A model free approach to controlling blood glucose
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Abstract

We present a problem of controlling type 1 diabetes mellitus - a situation where plant is
complex and dynamic, the measurements are sparse, and the data display erratic fluctuating
behaviour. These characteristics make it very difficult to derive a model of the plant. We
propose a model-free method of deriving a controller for this problem and discuss the limits

of control performance under the constraints.

1 Introduction

Diabetes mellitus is an age-old disease which until now remains incurable. It is a chronic disease
characterised by the body’s inability to regulate metabolism of sugars. This disease poses
as a serious public health problem, as its poor management leads to complications which are
debilitating to the individual and costly to the society. It is a case where a complex plant is
relatively controllable by simple decision rules, making it an interesting control problem. We
discuss in this paper the diabetes mellitus management problem as a case example of constrained
control, where only little information is available to manage a complex and poorly defined

situation. We present the derivation of a control algorithm directly from patient data.

Type 1 diabetes mellitus is a dysfunction of the glucose regulatory system, characterised by the
absence of the hormone insulin. It is treated by subcutaneous injection of insulin. Currently,
the typical management regime is multiple daily injection, prior to each meal and at bedtime.
This treatment aims towards restoration of normal glucose levels, as in non-diabetic people, i.e.

between 3.5 mmol/l and 7 mmol/l.



Avoidance of complications due to “bad” management is crucial, however achieving “good”
management is not so trivial, as this control objective is not well defined. The glucose regulatory
system is embedded in this very complex system we call the body. The state space is likely to
be infinite, and only one variable, blood glucose (BG), is measured, sparsely. The state is not
yet defined and is not observable. There is also wide inter-individual variations, bringing about
the need for individualised rules. With these constraints in place, it is understood that the ideal
aim of non-diabetic level of control is unachievable, leaving the realistic control goal as an open

question.

We represent this system as follows:

Xk+1 = f(Xk,’L.nSk,Fk,Ek,l/k), (1)
BGk = g(xk)a (2)
insy = H(BGy, Ey, Fy). (3)

where xj represents the state of the glucose metabolic system at time k, BGg,insg, Fi, Fx
denote BG measurement, insulin dose, food and exercise at time k, and v, is randomness which
represent the unmeasured entities in the system. The “hats” represent estimated (effect) of food
and exercise. BG is measured in mmol/l, ins in Insulin Unit (IU), F and E are qualitative
measures. One of the questions addressed is the derivation of insulin rules , to control the
complex system F, where (at present) the control goal is unclear, with only meagre data points
available. We take the approach of direct derivation, bypasssing the estimation of the “body”

model F, for which we have insufficient information.

These issues are presented in this paper in the following manner. Firstly we define a control
objective, based on the presently used clinical measure. We then discuss the framework of the
insulin rules and how to customise it to an individual. To follow is the implementation of this

algorithm by stochastic approximation methods.

2 Control objective

Even though BG is the only quantitative measurement taken, it is not consistently used to
ascertain control performance. Clinicians in general accept that individual BG measurements
are not good measure of a person’s level of glucose control. Moreover, different practitioners
often have different concerns and foci in their methods, possibly depending on the variety of

cases they have been exposed to, resulting in lack of uniformity in opinions.



The general direction is towards the unattainable ideal situation, i.e. non-diabetic level of
control. However, how far short of this ideal goal is considered acceptable, is an open question.

It is also highly likely that the “best” level of performance is individual dependent.

A globally accepted goal is that from public health point of view, i.e. the reduction and pre-
vention of late onset complications [6], which has been linked to level of HbA . < 7% [1]!. This

benchmark has been used in clinical management as a goal.

