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Abstract 
 
The input-output pairing of multivariable plants 
with parametric uncertainty can vary in the face of 
large plant parameter variations. The Relative Gain 
Array (RGA) analysis is a powerful tool for the 
input-output pairing of linear multivariable plants. 
In the case of parametric uncertainties, RGA 
elements may vary accordingly. Hence, a test is 
proposed to identify the change in the input-output 
pairing in the presence of parametric uncertainties. 

 
1 Introduction 

 
Decentralized controller are widely used in many 
complex multivariable processes    [8], [9], [5]. An 
appropriate input-output pairing prior to the 
commencement of the design is vital for desired 
closed-loop stability and performance. There are 
different approaches to input-output selection and 
RGA is the first and the most widely used 
analytical tool for this problem [3], [6], [1]. 
However, the  proposed approaches are mainky  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
applicable to known multivariable plants and fail in 
the presence of plant uncertainties. The attempts in 
[2] and [4] to overcome the uncertainty problem in 
process models can only partially solve the issue 
and cannot identify the changes in the  input-output 
selection. 
In this paper, the parametric model uncertainty is 
considered and a graphically based test is presented 
to identify the possible input-output selection 
changes resulting from  the parameter  parameter 
changes. The test is explicitly stated for two and 
three input-output multivariable plants. Also, 
examples are provided to show the effectiveness of 
the proposed test. 

 
2 RGA analysis in the presence of parametric 
uncertainties 
 
Consider a linear multivariable plant described by a 
transfer function matrix )(sG  with m inputs and 
outputs. The RGA matrix has been defined as 
fallow [3].     

            TGG −⊗=Γ )0()0(                           (1) 
and each element of Γ ( ijλ ) can be calculated by 
equation (2). 
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ijG is matrix G with eliminate thi  row and thj  
column. A final decision on the input-output 
pairing is reached through investigating these 
elements and is given in [3], [7]. 
 
2.1 Two input - Two output multivariable plants 
 
In the case of multivariable plants with two inputs 
and two outputs, equation (2) can be rewritten as  
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and by defining the following variable      
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equation (3) can be written as    
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and , similarly 12λ  can be written as follows      

                    
k
k
−
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Since, in such multivariable plants the input-output 
pairing can be determined from the comparison of 
the elements of the first row of the RGA, 11λ  and 

12λ  are compared.  
Let 1211 λλ > , in this case it follows from equations 
(5) and (6) that 

                         11 <<− k                                (7) 
In the face of parametric uncertainties, k will be an 
uncertain parameter and can be present  
                            kkk ∆+=′                              (8) 
If  k∆  causes a change in the previous input-output 
pairing, i.e. 1112 λλ > , then       

                        
k
k
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<
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1                            (9) 

and hence,  
                         1>′k  or 1−<′k                       (10) 
Equations (7) and (10) are now presented on an 
axis, as is shown in fig1. A transfer from region 1 
to 2 or vice versa shows a change in the input-
output pairing due to the parametric uncertainties. 

 
Two input-Two output plants 

Fig 1 
 

Example 1 
 
Consider the following transfer function matrix [2]: 
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where ]2,6[11 −∈δ , ]3,7[12 −∈δ , ]3,1[21 −∈δ , 
]2,2[22 −∈δ , and its corresponding RGA for the 

nominal case 0=ijδ  ( 2,1, =ji ) is 
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1  

and 5023.0=k . The RGA matrix shows that 
),( 2211 yuyu −−  is an appropriate input-output 

pairing. For 411 −=δ , 512 −=δ , 121 =δ , 022 =δ , 
k  is changed to  

1064.1
)4.19)(48.12(
)59.18)(16.6(' >=

−−
−−+

=k  

Which clearly indicates as is shown in Fig1 that a 
change in input-output pairing has occurred. This 
Result is also verified by calculating the RGA 
matrix for the new parameters, i.e. 
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which also shows a change in the input-output 
pairing. 
 
2.2 Three input - Three output multivariable 
plants 
 
In the case of multivariable plants with three input 
and output, equations (2) can be rewritten as  
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and by defining the following variables  
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the element of the RGA matrix can be written as  
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The regions in the ),( 21 kk  coordinates which 
indicate a change in the input-output pairings are 
now determined. 
 
Case I: ( 13111211 , λλλλ >> ) 
In this case, equations (13) give a closed region 
characterized by 
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and is shown in fig 2. The shaded region in fig 2 
represents the inequalities in (13) and shows that 

)22,11( yuyu −−  are an appropriative pairing, but 
a final decision must be made after considering the 
other cases. 
 

 
Three input-Three output multivariable plants 

Case I: ( 13111211 , λλλλ >> ) 
Fig 2 

 

Case II: ( 13121112 , λλλλ >> ) 
In this case, equations (13) give a closed region 
characterized by 
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and is shown in fig 3. 

 
Three input-Three output multivariable plants 

Case II: ( 13121112 , λλλλ >> ) 
Fig 3 

Case III: ( 12131113 , λλλλ >> ) 
Similarly, equations (13) give 
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and this region is shown in fig 4. 

 
Three input-Three output multivariable plants 

Case III: ( 12131113 , λλλλ >> ) 
Fig 4 

 
Test procedure 
1) Determine the ),(ˆ

21 kkki =  variables  
       using the following equation. 
     [ ] )]1(:,),1(:,/[)].3(:,),2(:,[ˆ ΓΓ−ΓΓ=ik   (17) 

2) Identify the points 1̂k , 2k̂  and 3̂k  in the   
       12 kk −  diagram. 



3) If each of the 1̂k , 2k̂  and 3̂k  lie in one of the 
three regions, then we can use decentralize 
control. 

4) A shift of the indices 1̂k , 2k̂  and 3̂k   from one 
region to another, indicates a change in the 
input-outputs pairing.  

 
Example 2 
 
Consider the following transfer function [2] 
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Case I:  
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Fig 5 represents the nominal case and its 
corresponding RGA is 
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Example 2 : Case I 

Fig 5 

Case II: Let the nominal plant be changed as 
follows. 
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Fig 6 shows the position of 1̂k , 2k̂  and 3̂k  which 
indicates that a change in the input-output pairing 

has not occured. This is verified by the 
corresponding RGA matrix given by 
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Example 2 : Case II 

Fig 6 

Case III:  
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Fig 7 shows the position of 1̂k , 2k̂  and 3̂k  which 
indicates that a change has occurred in the input-
output pairing. This is also verified by the 
corresponding RGA matrix given by 
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Example 2 : Case 3 

Fig 7 
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