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trol Schemes, Decentralized Control, Cascade Control. In the previous work [1], the gradient of the constrained cost

function has been derived and been directly used as controlled
Abstract variables to achieve self-optimizing control. In this work, the
usefulness of the gradient function is scrutinized further. It

A new approach using differentiation to select controlled Valk shown that the sensitivity of the gradient function to dis-

6:1bles for self—opt|m|2|ng c(;ontrqu[S(]j IS p;opé)seddand ippl'edd&%rbances for different controlled variable configuration is an
]tc eeyapgrapor:jpro%ess descr(lj edin| ]1 ase OTt € gradi&fictive and reliable criterion for controlled variable selection.
unction derived in the reduced space [1], new selection C“‘ﬁy applying this measure to the evaporation process [7], a new

ria, which indicate the sensitivities of the gradient function .t80ntrolled variable is identified to be the best and simplest one

d|sturbances and to |mpler_nentat|on errors, .have been deri 8|dself—optimizing control. The effectiveness of this new con-
for different controlled variables. The particular case stu Yolled variable is demonstrated through simulation

shows that the new selection criterion is more effective and re-
liable than the minimum singular value criterion proposed ihhe paper is organized as follows: The gradient of the con-
[8]. strained cost function as a combination of the first-order deriva-
tives of the cost function and nonlinear model functions is rep-
resented in section 2. Then the sensitivities of the gradient to
disturbances and to implementation errors for different con-

Chemical process plants are always controlled in different |at§r,olled variable configurations are derived in section 3. To cope
ers. For example, several local control layers are desigd@@h conditionally active constraints, a cascade control struc-
to maintain local controlled variables at the desired operatifigf€ to satisfy both optimality and constraint requirements is
point whilst a plantwide optimization layer is responsible tgroposed in section 4. The sensitivity measures as criteria for
adjust the setpoint to the local layers according to different sgontrolled variable selection are applied to the evaporation pro-
uations (disturbances). Traditionally, these two layers are §&SS in section 5, where several controlled variables are iden-
signed separately for different (economic and dynamic) Objéjﬁed as the best and simplest solutions. A comparison based
tives although they need working together. An important cofD static and dynamic simulation performed for different con-
cept of “self-optimizing control”, which can date back to thérolled variable configurations is presented. Finally, the paper
work of Morari et. al [6] and has been revisited recently bys concluded in section 6.

Skogestad [8], provides a link between these two layers. Self-

optimization is a control strategy where by controlling certaif ~ Gradient of constrained cost function

specially selected variables at their nominal setpoints, it auto-

matically achieves the optimal (or acceptable) operating cdaonsider the following optimization problem:

gg:cness\.mthout re-optimization even in the presence of distur TEIJ — (,u, d) (1)

The optimality of a self-optimizing control system is strongly st flz,u,d)=0
related to the control structure selected. In his seminal work, g(z,u,d) <0

[8] proposed a criterion, the minimum singular value mde)\(/\’/herex € R, u € R™ andd € R" are state, input and

to select controlled variables for self-optimizing control. Thiai rurbance variables respectively. For a given disturbafice
criterion has been applied to several chemical processes stlﬁgh P Y- 9 '

. € solution of the above optimization problem is denoted as,
as the Tennessee Eastman process [5] and the evaporation Pros 4 . . X
o - ; : . and u*. Assume that at the optimal point, the following
cess [2]. The criterion of minimum singular value is scahng ualities hold:
dependent. The cost function affects implicitly on the crite-] '

rion through the scaling of the variables in which the controlled s flz*,u*,d)
F(z*,u*,d) = R

1 Introduction

variables are scaled with respect to the optimal range (which is g1(z*,u*, d)
dependent on the objective function used) and the implementa-

tion error. Therefore, some cautions have to be taken to prig?eref(-) andg: () are vector-valued functions with dimen-
sions ofny andn, respectively. Ifm = (n, +n,) — (ny +

