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Abstract: The paper presents an original frequency 
domain approach to decentralized controller design for 
specified performance The novelty of the proposed 
approach consists in assessing the influence of 
interactions by means of characteristic functions/loci of 
the plant interaction matrix, and further using them to 
modify mathematical models of subsystems thus 
defining the so called „equivalent subsystems“. The 
independent design carried out for equivalent subsystems 
provides local controllers that guarantee fulfilment of 
performance requirements without any deterioration due 
to the effect of interactions. Theoretical conclusions are 
supported with results obtained from the solution of 
several examples, one of which is included. 
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1  Introduction 
 

Industrial plants are complex systems typical by multiple 
inputs and multiple outputs (MIMO systems). Usually 
they arise as interconnection of a finite number of self-
contained units – subsystems. If strong interactions 
within the plant are to be compensated for then 
multivariable controllers are used. However, there may 
be practical reasons that make restrictions on controller 
structure necessary or reasonable. In an extreme case, the 
controller is split into several local feedbacks and 
becomes a decentralized controller. Compared with 
centralized full-controller systems such controller 
structure constraints bring about certain performance 
deterioration. However, this drawback is weighted 
against important benefits such as hardware simplicity, 
operation simplicity and reliability improvement as well 
as design simplicity [2,7]. Due to them, decentralized 
control (DC) design techniques remain probably the 
most popular among control engineers, in particular the 
frequency domain ones which provide insightful 
solutions and link to the classical control theory. 
Major important multivariable frequency-response 
Nyquist-type design techniques based on the generalized 
concept of the return difference were developed in the 
late 60´ and throughout the 70’s: the Inverse-Nyquist 

Array (INA) and Direct Nyquist Array (DNA) methods 
by Rosenbrock, the Sequential design technique by 
Mayne. Almost simultaneously the non-interacting 
Characteristic locus (CL) technique was developed [3,4].  
 

Development of decentralized control (DC) techniques 
dates back to the 70´; the research, though not so 
excessive, is still going on. The principle of the 
frequency-domain DC design techniques consists in 
achieving dominance (diagonal, block diagonal, quasi-
block diagonal), reducing sensitivity or improving 
chosen performance measure in subsystems (principle of 
dominant subsystems [2]). The DC design has two main 
steps: first, a suitable control structure (pairing inputs 
with outputs) has to be selected; then, local controllers 
are designed for individual subsystems. Depending on 
the manner of coping with interaction, there are three 
general approaches to the local controller design: 
simultaneous, sequential and independent designs [2, 7].  
 

According to the independent design, effect of 
interactions on the full system is assessed first, and then 
transformed into bounds for individual subsystem 
closed-loops. These bounds are to be considered in the 
local controller design  in order to guarantee stability and 
required performance of the full system. Main 
advantages with this approach are failure tolerance and a 
direct design of local controllers [2, 7]. 
 

In what follows, it is assumed that the control structure 
selection step has already been completed. To account 
for plant interactions, an original approach is proposed 
based upon representing interactions by means of their 
characteristic loci (eigenvalue loci) [1,3,4,5] and further 
using them to modify mathematical models of individual 
subsystems. To these modified subsystems denoted as 
„equivalent subsystems“, an independent design 
procedure is applied then. Designed local controllers 
guarantee fulfilment of performance requirements 
imposed on the full system. Theoretical results are 
supported by an example. 
 

The paper is organized as follows: theoretical prelimina-
ries of the proposed technique are surveyed in Section 2, 
problem formulation is in Section 3, main results along 
with the proposed design procedure are presented in 
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Section 4 and verified on an example in Section 5. 
Conclusions are given at the end of the paper. 
 

2  Preliminaries 
Consider a MIMO system G(s) and the controller R(s) in 
a standard feedback configuration  (Fig. 1)  
 

 

 

 
 

Figure 1:  Standard feedback configuration 
 

where lmR)s(G ×∈  and mlR)s(R ×∈  are transfer 
function matrices and d,e,y,u,w are respectively 
vectors of reference, control, output, control error and 
disturbance of compatible dimensions. Hereafter, only 
square matrices will be considered, i.e. m=l. 
The feedback system in Fig.1 is internally stable if and 
only if the transfer matrix from [d w]T to [u e]T given by 
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is stable.  
Another test for internal stability is the Nyquist 
encirclement criterion. Both the internal stability 
condition and the Nyquist stability theorem provide 
necessary and sufficient condition for the closed-loop 
stability. Note that if the system is internally stable then 
it is stable with respect to all state and output variables 
and in the sequel it will simply be called “stable”. 
 

