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Abstract

Exploiting the fact that standard models of within-host viral
infections of target cell populations by HIV of Perelson et al
and Nowak and May give rise to competitive three dimensional
dynamical systems, we provide a global analysis of their dy-
namics. If the basic reproductive numberR0 < 1, the virus
is cleared and the disease dies out; ifR0 > 1 then the virus
persists in the host, solutions either approaching a chronic dis-
ease steady state or a periodic orbit. The latter can be ruled out
in some cases but not in general. Also simple drug treatment
schemes are investigated.

1 Introduction

Recently there has been a substantial effort in the mathemati-
cal modeling of HIV dynamics see e.g. [9]. Perelson and Nel-
son [12] and Nowak and May [10] provide excellent reviews.
These models focus on the disease dynamics within an infected
individual and contrast with an earlier parallel literature on the
dynamics within the human population. Simple HIV models
have played a significant role toward a better understanding of
the disease and the various drug therapy strategies used against
it. For example, they provided a quantitative understanding
of the level of virus production during the long asymptomatic
stage of HIV infection, see [11, 12, 10].

We focus on the HIV models here but note, following [10],
that the basic model applies to many other viral infections. A
brief review of the salient features of the role of HIV in the
disease will be useful. The mechanism of an HIV infection is
as follows: First, the HIV virus enters its target, a T cell. In-
side this cell it makes a DNA copy of its viral RNA, hence it
falls into the class of so-called retroviruses. In this process it
needs the enzyme reverse transcriptase (RT). The viral DNA
is then inserted into the DNA of the T cell which will hence-
forth produce viral particles that can bud off the cell to infect
other uninfected T cells. Before leaving the host cell the virus
particle is equipped with protease, an enzyme used to cleave a
long protein chain. If this feature is lost, the virus particle is
not capable of successfully infecting other T cells.

The models considered in [12, 10] have three state variables:T ,
the concentration of uninfectedT cells,T ∗, the concentration
of productively infectedT cells, andV , the concentration of
free virus particles in the blood. In chemical reaction notation,

the model can be written

T + V → T ∗ → NV

because mass action reaction terms are used and each infected
T cell is assumed to produceN viral particles over its life span.
The interaction between these cells and virus particles is then
given by the following equations:

Ṫ = f(T )− kV T

Ṫ ∗ = −βT ∗ + kV T (1)

V̇ = −γV + NβT ∗

where we have relabeled many of the parameters used in [12,
10]. The functional form off differs by author:

1. (Perelson et al [12]):f(T ) = f1(T ) ≡ δ − αT + pT (1−
T

Tmax
).

2. (Nowak-May [10]):f(T ) = f2(T ) ≡ δ − αT .

Parametersα, β, γ, δ, k, N, p andTmax are positive.

We briefly summarize the interpretation of the different param-
eters in the model. Parametersα, β andγ are the death rates
of the uninfected T cells, the infected T cells and the virus par-
ticles respectively.k is the contact rate between uninfected T
cells and virus particles.δ represents a constant production of
T cells in the thymus. In the literature this process is not always
assumed to be constant, but to depend on virus loads. Usually
δ is then replaced by a decreasing function of the concentration
of virus particles.N is the average number of virus particles
produced by an infected T cell. In casef = f1, healthyT -
cells are assumed to proliferate logistically, although the mech-
anisms forT -cell proliferation are largely unknown. Thep and
Tmax are the growth rate, respectively carrying capacity asso-
ciated to a logistic growth of uninfected T cells in the absence
of virus particles, infectedT -cells and natural body sources
such as the thymus. Note that simplifying the logistic term
pT (1−(T +T ∗)/Tmax) to pT (1−T/Tmax) is not always per-
formed. From a mathematical point of view, this simplification
leads to a competitive system which opens up a whole arse-
nal of tools in the subsequent analysis. We will elaborate on
this below. Another simplification, found in all models in the
literature, is that (logistic) proliferation ofT ∗ cells has been
neglected.

Both Perelson et al and Nowak and May ignore the loss term
−kV T which should appear in theV equation, i.e.,

V̇ = −γV + NβT ∗ − kV T,



representing the loss of a free-virus particle once it enters the
target cell, arguing that this small term can be absorbed into
the loss term−γV . We will consider (1) with and without this
term added on.