In a non-diabetic scenario, blood glucose level would be maintained around the “normal” range.
We employ as a criterion, an index which penalises blood glucose deviation from the normal

region known as the M-value [3]:
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In keeping with clinical practice, we use a measure which, as HbAi., is an indicator of BG

average, the Mean Amplitude Glucose Ezcursion (MAGE) [3],
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We relate MAGE to HbA . as follows. Let us denote an empirical mean of ¢ as < ¢ >,
1 X
<pla) > =5 o), (6)
k=1

~ /Ooo o(z)p(z)dr, (7)

where p(z) is the probability density of z. Since MAGE =< M(BG) >~ E[M(BG)], and M

is a real convex function [2],

MAGE(BG) =< M(BG) > (8)
> M(< BGy >), (9)

from which it follows that
< BG >¢€ [min M~ Y(MAGE(BQG)), max M ' (M AGE(BQ))]. (10)

HbA . has been correlated to a function of BG average over five weeks [5],

N

B 1 BGk 0.596
HbA;. = 2. 1072 =) —F 11
bAL 0710 (N ; 1 mmol/l) (11)

lglycated haemoglobine, red blood cells to which glucose molecules are attached, used as a measure of long

term blood glucose profile.



where N covers a five week period. Thus, in accordance to the clinical goal of HbA;. < 7%,

< BG > \ 59
07 x 1072 — <7x10? 12
2.07 x 10 (1mmol/l> <7 %10 (12)
BG > < ! s /1 13
< > < (2—07> mmol | (13)
< BG > < 7.72 mmol/l. (14)

This figure corresponds to MAGE < 0.2.
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Figure 1: The criterion M-value function, showing the range of < BG > for MAGE < 0.2.

3 Insulin rules

The relative success of clinical management of diabetes mellitus indicate that this task of con-
trolling a complex system doable given the meagre amount of available data, using very simple
control rules. We adopt this approach, and the rule framework used in clinical setting. We
find that these rules, obtained from patient data, can be approximated by a piece-wise linear

function.

We customise the rule to the individual and search for the best rule for that individual by

parameterising it (Figure 2), as follows:

1NSmaz — MSmin

BGmaz - BGmm

ins = Q[(insmin + .BG)(1+ A.(F + E)). (15)

where the parameter corresponds to the break-points of the piece-wise linear curve

0 = (BGmin; BGmaz; iMSmin, 1NSmaz) (16)
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Figure 2: Parameterising the insulin rule by the break-points.

F E denotes scaled effect of food and exercise, A is a sensitivity parameter for food and exercise,
and

MSmin,  1NS < iNSmin,
Q) = 1NSmaz, NS > MNSmaw, (17)
round(-), otherwise.

A default value of A = 0.1 is used in clinical management. Good performance is indicated by

achieving low cost, as defined by the criterion function MAGE.

In this quest of the optimal rule parameters, there are obvious questions that must be settled;

whether performance can be improved, and if so, how and by how much.
We address these questions by simulating a simple case of

BGyy1 = F(BGy,insk, vk) (18)
ins, = Ho(BGk) (19)

where the diabetic plant is a function of immediate past BG and insulin only, v, represents

randomness, and the insulin rule is only a function of glucose,

1NSmaz — 1MSmin

B Gma:c - B Gmm

ins = Q[(inSmin + B@)). (20)

The parameter @ is as defined in Equation 16.

We want to find the parameter or set of parameters 8* for the best performing rule #g by direct
adaptive control, as illustrated in Figure 3. The diabetic “subjects” are Markovian artificial
patients, represented by Equation 18, and the rule is as in Equation 19. The rule performance

is measured by the M-value function, whose output is taken by the tuner to update 8 towards

0.



Diabetic subject )> BG .| iBG)=
T F MAGE
cost
Controlfer B
ins H Y

Tuner

Figure 3: Direct adaptive control set-up to find the optimal rule parameter(s).

The known cost function J(BG) is a function of blood glucose level. To find the optimal
parameter, we need a cost function with respect of the parameter, J(8), about which we have

no direct information.

An intuitive idea of the minima locations would suggests a set of initial parameters for the
adaptation algorithm. A knowledge of the number of minima region(s) would give us information

on the feasibility of a gradient descent algorithm to find the global minimum.

We approximate the expected cost E[J(0)] for a range of parameters 8 by the empirical mean
+ Zi\;l Jx (@) along a typical evolution of the controlled decision Markov Chain. This empirical
mean is the MAGE function itself. With N = 300 a good approximation to E[J(8)] is attained.
The numerical estimation of the expected value is conducted over 100 runs, each of 300 iterations.
This is equivalent to calculating MAGE with K = 300 (i.e. over ten weeks), and averaging 100
MAGE values.