} - @



ny) # 0, then according to the Kuhn-Tucker conditions, therginceF’, is not singular, equation (11) leads to
arem first-order optimal conditions. Denote™ [u? u1]7 with

uy € R™, 2 = [2T «¥]T andv = uy. Then the optimization 9z _ _ <8”FU + Fd> Fo (13)
problem (1) can be re-stated as: od od
minJ = ¢(z,v,d) (3) Inserting (13) into the second equation (12) leads to:
S.t. F(Z,’U,d) =0 % _ —(Hd—Fsz_le) (Hv_Fsz_le)fl (14)
The first-order optimal conditions of the above optimization
problem are: Replacing2? in (13) with (14) gives:
0z
To=0ut g0 =0 @ % = —FF7'+ (15)
0z
FytooF. = 0 ®) (Hy— FyF7'H.) (H, — F,F'H,) ' F, R

If the Jacobian matrixF, is not singular, then the second CO”Using the results in (14) and (15), the sensitivitydb distur-

dition (5) gives: i bances can be yielded as follows:

92 _ _pop-1
ov e ©) 5, = 0z G v G 4G 16
Inserting (6) into the first condition (4) leads to the following % = gg%= + 550 T G (16)
m-dimension optimal condition: _ (Gd _ Fsz‘le) _ (Hd _ Fsz‘le)
G20, d) = ¢~ FoF 6. =0 ™ (H, — FyF, T H.) ™ (Gy — FFGL)

Normally, the left-hand-side of the above condition is a func- “ B _ ,
tion of z, u (u1, anduy) andd. For a given disturbancel, whered, € R, WhenH = G, o4 = 0. This corresponds

equation (7) corresponds to an unique solution/of= w3, to the perfect self-optimizing control. For other controlled vari-

from which all rest system variables? andu can be deter- ables,H # G, normallydq 7 0. The row norms ob, ma-
mined. trix indicate how sensitive of the gradient function to the cor-

responding disturbances for the specified controlled variables.
If F(z*, u*,d) = 0is the only active constraints for all possi-Therefore, row norms af; can be used as a selection criterion
ble disturbances, then it is clear ti@¢{z, v, d) = 0 is the only to rank different controlled variable combinations.

condition which must be maintained to ensure the process Qp- e . L
b ci'l%e sensitivity measuré, is a second-order derivativé,, of

eration is optimal. In other words, if conditid®(z, v,d) = 0 ; ) . . .

is retained by the control system, then optimal operation cha cons.tram(.ad cost funphon. At the.nor_mnally optimal pom_t,

be achieved without re-optimization for different disturbance®> explained in [8], the f|rst.-order derivative of cost functlon_ IS

i.e. the plant s self-optimizing controlled. zéro. Second—ordgr derlvatlvgs must be used to compare differ-
ent controlled variable combinations. However, the minimum

o singular value measure, proposed as a selection criterion in [8]

3 Sensitivity measures is only part of a second-order derivative. Therefore, it can only

. . L ive a biased prediction. In contradiction to the minimum sin-
When other variables rather than the gradient function itself a% P

; S . ) lar value measure, the sensitivity measure introduced here
retained by a control system, the gradient in (7) is a function y

ra complete second-order derivative and can provide unbi-

dIrzt(ljjirebr?tr}ﬁgich?edsV:r;”en(;)tt?r:\;?t/s (l:fe tﬁzrg. ;rg?igT]aqrnr:?ri?O?g ased comparison for alternatives. Another important feature of
9 P y P ' the sensitivity functiong, is that it is independent of the scal-

IS deswa_ble to s_glect co_ntrolled vanables, W.h'Ch make the.glrg— of controlled variables. Therefore, a comparison based on
dient as insensitive to disturbances as possible. The sensiti n?/

i . hicH \Sd is more objective than that based on the minimum singu-
of the gradient to disturbances depends onw ntrolled lar value measure, which is scaling dependent. The sensitivity
variables selected. Assumecontrolled variables selected cor-

. measure can also be used to evaluate the sensitivity to mea-
respond ton equations denoted a&l(z,v,d) = 0, then the Y

sensitivity can be derived from the following equation set: surement noise, to model uncertainties and to implementation
Y 9eq " errors if these are included in the disturbance vector.