An important feature of this model is that it ignores the reac-
tion of the immune system, and therefore the model describes
a worst-case scenario in some sense. See [10, 9] for models
which include an immune response to the virus. More realistic
models also include a compartment for latently infected T cells
[12, 10] which are capable of but not actively producing virus.
A related modeling approach consists in incorporating a delay
term describing the delay between the time of infection of a T
cell and the time of emission of virus particles from this cell
[2]. Our model also neglects virus mutations which occur very
frequently and on a fast time-scale. Some of these mutations
cause drug resistance which makes effective treatment a very
difficult task.

System(1), with or without the−kV T term in theV equation,
is competitive with respect to the coneK := {(T, T ∗, V ) ∈
R3|T, V ≥ 0, T ∗ ≤ 0}, see [13]. Indeed, the Jacobian matrix
of system(1) at an arbitrary point ofR3

+ possesses the follow-
ing structure (where a0 can be replaced by either a+ or a−):∗ + −

+ ∗ +
− + ∗

 (2)

which is sign-symmetric. The incidence graph associated to
this matrix, where edges between the nodes are furnished with
a + or a−sign, depending on the sign of both correspond-
ing entries in the above Jacobian matrix, satisfies the follow-
ing property: Every closed loop in this graph possesses an odd
number of edges with−signs. This property implies that the
system is competitive. Alternatively, the change of variables
T ∗ → −T ∗ results in a system the Jacobian for which has non-
positive off diagonal terms on the relevant domain and hence is
competitive in the usual sense. The theory of competitive (and
cooperative) systems was initiated by M. Hirsch in a series of
six well-known papers, of which we list [4, 5, 6, 7]. For a more
recent review, see [13].

A particular consequence of the theory of competitive systems
is a generalization of the Poincaré-Bendixson Theorem to di-
mension3, see e.g. [4, 5] or Theorem4.1 in [13]: A com-
pact limit set of a competitive system inR3 which contains no
steady states is a periodic orbit. Furthermore, a periodic orbit
of a competitive system inR3 must contain a steady state in-
side a certain topological closed ball on the surface of which
lies the periodic orbit [13]. These results will play a major role
in our analysis.

We will also exploit the “isomorphism” between system(1)
with f = f2 and the standard SEIR model with constant popu-
lation size, analyzed by Li and Muldowney in their well-known
paper [8]. Although, this isomorphism breaks down when
f 6= f2 or when the−kV T term is included in theV equa-
tion, the method used by Li and Muldowney to prove orbital
asymptotic stability of any periodic orbit, and thereby to de-

rive a contradiction to their existence, extends under suitable
restrictions.

We identify a basic reproductive number,R0, for the model
which gives the number of infected T cells produced by a single
infected T cell in a healthy individual. Our main results are
formulated in terms of this number and extend the existing ones
in the following five directions:

1. If R0 < 1 we show that the virus is cleared.

2. If R0 > 1 then a chronic disease steady state exists which
is globally asymptotically stable under certain conditions.
In particular, these conditions are satisfied for the special
casef = f2 using parameter values appropriate for HIV.

3. Forf = f1 and bothi = 0, 1, orbitally asymptotically sta-
ble periodic orbits are shown to exist and to attract almost
all solutions under suitable conditions ifR0 > 1. These
conditions are apparently not satisfied for HIV.

4. Part of the analysis of our model holds for rather general
functionsf which model healthyT cell dynamics, be-
cause this function is poorly known. We will show that
particular choices forf may result in different qualitative
behavior. For example, forf = f2 the chronic disease
steady state -if it exists- is always locally asymptotically
stable, while forf = f1 this steady state may be unsta-
ble and sustained oscillations may occur. This sensitivity
of the behavior tof in particular calls for a better under-
standing of mechanisms ofT cell proliferation.

5. Applications are made to drug therapy following Perelson
and Nelson’s treatment in [12].

2 Main Results

We consider a model of a virus infecting a target cell popula-
tion. Denoting byT the target cell and using the same symbol
for its concentration in the appropriate bodily fluid, we assume
that the target cell population is regulated in a healthy individ-
ual according to some dynamics given by

Ṫ = f(T )

wheref is a smooth function. We expect homeostasis to be
maintained in a healthy individual withT cell levels at some
positive steady statēT > 0. Therefore, assume thatf satisfies

f(T ) > 0 if 0 ≤ T < T̄ , f(T ) < 0 if T > T̄ , f ′(T̄ ) < 0,
(3)

Consider an individual infected with a virusV which attacks
target cells producing productively infected cellsT ∗ which in
turn produce on averageN virus particles during its life span.
Following [12, 10], we obtain the following system for the dy-
namics ofT, T ∗, V .