The cost surface E[J(0)] is a four dimensional hypersurface. For visualisation purposes, we
show projections of the whole cost surface, fixing (inSmin, iNSmaz). The expected values were
computed for the following pairs of (inSmin,iNSmaz): MSmin € {0,3,5},inSmaer € {10,15,20}.
The experiment is conducted on Markovian subjects I, H and O, which represent the behaviour
of ideal, hyperglycaemic and oscillatory subjects respectively. The latter two respective cases

denote patients with tendencies of high BG levels and erratic BG fluctuations.

Figure 4 shows the cost surfaces for subjects I, H and O, for insulin boundaries (insmin, iNSmaz) =
(0,10). We can see that not only the shape is preserved, but the region of minimum cost is also
located in the same area (0 < BGpin S 2 mmol/l,0 < BGpez S 5 mmol/l). The minimum

expected costs are higher for subject H and O, as anticipated.

These simulations thus far suggest that the cost surface calculate using the M AGFE function
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Figure 4: Cost surfaces pertaining to three subject characteristics, for rules with

(1N Smin; iNSmaz) = (0,10) and 0 < BGin < BG e < 30.

have the following properties:

e monotonicity,

e unique minimum region.

which lend themselves to safe implementation of a gradient descent method to find the optimal
rule parameters. These properties are independent of the “person”. Different subjects of
different levels of “innate” controllability naturally yield different levels of optimum performance.
However, the parameter area yielding for different subjects, under different rules, is not very

sensitive to the characteristics of the individual.

4 Stochastic approximation

A stochastic approximation of the steepest descent algorithm is implemented to locate the opti-
mal parameter, or neighbourhood of optimal parameters.The parameter vectors @ are updated

in the direction of negative gradient to the cost function J,

Ori1 = 0p — . VJI(0y). (21)

We need to estimate the gradient of this unknown cost function J(@), to determine the direction



we should optimise. We estimate the gradient of the cost function by random perturbation [4]

Al

(22)
A_l

n

where the perturbation vector A is randomly generated, with elements of a Bernoulli 1 distri-

bution.

Bearing in mind that the plant F is stochastic, we need to update in a direction negative gradient
on average. We can approximate the effect of averaging by updating with small step sizes «g.
The magnitudes of adaptation step size a and perturbation size vy can initially be not so small

(in the order of 1 mmol/]1 and 1 Insulin Unit respectively), and decrease monotonically

Y0
Yet1 = Yoo + ma (24)
0< o,y <1. (25)

Initially, it is relatively safe to perturb and update more boldly, but as the algorithm hopefully
approaches the minimum cost region, the parameters should be more cautiously updated. The
step and perturbation sizes are kept above a lower bound oy and 74, such that the algorithm

never really terminates.

From the series of experiments we observe that in order to arrive in the optimal region and
remain there, we need to pay attention to the step sizes and initial parameters. Safe values for
initial parameters can be guessed from the cost surfaces we explored. We find that BGp, =
0, BG oz = 10 mmol/l (accepted border for normal-high BG levels), insm,, = 0.5ins, and

iNSmaz = 2908, are reasonable safe values to use.

The main caution to note, with regard to choices of initial parameters, is to avoid the high cost
plateaux in J(@). If the adaptation is started with an initial parameter 8y = (0,10, 15, 20), for
example, it is likely to remain in that high cost plateau (see Figure 4 for reference). However, the
above parameter corresponds to a rule which is utterly nonsensical. This rule advices patients
to take no insulin unless their BG level exceeds 15 mmol/l. No diabetic person would survive

very long under this insulin rule!

It seems that most sensible rules should sit in the region of non-zero gradient, hence enabling

the algorithm to move towards parameters of lower costs.