6 = Glzv,d) (8) Consider implementation errotse R™, which associate with
0 = F(zv,d) (9)  m controlled equations as:
0 = H(z,v,d) (10) -
) ) 0= H(z,v,d,e) = H(z,v,d) — ¢ a7
Sensitivities of (9) and (10) to disturbances are zero, i.e. . . ) )
9z v Itleads toH, = H., H, = H,, H; = Hg andH, = —1I. In
@Fz + %Fv +F = 0 (11) equation (16) replacé with ¢ and H with H respectively and
9z O considerF, = 0 andG. = 0 (process equilibrium, active con-

%Hz + %Hv +Hs = 0 (12)  straints and theoretic gradient are independenj.ofhen, the



gradient sensitivity with respect to the implementation errorsds  Conditionally active constraints

derived as follows: . . o .
Controlled variables in a self-optimizing plant should include:

b = (H, — F,F7'H.) ™ (Gy — FyFS'GL) (18)  stabilizing variables related to plant unstable modes, active
wheres, € R™*™_ Particularly, whenH = G, 6. = I, i.e. constraint variables included in = 0 in (2), self-optimizing
5 =e. variables,G or those with smalb; andé.. However, active

) ] constraints of a process plant may not always be the same.

For a small system, the gradient functiafi(z, v, d) can be gome output constraints, such as temperature and pressure lim-
derived analytically. Therefore, the sensitive measuf@®d s may becomes active under certain circumstances. Tradition-
de can be calculated by linearization of the plant model. Agjly, these variables are always selected as controlled variables.
sume the nonlinear model equations and the gradient functiggever, by controlling these variables at their nominal set-
are linearized around the nominally optimal point as foIIows:poimS’ the plant operation will not be optimal at most times.

& = Awv+ Biuy + Byuz + Bad (19) 1o satisfy both requirements of self-optimization and operating
y1 = Chix+ Dijug + Disus + Dq3d (20) constraints, a cascade control structure is proposed as shown in
yo = Cox + Dojus + Dosus + Dozd (21) Figure 1. In Figure 1, an inner loop is closed for constraint

6 = Csx+ Dsjuq + D3sus + D3sd (22) d

wherey; corresponds to active constraints@@fxz, u,d) = 0 ¢
andys, is controlled variables selected for self-optimizing con K, > jk: K, 4 » P [
trol. Then the Jacobian matrices required to calculatsan be
obtained from the above system matrices: Constraint Control

o A B T P By r o B3 r Self-Optimization Control G(z,v,d)

i Civ Dn Di» Di3
H, = [(;2 D21]T H,=DL,  H,;= DI Figure 1: Cascade structure for self-optimizing and constraint
T T . control
GZ = [03 D31] G’U - D32 Gd - DSS

i , ) o control. The setpoint of the inner loop is determined by the
Particularly, for systems without active constrain®s,ni = 0, o 4er |oop, which is designated for self-optimizing control by
matrices By, Cy, Dii, D12, D13 and Do, are empty. De- aintaining the self-optimizing variable at constant. Within
note steady-state gain matrices between different ;5|gnalsthqat feasible range of the process constraint, the setpoint of the
the nominally optlmﬂ point asly, = D — C_Y21A7 B2 inner loop is floating as a manipulated variable to perform self-
Lya = Da3 — 02/}1 By, Lgo = D2 . ,CSA Bz and optimizing control. However, when disturbances cause the pro-
Lga = D33 — C2A™ Bs. Then the sensitivity measures CaReqq towards outside of the constraints, the saturation block will
be simplified as: limit the setpoint within the constraint so that the controlled
or = LGvLy_Ul (23) variable of the inner loop will be kept within feasible range.

§T = Lo — Lo LT (24) In this way, th_e self-opumlzmg_control _and _constralnt_ control

d Gd Gvyv Fyd loops alternatively become active and inactive to achieve con-
The above equations clearly show how sensitivity measures stiained self-optimization.
associated with the minimum singular value measti(é,,,, ).
If the system has no active constraints, or all active COB- Evaporator case study
straints have been implicitly included in equilibrium equations,
and manipulated variables have been properly scaled such that Gradient function
Lg, = I, thend, is equivalent to the minimum singular value
measure. Further more, only whén;; = 0 (no explicit de- The new controlled variable selection approach is applied to an
pendence of gradient on disturbances) and disturbances are @¥&poration process [7], shown in Figure 2.

properly scaled such thdt,, = I, then equivalency betweenryq is 5 “forced-circulation” evaporator, where the concentra-
04 and the minimal singular value measure is true. Otherwisgy, of dilute liquor is increased by evaporating solvent from

if Lgq # 0, the minimal singular value measure can only pafpg feed stream through a vertical heat exchanger with circu-
tially predict self-optimizing properties. lated liquor. The process variables are listed in Table 1 and

