘trivial’ part, whereas in fact poor
design at this stage can severely degrade the performance of the
complete closed-loop system. In both the initial achievement
of diagonal dominance and the subsequent design of the single
loop-controllers for the compensated plant, there is a dearth
of systematic optimisation techniques sufficiently powerful for
the routine design of complete diagonal dominance-based lin-
ear multivariable controllers.

In recent years evolutionary algorithms (i.e. genetic algorithms
and evolution strategies) (Goldberg [5], Back [6]) have been
used to solve various challenging optimisation problems in sev-
eral fields of engineering. In the particular field of control engi-
neering, genetic algorithms have been successfully used to de-
sign control systems of various kinds (see, for example, Porter
[7]). It has also been shown that both non-adaptive and adaptive
evolution strategies are often even more effective than genetic
algorithms in solving such problems in control engineering [8].

In this paper, adaptive evolutionary strategies without crossover
are accordingly used to design complete diagonal dominance-
based linear multivariable controllers (i.e. pre-compensators
and sets of single-loop controllers). The Rolls-Royce Spey
gas-turbine engine is used as an example: by comparing these
results with those obtained using previous techniques, the ef-
fectiveness of the evolutionary design technique is demon-
strated. In addition, some further advantages of the evolution-
ary dominance-based design technique are also highlighted.
Thus, for example, it is shown that the single-loop controllers
can be readily optimised with respect to the overall closed-loop
step-response errors, which was not previously possible using
non-evolutionary dominance-based design techniques.



2 Evolutionary design procedure

2.1 Design of pre-compensator

Diagonal dominance is a design technique that converts a lin-
ear multivariable design problem into several single-loop de-
sign problems which can then be solved using any number of
available single-loop design techniques. In the case of column
dominance for a plant with transfer function matrix G(s) =

[gij(s)] ∈ C
m×m, this involves finding a pre-compensator ma-

trix K = [kij ] ∈ R
m×m, such that the resulting open-loop

system with transfer function matrix Q(s) = G(s)K satisfies
the inequality

| qii(s) | ≥≥

m
∑

j=1

j 6=i

| qij(s) | (i = 1, . . . ,m) (1)

where ‘≥≥’ denotes ‘at least equal to, but as much greater than
as possible’. If such a K can be found, Q(s) may be replaced
by Q̃(s) = diag{Q(s)} = [qii(s)] ∈ C

m×m. Next, a diagonal
controller matrix D(s) = [dii(s)] ∈ C

m×m can be found such
that q̃ii(s)dii(s) is as close as possible to mi(s)(1 − mi(s)),
where M(s) = diag{mi(s)} is the desired transfer function
matrix of the closed-loop system whose actual overall transfer
function matrix is T (s).

Note that, since q̃ij(s)dij(s) = 0 (∀ i 6= j), the design of
D(s) can be broken down into m single-loop design problems:
the transfer function matrix of the corresponding multivariable
controller is C(s) = KD(s). If the pre-compensator matrix K

satisfies the inequality (1), then this inequality is also satisfied
for Q(s)D(s) since D(s) post-multiplies each column of Q(s)

by the same gain at each frequency.

The diagonal dominance design technique has been tradition-
ally recognised for its elegantly simple approach to the design
of complex controllers. However, virtually from the earliest
stages of its development, this technique has been subject to
much criticism - mainly due to the non-existence of a system-
atic approach to the achievement of dominance. However, al-
though recent efforts (Nobakhti et al [9, 10]) have gone some
way to addressing this problem, these approaches still require
significant involvement from the designer for the achievement
of successful designs. Evolution strategies overcome this dif-
ficulty by offering a powerful optimisation technique which
makes the routine design of dominance-based controllers sig-
nificantly easier.