Ṫ = f(T )− kV T

Ṫ ∗ = −βT ∗ + kV T

V̇ = −γV + NβT ∗ − ikV T (4)



wherei = 0 if we choose, following [12, 10], to ignore the loss
of a viral particle when it enters a target cell, ori = 1 when we
do not.

The basic reproductive number for the model is easily deter-
mined by considering the fate of a single productively infected
cell in an otherwise healthy individual with normal target cell
levelT = T̄ . This infected cell producesN virions, each with
life spanγ−1, which will infect kT̄Nγ−1 healthy target cells.
Thus we expect that the amplification factor to bekT̄Nγ−1. In
fact,

R0 =
kT̄ (N − i)

γ
(5)

reflecting the loss of the original productively infected cell if
i = 1. In any case, asN is typically large, this is a minor point.

Our main result is the following one which shows that the
global dynamics is largely determined byR0.

Theorem 1. 1. ForR0 < 1 the only steady state is the virus-
free stateE0 ≡ (T̄ , 0, 0) and it is globally attracting; the
virus is cleared.

2. For R0 > 1, in addition to the disease-free state, which is
unstable, there is a “chronic disease” steady stateEe ≡
(Te, T

∗
e , Ve) given by

Te = T̄ /R0, T ∗e = γVe/(N − i)β, Ve = f(Te)/kTe.
(6)

which is locally attracting iff ′(Te) ≤ 0, e.g. when
f = f2.
In particular, withR0 as a bifurcation parameter,E0 ex-
changes its local stability properties withEe whenR0

passes through1, makingEe locally attracting ifR0 > 1
andR0 − 1 small.
The disease persists in the sense that there existsε > 0
andM > 0, independent of initial data(T0, T

∗
0 , V0) sat-

isfyingT ∗0 + V0 > 0, such that

ε < T (t), T ∗(t), V (t) < M

for all large t.
The omega limit set of every solution with initial condi-
tions as restricted above, either containsEe or is a non-
trivial periodic orbit.
If f ′(T ) < 0 for T ∈ [0, T̄ ] and denoting0 < α∗ =
−maxT∈[0, T̄ ] f

′(T ), Ee is a globally asymptotically sta-
ble steady state for system(4) with respect to initial con-
ditions not on theT axis in casei = 0 or in casei = 1
andkf(0)−min(α∗, β)β < 0.
In the special casef = f1, for both i = 0, 1, there exist
parameter values for whichEe is unstable with a two di-
mensional unstable manifold (see Lemma 4). In this case,
there exists an orbitally asymptotically stable periodic or-
bit; every solution except those with initial data on the
one-dimensional stable manifold ofEe or on theT axis
converges to a non-trivial periodic orbit.

Observe that, asf(T ) > 0 only if T < T̄ , the positivity ofVe

requires thatTe < T̄ , or equivalently,R0 > 1.

Our main result says that if a typical productively infected tar-
get cell, introduced into an otherwise healthy individual where
T = T̄ , cannot replace itself by producing virus that infect
at least one healthy target cell, then the virus is eventually
cleared and the individual returns to the virus-free state. How-
ever, if the infected cell can replace itself, then the disease
persists indefinitely into the future in the sense that the viral
load is ultimately bounded from below by an initial-condition-
independent value. Moreover, the omega limit set either con-
tains the chronic disease stateEe, coinciding with it in case
it is locally attracting, or is a nontrivial periodic orbit. In the
latter case, the viral load and the target cell populations cycle
periodically.

If f = f2 and R0 > 1, then f ′ = −α < 0 is automati-
cally satisfied and thereforeEe is globally asymptotically sta-
ble if i = 0 or if i = 1 and kf2(0) − min(α∗, β)β =
kδ − min(α, β)β < 0. In case of HIV,α ≤ β is expected
to hold, expressing that removal rates for healthy target cells is
less than that for infected target cells, and thus the last condi-
tion reduces tokδ − αβ < 0, which is easily verified for the
(biologically plausible) numerical data for HIV.