For a large or complicated process, it may not be possibler®del equations are given in Appendix A.

get analytical expression of the gradient function. In that casg,e economic objective is to minimize the operational cost

the sensitivity measureg, andJ,. can still be numerically cal- [$/h] related to steam, cooling water and pump work [4, 9J:
culated as the second-order derivativég,and.J,. of the con-

strained cost function. For this purpose, the recently developed J = 600F100 + 0.6F200 + 1.009(F% + F3) (25)
automatic differentiation techniques [3] can play an important
role. The process has the following constraints related to product



T201 & —siin Var. Description Value Units.
T 9 2 Feed flowrate 10 kg/min
F200, T200 F Product flowrate 1.41 kg/min
condenser F3 Circulating flowrate 23.05 kg/min
/E separator Con'd:‘;nsate Fy Vapor flowrate 8.59  kg/min
'S;tfg‘g" 1'?%88 P2, L2 T Condensate flowrate 8.59 kg/min
—&—> X1 Feed composition 5 %
X5 Product composition 355 %
evaporator T, Feed temperature 40 °C
T Product temperature 91.22°C
VO T3 Vapor temperature 83.61 °C
condensate Ly Separator level 1 meter
\$/|:3 P, Operating pressure 56.42 kPa
feed g 2 . Fio0  Steam flowrate 10.02  kg/min
F1,X1,T1 Fgrc;?zuc;z T100 Steam temperature 151.52°C
& > Pioo  Steam pressure 400 KkPa
Q100 Heatduty 366.63 kw
Figure 2: Evaporator System Fy0  Cooling water flowrate ~ 230.54  kg/min
T200  Inlet C.W. temperature 25 °C
T»01  Outlet C.W. temperature 455°C
specification, safety and design limits: Q200 Condenser duty 330.77 kw
Xy >3540.5% (26) Table 1: Variables and Optimal Values
40kPa< P, < 80kPa (27)
Prop =< 400 kPa (28) choose cooling water flowraté,yo asv and rest manipulated
Fyo0 < 400 kg/min (29) variables and state variablesas.e.
Okg/min<  F3 <100 kg/min (30)

T
z=(Ly Xy P, F» Py F3)
Note a 0.5% back-off has been enforcedXs to ensure the
variable remaining feasible for all possible disturbances. TBy using (7), the following gradient function is obtained:
process model has three state variables, X and P, with

eight degrees of freedom. Four of them are disturbankgs, G = 06— 0_5538M x (32)
Xy, Ty andTy. The rest four degrees of freedom are ma- 200

nipulable variablesF,, Pyqo, F3 and F5o. The optimization (6 3060.16(F1 + F3) +0.07Fy n 42F1>
problem of (25) with process constraints, (26) to (30) has been ' Tioo — T3 36.6

solved under nominal disturbances:

dz(Fl X, T T200)T:(10 5 40 25)T (31) 5.2 Self-optimizing variable selection

The minimum cost obtained is 6178.2 $/h and correspondilr];éhe nonhnear grad!ent function, (32) is not able t.o be im-
. : pfemented in a practical system as a controlled variable, then
values of process variables are shown in Table 1. . .
an alternative measurement need to be selected to achieve self-
At the optimal point, there are two active process constrainggtimization. It can be selected from the set of all measur-
Xo = 35.5% and P,gp = 400 [kPa]. These two constraintsable and manipulable variables. The process has twelve mea-
will keep active within whole disturbance region, which is desurements and four manipulated variables. Three of tHem,
fined as+20% of the nominal disturbances. Physically, th&, and P,y has already been selected for stabilizing and con-
first active constraint is because a higher outlet compositistraint control. Amount the rest variablds,, F, F5 have to be
requires more solvent to be evaporated, therefore needs mawtermined by the equilibrium of the system ahd 73, Pioo,
steam, cooling water and pump cost. For the second constraifty, and Q2o are dependent on some other variables. There-
since heater duty)1oo is determined by both steam pressurdore, only five variables represent independent alternatiZgs:
P10 and circulating flowrateFs, reducingP; oo Will increase Figo, T201, Fo00 and F3. The authors of [2] have considered
F5 due to energy balance. However, the sensitivity to steaamother controlled variableisoo/F1. A new controlled vari-
cost of Pyog is much lower than that of3. Hence, an optimal able,T5; — Tsqg is also considered in this work. The gradient
operation should keeiX, at its lower bound and’;o at its sensitivity measures to four disturbances and to implementa-
higher bound. tion errors are calculated (see Table 2) using (16) and (18) with
. . ., disturbances and controlled variables both scaled by 20% of
These two active constraints plus the separator level, which has. )
. their nominal values.
no steady-state effect on the plant operation, but must be stabi-
lized atits nominal setpoint, consume three degrees of freeddrable 2 shows that for single measuremdnt,; and F5oq are
Therefore, the optimal condition has one degree of freedotwo most promising choiceslsy; is better whenFy and X;