We find that even if the unsensible initial parameter is applied, it is still possible to escape that
area of maximum cost, by using relatively large initial step size. Small step size is typically wise,
for a conservative search and to approximate averaging. However, if the initial parameter sits in
a maximum plateau, larger steps are necessary to jolt the adaptation out of that area. Thus it
is appropriate to initiate the algorithm with step size in the order of one unit (both in glucose
and insulin), but then the step size should decrease as the algorithm proceeds. As shown in

Equation 23, the step size decreases as k=%, where k is the iteration index and 0 < ¢ < 1.

We need to bear in mind as well that the real system is likely to be time variant. The optimal
parameter may shift, so it is a good idea to keep the algorithm “searching”. Thus we need
to place a lower bound to the step size «, such that @ -» 0 as £ — oo. This strategy has a
disadvantage, that if the optimal parameter does not actually change, then the algorithm would
not reach it. If it reaches it at a point in time, it would move away again. However, this is
not so much of an issue, if a;;, is kept small. As we see in the surface plots, that the family
of optimal parameters cover a reasonably sized neighbourhood. Small movements around that
neighbourhood is unlikely to cause movements towards significantly higher cost regions. The

benefit of keeping the algorithm alive is worth this small cost.

5 Discussion and concluding remarks

We have conceptually shown that it is feasible to control a complex system as glucose metabolism
in a constrained situation, by means of direct control derivation. This approach is relatively
simple, bypassing the need of constructing a model of the complex plant, for which we have

insufficient data. This approach is also consistent with the clinical management scheme.

This situation pose lack of clarity in a few aspects, about the state of the system and the control
goal itself. The state is not defined, and is likely to be infinite. In any case, there is inadequate
information to observe the state. This direct approach allows us to derive the control without a

detailed knowledge of the plant state.

However, it is crucial to formulate a definite control goal. We infer a control objective in terms
of blood glucose level from the current clinical scheme benchmark, the HbA;.. The criterion we
employ aim to minimise glucose deviations, taking into account both the mean and variance of

blood glucose.



Thus far, HbA;. has only been related to BG-mean. Taking this interpretation means that the
current clinical management only aims to control BG-mean, and not paying much attention
to the variance. This is not in line with the actual practice, where wide BG fluctuation is
considered equally undesirable as a high mean. There is no strict lower bound to this goal. If
HbA1. < 7% were to be taken as a control goal, an optimiser would look for the lowest possible

value, potentially causing glucose to plunge too low.

The M AGE function has an advantage, that it penalises both low and high glycaemic levels.
Widely fluctuating glycaemic levels give a high M AGE score, even if the BG-mean sit in the
range specified for that score. This makes the M AGFE function an appropriate penalty function
with which to formulate a control goal. It reflects the populational measure, it allows continu-
ous monitoring of control performance, and it penalises both mean and variance of BG levels,

consistent with the day-to-day practice of BG management.

Thus far, our algorithm has been trialled only in simulation “subjects”. Simulation experiments
show that the algorithm is capable of finding the rules which would yield the “optimal” control
performance, as measured by the MAGE cost function. Whether it would perform similarly

when a person is involved, instead of a Markov model, remains to be seen.

There are remaining questions which can only be answered by clinical trial on diabetic subjects.
Would the possibly more complex system, such as a real human body, affect the performance
of the algorithm? Would it still find the “optimal” rules in reasonable time? It would be
particularly interesting to observe the algorithm performance on a brittle diabetic. Would it

actually make a difference to the person, and by how much?

There are remaining non technical issues if such a device is to be released in the market. Firstly,
a framework for the legal liabilities need to be established. Secondly, there is a question of user
acceptance. Thus far we have encountered two practically opposite camps, with regard to the
usage of an advisory device, those who want it, and those who don’t. We encounter diabetic
people who are at lost with the uncontrollability of their glycaemia and people who are far away
from medical attention. These people are very enthusiastic to accept developments which offer

assistance, and a hope for a better glycaemic profile.

However, there are those who believe that diabetics should understand their own bodies. Using
technologial aid may lead to dependency to such devices, and rob them of the empowerment of

this understanding. These people typically have better control of their own BG level, and have
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some sort of support group in their community.
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