The multivariable stability theory relies on the concept 
of the system return difference [5, 8] defined as 
 )]s(QI[)s(F +=  (2) 
where  

mmR)s(F ×∈  is the system return-difference matrix 
mmR)s(Q ×∈  is the (open) loop transfer function matrix, 

for the system in Fig.1 )s(R)s(G)s(Q =  
mmR)s(H ×∈ is the closed-loop transfer function matrix, 

1)]s(QI)[s(Q)s(H −+=  
R  denotes the field of rational functions in s. 

 

The Nyquist D-contour is a large contour in the complex 
plane consisting of the imaginary axis ωjs = and an 
infinite semi-circle into the right-half plane. It has to 
avoid locations where Q(s) has ωj -axis poles (e.g. if 
R(s) includes integrators) by making small indentations 
around these points such as to include them to the left-
half plane. Thus, unstable poles of Q(s) will be 
considered those in the open right-half plane. Nyquist 
plot of a complex function )s(g is the image of the 

Nyquist under g(s), whereby the D-contour is traversed 
clockwise; )]s(g,k[N denotes number of anticlockwise 
encirclements of the point (k, j0) by the Nyquist plot of 
g(s).  
 

Consider the characteristic polynomial of the system in 
Fig. 1  
 

 )]s(R)s(GIdet[)]s(QIdet[)s(Fdet +=+=  (3) 
 

If Q(s) has nq unstable poles, the closed-loop stability 
can be determined using the generalized Nyquist 
stability criterion [1, 3, 4, 5, 8]. 
 

Theorem 1 (Generalized Nyquist Stability Theorem) 
The feedback system in Fig. 1 is stable if and only if  

a. 0)s(Fdet ≠   
b. qn)]s(Fdet,0[N = (4) 

where nq is the number of its open-loop unstable poles.  
 □ 
As rational functions in s form a field, standard 
arithmetical manipulations with transfer functions can be 
carried out. Thus, eigenvalues of a square matrix 

mmR)s(Q ×∈ (whose elements are rational functions in 
s) are themselves rational functions in s. They are called 
characteristic functions [3, 4, 5]. The m characteristic 
functions m...,,1i),s(q i =  of )s(Q  are given by 

 m...,,1i0)]s(QI)s(qdet[ mi ==−  (5) 
Then 

 ∏
=

+=+=
m

1i
i )]s(q1[)]s(QIdet[)s(Fdet  (6) 

Characteristic loci (CL) denoted m...,,2,1i),j(qi =ω  
are the set of loci in the complex plane traced out by the 
characteristic functions of Q(s) as s traverses the Nyquist 
D-contour. This set is called the spectral Nyquist plot 
[1]. The degree of the spectral Nyquist plot is the sum of 
anticlockwise encirclements with respect to a specified 
point in the complex plane, contributed by the 
characteristic loci of )s(Q . 
A stability test analogous to Theorem 1 has been derived 
in terms of the CL´s [1, 3, 4, 5, 8].   

Theorem 2 
The closed-loop system with the open-loop transfer 
function Q(s) is stable if and only if 0)]s(QIdet[ ≠+  
and the degree of the spectral Nyquist plot of Q(s) with 
respect to (-1 ,0j) fulfils the following condition (with nq 
being the number of unstable poles of Q(s)) 

∑
=

=−
m

1i
qi n)]s(q,1[N  (7a) 

 

or alternatively, if considering the spectral Nyquist plot 
of [I+Q(s)] 
 

R(s) G(s) 



 ∑
=

=+
m

1i
qi n)]}s(q1[,0{N     (7b)  □    

 □ 
Remarks:      
1. In the sequel, whenever possible, matrices and their 

corresponding characteristic transfer functions/loci 
will be denoted by like capital and small letters, 
respectively. 