C.V. o, dx, oy 0Th00 e Disturbance Interval [min]  Time constant [min]

Too1 — Ta00 0.0124 0.0167 0.0005 0.0064 0.2426 i 120 20
Faoo/F1 0.0124 0.0231 0.0005 0.0064 0.2426 X1 6 2
Ta01 0.0124 0.0167 0.0005 0.2895 0.5385 T 15 5
Faoo 0.2550 0.0231 0.0005 0.0064 0.2426 To200 15 5
P 1.1324 0.2044 0.0005 0.5854 0.6772
F 1.9840 0.3753 0.0878 0.5854 0.8516 Table 4: Disturbance model parameters
Flioo 12.326 1.8600 0.8544 0.5854 11.1936

Table 2: Sensitivity measures of alternative controlled variables
against disturbances and implementation errors tion is performed. The total operation costs of the six schemes

are shown in the second column of Table 5.

are main disturbances, blbg, becomes better whef,gg is 80 @
the dominant disturbance. In all situation$,; — 1590 and ©
Fs00/Fy are the best controlled variables with minor differ % 60|
ence. Implementation error is the dominant factor affectingo £
. . . . . %]
timality for these two choices. Itis also expected that choosii 8 40 — G
. : ! & — - F200/F1
eitherTyy, — Thoo OF Fooo/F Will be as good as controlling . T201-T200
the gradient. 20 :
0 5 10 15 20
(b)
0.5 T

5.3 Simulation results and comparison

Top four most promising controlled variables listed in Table 5 = = Vhw-
plus the gradient function in (32) are compared with consta §
P, control by static and dynamic simulation. For static simul: © . EZOO/Fl ]
tion, 1000 sets of disturbances are randomly generated wit - T201-T200
feasible range. Static responses to these disturbances for 0 5 10 15 20
six control schemes are obtained. The mean value of the col (©
sponding costs are calculated and shown in the first column g 05 ‘ ‘
Table 5. 5

g Oo=———= == =
For dynamic simulation, all six control schemes are imple¢ © W T
mented in a decentralized cascade structilisecontrolled by ¢ -05} ' h h
Fs, X, controlled byF, one of the five controlled variables € PO
controlled by the setpoint af,, which is in turn controlled by -1 : 5 " 2

5 to satisfy both the self-optimizing and conditionally active

) ! . Time, h
constraint control as shown in Figure 1.

Three loops are controlled by PI controllers with parametefggure 3: Simulation result comparison. Ba)response. (it}
shown in in Table 3, whilst self-optimizing variables in alfesponse. (c)scaled deviation®Bfoo/F1 and—(T501 — T200)
schemes are controlled with constant static gains: 1000;forfrom nominal steady-state.

and Fyoo/ Fy loops, 20 forTsg1 — Taoo andTzg; loops, and 10

for F2q0 loop. It is shown in Table 5 that costs of all four most promising

Loop Gain _Integral time [min] schemes are very close to the cost ugihgn both static and
(L2,F3) 200 5 dynamic simulation. This demonstrates the concept of self-
(X2,Fn)  36.74 4.6619 optimizing control,i.e. optimal or near optimal plant opera-
(P2,F200) 200 6.667 tion can be achieved by selecting certain controlled variables

to be controlled at constant setpoints. The relative ranking of
Table 3: Pl controller parameters alternative controlled variables is almost coincident with the

prediction of the sensitivity measure (Table 2) except that in
In the simulation all disturbances are modelled as a step sigble 5 the schemes usiidgqo/F; is slightly better than us-
nal passing through a first-order delay. The amplitudes of steg 7291 — T200- TO explain the difference between these two
changes are randomly produced within th20% range of the configurations, the dynamic simulation results of three best
nominal values. The changing intervals and time constantsschemes, usingr, using Faoo/F1 and usinglso; — Togo are
the first-order delays are different for different disturbance vagempared in Figure 3.