In the special casef = f1, Ee is asymptotically stable when
R0 > 1 andR0−1 small but this stability can be lost for certain
parameter values. Periodic oscillations in the viral load and T
cell populations are possible, see [3]. The parameter values are
not chosen to match those for a particular viral infection; they
are chosen simply to establish the possibility for oscillations.
See Lemma 4 for more information about parameter ranges for
which periodic solutions are expected.

Our results can be used to give a mathematically rigorous jus-
tification for the plausible approximation arguments employed
by Perelson and Nelson [12] to show that combination drug
therapy can be effective in clearing the virus. Currently, the
main drugs are RT inhibitors and protease inhibitors and in
practice cocktails of several of these drugs have been most suc-
cessful. The first type inhibits the copying of viral RNA to
DNA and results in unsuccessful infection of the T cell by the
virus. The second type results in virus particles that are non-
infectious. Following [12], the system describing uninfected
and infected T cells, infectious virusVI and noninfectious virus
VNI is given by

Ṫ = f(T )− k(1− ηRT )VIT

Ṫ ∗ = −βT ∗ + k(1− ηRT )VIT

V̇I = −γVI + Nβ(1− ηPI)T ∗ − ikVIT (7)

V̇NI = −γVNI + NβηPIT
∗

where, again,i = 0 corresponds to the system treated in [12]
andi = 1 takes account of the loss of a virus particle when it
enters a target cell (whether or not the virus is able to convert
its RNA to DNA and insert itself in the host genome). The
“effectiveness” coefficientsηRT for RT inhibitor andηPI for
protease inhibitor are assumed to lie somewhere between zero,
meaning totally ineffective, and one, which represents100%
effectiveness.



Of course, the primary focus of drug therapy is on the possibil-
ity of clearing the virus. Observing that the first three equations
are decoupled from the last one and that this subsystem is es-
sentially similar to (4), we can calculate the basic reproductive
number,Rc

0, under combination therapy by linearizing about
the virus-free stateE0 to obtain

Rc
0 =

kT̄ [N(1− ηRT )(1− ηPI)− i]
γ

(8)

Comparing with (5), we see that in essence,N has been re-
duced toN(1−ηRT )(1−ηPI). As i is typically much smaller
thanN and can be neglected, we see that the two inhibitors act
in concert to reduceR0 in (5) by the factor(1−ηRT )(1−ηPI).
If Rc

0 < 1, the virus is cleared.

Corollary 1. If Rc
0 < 1 then the virus-free steady stateE0 is

globally attracting. IfRc
0 > 1, thenE0 is unstable.

In view of the fact that current treatment does not allow for
HIV eradication in an individual, this result implies either one
of the following: The efficiency of drugs is never high enough
to makeRc

o < 1 or model(7) is not appropriate to describe
HIV dynamics in a treated individual. It is argued in the recent
paper by Callaway and Perelson that the first explanation is not
viable. The second is adopted instead and modified models are
proposed to bring reality and theory closer to each other, see
[1] for details.

3 Sketches of proofs

Due to space constraints we cannot include all proofs. For de-
tails we refer to [3].

Lemma 1. The closed positive orthant is positively invariant
for (4) and there existsM > 0 such that all solutions satisfy
T (t), T ∗(t), V (t) < M for all large t.

Proof. The positive invariance of the positive orthant is triv-
ial; we sketch the ultimate boundedness argument. Since
Ṫ < f(T ), we see thatT (t) < T̄ +1 for all larget, sayt > t0.
Let S = maxT≥0 f(T ). Adding the first two equations gives
Ṫ + Ṫ ∗ = f(T ) − βT ∗ ≤ S − βT ∗. Let A > 0 be such that
βA > S + 1. Then, so long asT (t) + T ∗(t) ≥ A + T̄ + 1 and
t > t0 we haveṪ + Ṫ ∗ < −1. Clearly, there must existt1 > t0
such thatT (t) + T ∗(t) < A + T̄ + 1 for all t > t1.

The asymptotic bound forT ∗(t), namely,T (t)∗ ≤ A + T̄ + 1,
together with the differential inequalitẏV ≤ −γV + Nβ[A +
T̄ +1], which holds for larget, leads immediately to the asymp-
totic boundV (t) ≤ γ−1Nβ[A + T̄ + 1].