The evolutionary design methodology is used to find , for the
plant transfer function matrix G(s) = [gij(s)] ∈ C

m×m, a
real pre-compensator matrix K = [kij ] ∈ R

m×m such that
Q(iω) = G(iω)K is dominant over a set of frequencies Ω =

{ωf : f = 1, . . . , n} [11]. This design problem is solved by

determining [12] the real pre-compensator matrix, K, such that
the cost function

ΓK(K,Ω) =

n
∑

f=1

m
∑

j=1

∑m
i=1

i6=j
| qij(iωf ) |

| qii(iωf ) |
(2)

is minimised, where

qij(iωf ) =
m

∑

l=1

gil(iωf )klj . (3)

Each candidate pre-compensator matrix is encoded in a chro-
mosome comprising m2 concatenated sub-chromosomes that
each represents an element of the m × m compensator ma-
trix. Entire populations of chromosomes of such candidate pre-
compensator matrices are caused to evolve, subject - in the gen-
eral case - to the actions of mutation, crossover, and selection:
the measure of fitness used in such evolutionary algorithms in
the present context is simply the reciprocal of the cost function
defined in equation (2).

The compensator design problem for various industrial plants
has been solved using genetic algorithms, non-adaptive evo-
lution strategies, and adaptive evolution strategies. However,
the best results were usually obtained using adaptive evolu-
tion strategies without crossover. Thus, for example, the direct
Nyquist array for the uncompensated open-loop Rolls-Royce
Spey jet engine is shown in Figure 1: the model of this engine
contains 21 states, 3 inputs (fuel flow, inlet guide vanes, nozzle
area), 3 outputs (low-pressure spool speed, high-pressure spool
speed, surge margin). The Spey engine is a highly interacting
and non-linear system, and the linearised model used for the
compensator design corresponds to 74% sea-level thrust. In-
deed, Figure 1 indicates the presence of significant interactions
in this engine , since the open-loop transfer function matrix is
clearly not dominant. However, after using a (µ + λ) adaptive
evolution strategy [6] to find the required pre-compensator ma-
trix, the direct Nyquist array of the compensated engine shown
in Figure 2 was obtained (where the pre-compensator matrix
has been normalised such that qii(0) = 1 (i = 1, 2, 3) in
the compensated transfer function matrix,Q(s)). These results
were obtained with population sizes of µ = 20 parents and
λ = 20 children for 1000 generations over a set of 50 frequency
points from 0 to 75 (rads/s).

It is evident from Figure 2 that most of the interactions in
the engine have been significantly reduced, since the compen-
sated transfer function matrix is now clearly dominant. The
normalised pre-compensator matrix thus found for the Rolls-
Royce Spey jet engine is



K =





0.0098 0.002 0.3309

−1.3304 1.4712 −30.2710

−0.0023 −0.0031 0.7498



 . (4)

2.2 Design of single-loop controllers

The same evolutionary design methodology can be used again
for the design of the single-loop controllers. First, Engine Han-
dling Qualities (EHQ) guidelines were used to determine suit-
able response functions. These guidelines indicate [10] that an
appropriate choice for the desired closed-loop transfer function
matrix is

M(s) = diag

{

1

0.35s + 1
,

1

1.2s + 1
,

1

0.18s + 1

}

. (5)

In this stage of the evolutionary design procedure, each chro-
mosome when decoded describes a diagonal PI controller with
a transfer function matrix of the form

D(s) = DP + DI

I

s

= diag

{

dp11s + di11

s
,
dp22s + di22

s
,
dp33s + di33

s

}

(6)

The fitness of each such chromosome (i.e. each candidate con-
troller) is directly related to the closeness of the desired and ac-
tual closed-loop responses. Thus, a natural cost function is the
Integral Absolute Error (IAE) between the desired closed-loop
step responses (characterised by the array [Sij(t)]) and those
of the closed-loop system with the candidate controller (char-
acterised by the array [Rij(t)]). This cost function is given by

ΓD(DI , DP ) =

m
∑

i,j

∫ to

0

| Rij(t) − Sij(t) |dt (7)

and represents an improvement over that traditionally used
in the design of single-loop controllers to be used with
dominance-based pre-compensators. The cost function used in
such traditional designs is clearly a special case of equation (7)
with i = j, indicating that no attention is paid to the effects of
the single-loop controllers on the off-diagonal behaviour. How-
ever, when evolution strategies are used for optimisation, cost
functions like that defined in equation (7) facilitate the minimi-
sation of the closed-loop step-response errors in all channels.