ables shown in Table 4. From Figure 3 it can been seen that the cascade control struc-

With the above configuration, simulation for a 20-hour oper&ire works well in all three schemes. When pressure constraint



self-optimizing c.v.  Static Mean [$] 20h Dynamic cost [$]  [2] M.S. Govatsmark and S. Skogestad. Control structure se-

G 6139.80 120,823 lection for an evaporation process. Pnoceedings of ES-
Faoo/F1 6139.83 120,826 CAPE’11, pages 657-662, Kolding, Denmark, May 2001.
Tao1 — Taoo 6139.82 120,828
Faoo 6141.08 120,854 [3] A. Griewank. Evaluating Derivatives SIAM, Philadel-
Tho1 6142.42 120,857 phia, PA, 2000.
Py 6162.57 121,561

[4] J.A. Heath, 1.K. Kookos, and J.D. Perkins. Process con-
Table 5: Alternative controlled variables and operating costs trol structure selection based on economigslCHE J,
46(10):1998-2016, 2000.

[5] T. Larsson, K. Hesterun, E. Hovland, and S. Skogestad.

8{ ff rIS m"ft'vi’ se\l/f—i)ptlnr:zlllng S?r,:itr?]l ilr? aifttlf\f thehgrrz:\]— Self-optimization control of a large-scale plant: The ten-
ent response has very smafl deviatio a €€ SCNeMES. essee eastman procedsd. Eng. Chem. Res40:4889—

However, whenP, reaches 40 [kPa] at 3.5 and 19.5 hour, out 4901. 2001

control loops become inactive, hence large deviations of self- ' '

optimizing variables are observed. Particularly, the scheme {8} M. Morari, Y. Arkun, and G. Stephanopoulos. Studies in
ing T01 — Too has larger offset than the one usifgyy/Fy the synthesis of control structures for chemical process,
when P, constraint is active. The offset in scheme using Part|: Formulation of the problem. Process decomposition
Ts01 — Taop is also more sensitive to controller gain than the and the classification of the control tasks. Analysis of the
one in scheme usingyoo/F;. Therefore, control gain of the optimizing control structuresAIChE Journa) 26(2):220—
former has to be much smaller than the one of the latter to limit 232, 1980.

the maximal deviation. However, the smaller the control gain

the larger the average deviatidre. the larger the implemen- [7] R.B. Newell and P.L. Lee.Applied Process Control — A
tation error. Therefore, the loos of objective function using C@se StudyPrentice Hall, Englewood Cliffs, NJ, 1989.

Tz01 — Taoo is larger than the one usinhoo/F1 due to dif- 8] 5. Skogestad.  Plantwide control: the search for the
ferentimplementation error although the gradient sensitivity to self-optimizing control structure. J. Process Control
implementation error is the same for both schemes. 10(5):487-507, 2000.

[9] F.Y. Wang and I.T. Cameron. Control studies on a model
evaporation process — constrainted state driving with con-

The concept of self-optimizing control has been scrutinized. Ventional and higher relative degree systends.Process
Based on the gradient of a constrained cost function described Control, 4(2):59-75, 1994.

in [1], the sensitivities of the gradient function to disturbance

and to implementation error have been derived and proposeghas Model equations

criteria for controlled variable selection in self-optimizing con-

trol system design. The sensitivity measure is a second-order

6 Conclusions

derivative of the cost function and is independent of measure- dLo F—F—F
ment scaling. Therefore, it can provide objective and unbiased 20 (33)
comparison for controlled variable selection. The gradient sen- dX, X, — X
sitivity can be calculated from the linearized model when the % - 0 (34)
gradient is available analytically, or numerically calculated by AP, Fy — Fs
applying the newly developed automatic differentiation tech- TR 1 (35)
nigues. The evaporatqr case study demonstrates the effectl\{e— Ty = 0.5616P, + 0.3126X, + 48.43 (36)
ness of this new selection measure. Two better controlled vari-
ables are able to be identified by using these sensitivity criteria. Tz = 0.507F; +55.0 37
The case study also demonstrates the success of using cascade Fo= Q100 — 0.07F\(T> — T1) (38)
control to cope with conditionally active constraints. 38.5
Tioo = 0.1538P;p0 + 90.0 (39)
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