2. The CL’s are not uniquely defined since whenever 
two particular loci cross, the identity of the correct 
continued path is lost. Furthermore, each locus 
does not in general form a closed contour. 
Fortunately, as the underlying characteristic 
functions are piecewise analytic, it is possible to 
concatenate the m CL’s of )]s(QI[ + to form one 
or more close contours [1]. 

3. Theorems 1 and 2 are equivalent, therefore  

∑
=

=+=+
m

1i
qi n)]}s(q1[,0{N)]}s(QIdet[,0{N  (8)  

In general, for points other than (0,0j), degrees of  
the respective plots are different [1]. 

 
3  Problem Formulation 

 

Consider a complex system with m subsystems (m=l), 
described by a square transfer matrix mmR)s(G ×∈ that 
can be split into the diagonal and off-diagonal parts. The 
transfer matrix collecting diagonal entries of G(s) is the 
model of decoupled (isolated) subsystems; interactions 
between subsystems are represented by the off-diagonal 
entries, i.e. 

)s(G)s(G)s(G md +=  (9) 
 

where  m,...,1iid )}s(G{diag)s(G ==    
  whereby  s0)s(Gdet d ∀≠  
and )s(G)s(G)s(G dm −=  
 

For the system (9), a decentralized controller is to be 
designed  

 R(s) = diag {Ri(s)}i=1,…,m,    s0)s(Rdet ∀≠  (10) 

where )s(Ri  is transfer function of the i-th subsystem 
local controller.  
In compliance with the independent design framework, 
the point at issue is to appropriately assess the effect of 
interactions and to translate it into constraints for local 
controller designs to guarantee stability of the full 
closed-loop system as well as its required performance.  
 
4 Main Results 
 

The proposed decentralized control design technique is 
based upon factorising the closed-loop characteristic 
polynomial of the full system (3) under the decentralized 
controller (10) in the following way 

  
[ ]{ }

)]s(G)s(G)s(Rdet[)s(Rdet

)s(G)s(G()s(RIdet)s(Fdet

md
1

md

++=

=++=
−

 (11) 

Existence of )s(R 1−  is implied by the assumption that 
0)s(Rdet ≠ . Denote 

 )s(G)s(G)s(R)s(F md
1

1 ++= −  (12) 
Then, with respect to (9)-(11), the necessary and 
sufficient stability conditions of Theorem 1 can be 
modified using the following corollary. 
 

Corollary 1 
A closed-loop system comprising the system (9) and the 
decentralized controller (10) is stable if and only if 

a. 0)s(Fdet 1 ≠  
 b. q1 n)]s(Rdet,0[N)]s(Fdet,0[N =+    (13) 

If )s(R  is stable, 0)]}s(Rdet[,0{N =  and the 
encirclement condition (13b) reduces to  

 
qmd

1
1

n)]}s(G)s(G)s(Rdet[,0{N

)]s(Fdet,0[N

=++=

=
−   (14)  

 □ 
As the term )]s(G)s(R[ d

1 +−  in (12) is diagonal and 
refers just to subsystems and includes all necessary 
information on their dynamics, it is possible to specify a 
required performance (including stability) of individual 
subsystems using an appropriately chosen diagonal 
matrix P(s): 

 )s(P)s(G)s(R
!

d
1 =+−  (15) 

 

where m,...,1ii )}s(p{diag)s(P ==   
From (15) results 

0)]s(P)s(G)s(RI d =−[+    (16) 
or, on the subsystem level 

m,...,2,1i0)s(G)s(R1 eq
ii ==+  (17) 

where  
m,...,2,1i)s(p)s(G)s(G ii

eq
i =−=  (18) 

)s(G eq
i denotes the i-th subsystem transfer function  

modified by pi(s) and will be called the transfer function 
of the i-th equivalent subsystem or simply the equivalent 
transfer function. Similarly, (17) will be denoted the i-th 
equivalent characteristic equation. 
 