In order to design the single-loop PI controllers for the Spey
engine, a (µ+λ) adaptive evolution strategy was employed with

population sizes of µ = 10 parents and λ = 10 children for
1000 generations in which the cost function (7) was evaluated
over 20 sample-time points between 0 and 2.4 seconds. The
resulting diagonal controller thus found is

D(s) =

diag
{

1.092s+4.109
s

, 1.147s+1.321
s

, 0.1962s+5.239
s

}

. (8)

The open-loop step responses of the Spey engine are shown in
Figure 3; the open-loop step responses of the engine with the
pre-compensator are shown in Figure 4; and finally the closed-
loop step responses of the engine with the pre-compensator
and the single-loop controllers are shown in Figure 5. These
results, when compared to previous dominance-based con-
troller designs for the Spey engine, show improvements and
are very encouraging. Indeed, considering that only a static
pre-compensator and a set of single-loop PI controllers are be-
ing used, the results are very good and show that the adap-
tive evolution strategies can be readily used to design complete
dominance-based linear multivariable controllers.

3 Factorisation and loss of performance

Diagonal dominance as a multivariable design technique was
celebrated because it ‘broke down’ a complex design problem
into a set of easily manageable problems. It did this by factor-
ing the multivariable controller matrix C(s) ∈ C

m×m into a
pre-compensator matrix K ∈ R

m×m and a diagonal controller
matrix D(s) ∈ C

m×m, where the task of each part was decou-
pled from the other. Since C(s) = KD(s), the controllers with
transfer functions contained in each column of C(s) have the
same poles and zeros: in this sense, C(s) describes a controller
with a constrained multivariable structure. However, if C(s) is
not required to be always amenable to such factorisation, then
its poles and zeros will be released from such constraints, thus
constituting an unconstrained multivariable controller.

The constraint imposed by the factorisation implicit in the
dominance-based approach is likely to cause loss of perfor-
mance, but, hitherto, it was not possible to determine exactly
the extent of such loss. However, using adaptive evolution
strategies of the type already used in this paper to design the
dominance-based PI controller, it is possible readily to de-
sign an unconstrained PI controller for the Spey engine, thus
facilitating a quantitative assessment of such loss of perfor-
mance. Thus, the parameters of each unconstrained multivari-
able PI controller are coded as one chromosome. This con-
stitutes a ‘one-step’ design process, since each chromosome
contains the data for a complete controller. The relevant cost
function is similar to that used for the second stage of the
dominance-based controller, namely, the IAE between the de-



sired responses and those of the closed-loop system resulting
from the candidate PI controller as given by

ΓC(CI , CP ) =

n
∑

i,j

∫ to

0

| Rij(t) − Sij(t) |dt. (9)

However, unlike the previous cost function defined in equation
(7) where KP and KI where constrained to be diagonal, in
equation (9) CP and CI may assume any structure. This ap-
proach was used to design an unconstrained PI controller for
the Spey engine. Thus, a (µ + λ) adaptive evolution strat-
egy with a population of µ = 20 parents and λ = 20 chil-
dren was used to optimise the parameters of this unconstrained
PI controller over 20 intervals in the time range of 0 to 2.4
second. The same time-sampling points were used to evalu-
ate the cost function in equation (9) as in the previous section,
thus allowing a direct comparison between the performance of
the two controllers to be made. In the present case, after run-
ning for 5000 generations, the algorithm produced the uncon-
strained multivariable PI controller with the transfer function
matrix given by

C(s) =






0.007356s+0.04189

s

0.002639s+0.003213

s

0.06148s+1.636

s

−1.455s−5.691

s

1.743s+1.928

s

−6.226s−149.6

s

−0.001713s−0.006708

s

−0.01335s−0.003588

s

0.1267s+3.711

s






.(10)

The closed-loop step responses of the engine with this con-
troller are shown in Figure 6. Notice that, as expected, the
interactions have been reduced. Indeed, the unconstrained PI
controller provides an amazing 65% reduction in interactions
relative to those produced by the constrained PI controller. This
improvement is shown even more clearly in Figures 7 and 8,
which show the direct Nyquist arrays of the closed-loop system
with the constrained and unconstrained sets of PI controllers. It
is clear from these figures that the performance of the uncon-
strained PI controller is far better than that of the corresponding
constrained PI controller.