If we modify (12) using (15) we obtain 
 

)]s(G)s(Pdet[)s(Fdet m1 +=  (19) 
 

or using another formal modification of (19) 
)]s(KIdet[]I)s(G)s(PIdet[)s(Fdet m1 +=−++=  

  (20) 
where I)s(G)s(P)s(K m −+=   
Considering (19) and (20) we can formulate the 
encirclement stability conditions for the closed-loop 
system under a decentralized controller in terms of the 
spectral Nyquist plot of )s(F1 . 



Corollary 2 
A closed-loop system comprising the system (9) and a 
stable decentralized controller (10) is stable if  
1. there exists such a diagonal matrix 

m,...,1ii )}s(p{diag)s(P ==  that each equivalent 

subsystem m,...,1i,)s(p)s(G)s(G ii
eq
i =−=  

 can be stabilized by its related local controller Ri(s), 
i.e. each equivalent characteristic polynomial  

   m,...,2,1i)s(G)s(R1CLCP eq
ii

eq
i =+=  

 has stable roots; 
2. any of the following conditions are satisfied 

km n]}}I)s(G)s(P[Idet{,0{N =−++  (21a) 

∑
=

=−
m

1i
ki n)]s(k,1[N  (21b) 

where m...,,1i),s(k i =  are characteristic functions 
of I)s(G)s(P)s(K m −+= ; kn is the number of its 
unstable poles; or 

mm n)]s(G)s(Pdet[,0[N =+  (22a) 

∑
=

=
m

1i
mi n)]s(m,0[N  (22b) 

where m...,,1i),s(mi =  are characteristic functions 
of )s(G)s(P)s(M m+= ; mn is the number of its 
unstable poles.  □ 

 

Thus far, only stability in the DC design has been 
considered. Any additional performance requirements 
need to be included in the design by a suitable choice 
of m,...,1ii )}s(p{diag)s(P == . Next, the choice of pi(s) is 
being discussed in detail. 
 
4.1.  Decentralized Controller Design for    

 Performance 
 

Referring to requirements of the independent design 
approach [2], the m...,,1i),s(p i =  actually represent 
bounds for local controller designs. Therefore, to 
guarantee closed-loop stability of the full system they 
should be chosen such as to appropriately account for the 
interaction term )s(Gm .  
According to (5), characteristic functions of Gm(s) are 
defined  

m...,,1i0)]s(GI)s(gdet[ mi ==−  (23) 
If we consider identical entries in the diagonal of P(s), 
substituting (15) in (13) and equating to zero actually 
defines the m characteristic functions of [– Gm(s)] 

 m...,,1i0]GI)s(pdet[ mi ==+  (24) 
To be able to include the performance issue in the 
design, the following considerations about 

I)s(p)s(P =  motivated by (23) and (24) have been 
adopted: 

1. If )s(g)s(p)s(p
!

ll −== for fixed }m,...,1{∈l  then 

 0])s(g)s(g[])s(g)s(p[)s(Fdet
m

1i
i

m

1i
i1 =+−=+= ∏∏

==
l  

 (25) 
and the closed-loop system is not stable (it is on the 
stability boundary); 

2. If )](s[g)](s[p)s(p
!

αα ll −== , fixed }m..,,1{∈l      
 (26)   
where we consider the generalized frequency 

0,js ≥+−= αωα ; ),( ∞−∞∈ω and )(s α indicates 
the particular case when 0>α ,  then 

0]})(s[g)](s[g{

]})(s[g)](s[p{)](s[Fdet

m

1i
i

m

1i
i1

=+−=

=+=

∏

∏

=

=

αα

ααα

l

l

 (27)  

Thus, if considering ωα js +−=  (α being the decay 
rate), the imaginary axis of the Nyquist complex plane is 
“shifted to α− ”. As 0),s(Fdet 1 =α , the modified 
closed-loop system is exactly on the stability boundary 
“shifted to ( α− )”, hence it is stable with the decay rate 
α . The equivalent subsystems transfer functions are 
 

m...,,2,1i)](s[p)](s[G)](s[G i
eq
i =−= ααα ll  

 (28) 
It is noteworthy that a closed-loop system stable with a 
decay rate 0≥α  it is necessarily stable also for 0=α . 
 

According to (22b) and considering (25) and (26), the 
encirclement condition for the closed-loop stability in 
terms of the spectral Nyquist plot of )s(F1  is then 

∑∑
==

==+
m

1i
m

eq
i

m

1i
i n)]}(s[m,0{N)]}s(g)](s[p[,0{N αα ll

 (29) 

where  

m...,,1i)},s(g)](s[g{
)}s(g)](s[p{)](s[m

i

i
eq
i

=+−=

=+=

α

αα

l

ll  

will be called equivalent characteristic functions of 
)]s(G)s(P[)s(M m+= and mn  is the number of 

unstable poles of )s(M . 
   

However, if for any ),(,0,js ∞−∞∈≥+−= ωαωα   

 
0})s(g)](s[g{

)}s(g)](s[p{)s(Fdet

m

1i
i

m

1i
i1

=+−=

=+=

∏

∏

=

=

α

α

l

l

 (30) 

i.e. if at any frequency, say 1ω , the )j(p 1ωα +−l and 
any characteristic locus }m,...,1{i),(g 1i ∈ω happen to 
cross, then the closed loop system is not stable. 

The main theoretical results from the preceding section 
are summarized next. 



Definition 1 (Set of stable characteristic functions) 
)](s[p αl  will be called a stable characteristic function 

if  m,...,1i),s(g i =∀ , ),(,0,js ∞−∞∈≥+−= ωαωα  
 

1. 0)}s(g)](s[p{ i ≠+αl ;  

2. ∑
=

=
m

1i
m

eq
i n)]}(s[m,0{N αl   

where )}s(g)](s[p{)](s[m i
eq
i += αα ll  and mn is the 

number of unstable poles of )]s(G)s(P[)s(M m+= . 
The set of all stable characteristic functions for a system 
will be denoted SΡ .   □ 
 

Lemma 1 
The closed-loop system comprising the system (9) and a 
stable decentralized controller (10) is stable if 
 

1. )](s[g)](s[p αα ll −= ,  fixed },m...,,1{∈l   
 ),(,0,js ∞−∞∈≥+−= ωαωα  belongs to SΡ     
and 
 

2. the closed-loop characteristic polynomials of all 
equivalent subsystems (equivalent characteristic 
polynomials 

m,...,2,1i),s(G)s(R1CLCP eq
iii

eq
i =+=   

are stable.  □ 
 
Proof of Lemma 1 results from previous considerations. 
 
4.2. Decentralized Controller Design Procedure 
1.  Partition the controlled system into subsystems 

(diagonal part) and interactions (off-diagonal part) 
a. )s(G)s(G)s(G md +=   
b. specify 0>α ; 

2.  Find the characteristic functions of  
  Gm(s): m...,,1i),s(g i =   
3.  Choose S),s(p);,s(g),s(p:),s(p Ραααα ∈−= llll  
  by examining equivalent characteristic loci 

m...,,1i)},s(g)](s[p{)](s[m i
eq
i =+= αα ll  

If no such S)](s[p Ρα ∈l  can be found, no 
stabilizing decentralized controller can be designed 
using this approach, and the procedure stops; else 
 

4. Design local controllers Ri(s) for all m equivalent 
subsystems  

;m...,,1i)](s[p)](s[G)](s[G i
eq
i =−= ααα l

 

using any suitable design technique, e.g. the Neymark 
D-partition method [6].  

 

The proposed procedure is illustrated on an example in 
the next Section. 
 
 

5  Example 
Consider a MIMO system with two inputs and two 
outputs given by the transfer function matrix 

 
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Equivalent characteristic loci for 1=l and 1.0=α  
are plotted in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Equivalent characteristic loci for 1=l  and 1.0=α  
 

 
For the related equivalent subsystems, local PI 

controllers in form 
s
rr)s(R 1

0 += were designed 

applying the Neymark D-partition method to both 
equivalent characteristic equations 

2,1i0)]}(s[p)](s[G{)s(R 1i
1

i ==−+− αα  

for }1.0,05.0,01.0,0{=α  (Fig.3, 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Figure 3:  Neymark D-contours: 1st equivalent subsystem 
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Figure 4: Neymark D-contours: 2nd equivalent subsystem 
 

For both subsystems, parameters of local PI controllers 
have been chosen  
 

a) from inside of the hatched areas in Figures 3 and 4, 
respectively,  which correspond to closed-loop values 

1.0>α ; 
 

b) from the boundary of the hatched areas in Figures 3 
and 4, respectively, which correspond to closed-loop 
values 1.0=α  

 

The other contours in Figures 3 and 4 specify areas for 
the individual above-chosen decay rates. 
 