These results clearly confirm, in a quantitative way, what
was known qualitatively about the dominance-based approach
to the design of linear-multivariable controllers, namely, that
this approach offers simplicity at the expense of performance.
However, simplicity arises in two contexts, the first of which
involves the technique itself. This advantage all but disappears
when the dominance problem is formulated as an optimisa-
tion problem, since the only difference between the two op-
timisations is that a direct optimisation of the unconstrained PI
is more computationally expensive than the two stages of the
dominance approach put together.

The second context in which simplicity is an issue is in the
structure of the controller itself. It may seem, on the surface,
that both constrained and unconstrained controllers have the
same complexity; but, from an implementation point of view,
this is not correct. Thus, let Cc(s) = K×D(s) represent a con-
strained controller and Cu(s) its corresponding unconstrained
controller (not necessarily in PI form). If the state-space repre-
sentation of D(s) is

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t), (11)

then it is evident that the state-space representation of the com-
plete constrained controller is

ẋ(t) = Ax(t) + BKu(t)

y(t) = Cx(t) + DKu(t) (12)

since K is only a static matrix. Hence, it is clear that the num-
ber of the states of the constrained controller, Cc(s), equals the
number of the states of the diagonal controller, D(s). Specifi-
cally, the number of distinct poles of D(s) determines the min-
imum number of the states. This could have been directly de-
duced and indeed been expected from the constraint that, as a
result of the factorisation, the poles and zeros of each column
of Cc(s) are the same. The situation, however, is different in
the case of Cu(s). Here, since each element is independent
of the others, the number of states may increase compared to
those of a Cc(s) with the same structure. Thus, for example,
consider the case when the elements of both Cc(s) ∈ C

m×m

and Cu(s) ∈ C
m×m are simple lead compensators (so that

both systems are multivariable lead controllers): in this case,
whilst the maximum number of the states of Cc(s) is m, Cu(s)

may contain up to m2 states.

4 Concluding remarks

Diagonal dominance as a design technique lay dormant for a
long time due to the lack of a universal technique powerful
enough for the routine design of dominance-based controllers.
In this paper, evolution strategies have been proposed as one
such powerful technique that can easily be adapted to solve
many minimisation problems including that of diagonal dom-
inance. Using the Rolls-Royce Spey engine as an example, it
has been shown that the two-stage design of the dominance-
based controller may be readily effected using evolution strate-
gies. In the case of this engine, the evolutionary design method-
ology has also been used to synthesise an unconstrained multi-
variable PI controller which exhibited superior performance to
that of the dominance-based constrained controller.



The possession of such a powerful minimisation algorithm
raises the following question: what is the justification for first
finding a pre-compensator and then a set of single-loop con-
trollers, if the controller can be designed as a single, unfac-
torised and unconstrained structure? In answer to this ques-
tion, it has been shown that a dominance-based controller will
usually yield a simpler implementation than its corresponding
unconstrained controller. Also, the constrained version would
yield higher integrity with respect to loop failures. Therefore,
it is concluded that the final decision rests with the control en-
gineer as to which approach is suitable for the problem at hand
and whether the priority lies with performance or implementa-
tion issues. However, the one fact remaining is that evolution
strategies are very effective tools in tackling both formulations
of the multivariable controller design problem.
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Figure 1: Open-loop direct Nyquist array of the Spey engine
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Figure 2: Open-loop direct Nyquist array of the compensated
Spey engine



Open loop step response of the Spey
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Figure 3: Open-loop step responses of the Spey engine

Open loop step response of the Spey and the pre−compensator
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Figure 4: Open-loop step responses of the compensated Spey
engine(dashed line = desired response )

Closed loop step response of the Spey and the controller
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Figure 5: Closed-loop step responses of the Spey engine with
complete dominance based controller (Dashed line = desired
response )
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Figure 6: Closed-loop step responses of the Spey engine with
the unconstrained PI controller (dashed line = desired)
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Figure 7: Closed-loop direct Nyquist array of the Spey engine
with the constrained PI controller
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Figure 8: Closed-loop direct Nyquist array of the Spey engine
with the unconstrained PI controller
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