The design results are summarized in Table 1. 
 

Sub-
syst. Controller Choice of α  

Achieved 
decay 
rate α 

1 
s

3553.02786.1)s(R1 +=  

2 
s

1916.09327.0)s(R2 +=  

from inside 
of the 

hatched 
areas in 
Figs.3, 4 

0.1549 

 
1 s

2149.02740.1R1 +=  

2 
s

1429.09222.0R2 +=  

from the 
boundary of 
the hatched 

areas in 
Figs.3, 4 

0.1007 

 
 
 

Table 1: Results of the local controller design 
 
Pertinent closed-loop eigenvalue sets 2,1i =Λ  are as 
follows 
: 

}9768.2;8115.1;7029.1;2811.1;j9291.0079.1
;j3888.04129.0;j6648.03464.0

;j4133.02286.0;1825.0;1549.0{1

−−−−±−
±−±−

±−−−=Λ

 

}9918.2;8145.1;7043.1;3172.1;j9296.00801.1
;j3871.04163.0;j7166.0367.0

;j4113.02499.0;j0091.01007.0{2

−−−−±−
±−±−

±−±−=Λ

 

 
Conclusion 
 

In this paper a novel frequency-domain approach to the 
decentralized controller design for performance has been 
proposed. Its main advantage consists in that the plant 
interactions are included in the design of local 
controllers through their characteristic functions, 
modified so as to achieve a required closed-loop 
performance (in terms of a specified decay rate) of the 
full system. The independent design is carried out on the 
subsystem level for the so called „equivalent 
subsystems“ which are actually mathematical models of 
individual decoupled subsystems modified using 
characteristic functions of the plant interaction matrix. 
Local controllers designed for equivalent subsystems 
guarantee fulfilment of performance requirements 
imposed on the full system without any performance 
deterioration brought about by the effect of interactions. 
Theoretical results are supported with results obtained by 
solving several examples one of which is included. 
 
Acknowledgement 

 

This work has been supported by the Scientific Grant 
Agency of the Ministry of Education of the Slovak 
Republic and the Slovak Academy of Sciences under 
Grant No. 1/0158/03.  
 
References 
 

[1] DeCarlo, R.A., Saeks, R. “Interconnected dynamical 
systems”, Marcel Dekker, Inc., 1981. 

[2] Kozáková, A.: Robust Decentralized Control of 
Complex Systems in the Frequency Domain. 2nd 
IFAC Workshop on New Trends in Design of 
Control Systems, 7-10 Sept. 1997, Smolenice, 
Slovakia, Elsevier, Kidlington, UK, 1998. 

[3] MacFarlane, A.G.J., Belletrutti, J.J. “The 
Characteristic Locus Design Method”, Automatica, 
9, pp. 575-588 (1973). 

[4] MacFarlane, A.G.J., Kouvaritakis, B.: A design 
technique for linear multivariable feedback systems. 
Int. Journal of Control, Vol. 25, No.1 (1977), 837-
874. 

[5]  MacFarlane, A.G.J., Postlethwaite, I.: The 
Generalized Nyquist Stability Criterion and 
Multivariable Root Loci. Int. Journal of Control, 
Vol. 25, No. 1 (1977), 81-127. 

[6] Neymark, J.J. “Dynamical systems and controlled 
processes”, Nauka, Moscow, 1978 (in Russian). 

[7] Skogestad, S., Postlethwaite, I. “Multivariable 
Fedback Control: Analysis and Design”, John 
Wiley & Sons, 1996. 

 
 
 
 

 

-0.5 0 0.5 1 1.5 2 2.5 3 

-0.4 

-0.2 

 0 

0.2 

0.4 

0.6 

0.8 

r 0 

 r 
1 



  


	Session Index
	Author Index