Lemma 2. If R0 < 1 then the virus-free stateE0 is a locally
asymptotically stable steady state of system(4); if R0 > 1 then
it is unstable.

This is based on a simple linearization argument. The same
result holds for (7) withRc

0 replaced byR0.

Lemma 3. If R0 < 1, then all solutions approach the virus-
free stateE0.

Proof. On consideration of the competitive vector field given
by (4) on the three faces of the positive orthant, we see that
any nontrivial periodic orbit must lie entirely in the interior of
the positive orthant. IfP denotes such a nontrivial periodic or-
bit, then it follows that the smallest boxB containingP whose
sides are parallel to the coordinate planes must also lie interior
to the positive orthant. We can expressB asB = [p, q]K where
K denotes the coneK ≡ {(T, T ∗, V ) : T, V ≥ 0, T ∗ ≤ 0}.
Indeed, ifXP (respectively,XP ) denotes the maximum (re-
spectively, minimum) of coordinateX = T, T ∗, V on the peri-
odic orbitP , thenp = (TP , T ∗P , VP ) andq = (TP , T ∗P , V P ).
By Proposition 4.3 [13],B must contain a steady state of (4).
However,E0 is the only steady state andE0 /∈ B. We con-
clude that no nontrivial periodic orbit exists. By the Poincaré-
Bendixson theory for three dimensional competitive systems
and the local stability ofE0, all solutions must approachE0 in
the limit.

The same result holds for (7) withRc
0 in place ofR0. The

entirely similar argument uses the fact that an endemic steady
state exists only when the virus-free state is unstable (Rc

0 > 1).

Next we deal with the stability properties of the nontrivial equi-
librium pointEe.

Lemma 4. Let R0 > 1 and f ′(Te) ≤ 0, then the nontrivial
steady stateEe ∈ int(R3

+) is locally asymptotically stable for
system(4), for i = 0, 1. If R0 > 1 and f = f1, thenEe is
unstable with a two dimensional unstable manifold under each
of the following conditions:

(a) i = 0 with Tmax large enough and

p/Tmax = −n/2m, (9)

holds.

(b) i = 1 with kTmax large enough:

kTmax > β + γ +
2γ

N − 1
(10)

andp large enough.

Lemma 5. If R0 > 1, then there existsε > 0, independent
of initial conditions satisfyingT ∗(0) + V (0) > 0, such that
lim inft→∞X(t) > ε for X = T, T ∗, V .

Proof. The result follows from an application of Theorem4.6
in [14] with X1 = int(R3

+) andX2 = bd(R3
+). This choice is

in accordance with the conditions stated in this Theorem. Fur-
thermore, note that by virtue of Lemma1 there exists a com-
pact setB in which all solutions of system(4) initiated inR3

+,
ultimately enter and remain for ever after. The compactness
condition(C4.2) is easily verified for this setB. Denoting the
omega limit set of the solutionx(t, x0) of system(4) starting



in x0 ∈ R3
+ by ω(x0) (which exists by Lemma1), we need

to determine the setΩ2 = ∪y∈Y2ω(y) whereY2 = {x0 ∈
X2|x(t, x0) ∈ X2, ∀t > 0}. From the system equations(4)
follows that all solutions starting inbd(R3

+) but not on theT
axis leavebd(R3

+) and that theT axis is an invariant set, im-
plying thatY2 = {(T, T ∗, V )T ∈ bd(R3

+)| T ∗ = V = 0}.
Furthermore, it is easy to see thatΩ2 = {E0} as all solutions
initiated on theT axis converge toE0. ThenE0 is a covering of
Ω2, which is isolated (sinceE0 is a hyperbolic steady state un-
der the assumption of the Theorem) and acyclic (because there
is no nontrivial solution inbd(R3

+) which links E0 to itself).
Finally, if it is shown thatE0 is a weak repeller forX1, the
proof will be done.
By definition,E0 is a weak repeller forX1 if for every solution
starting inx0 ∈ X1

lim sup
t→+∞

d(x(t, x0), E0) > 0 (11)

We claim that(11) is satisfied if the following holds:

W s(E0) ∩ int(R3
+) = ∅ (12)

whereW s(E0) denotes the stable manifold ofE0. To see this,
suppose that(11) does not hold for some solutionx(t, x0)
starting in x0 ∈ X1. In view of the fact that the closed
positive orthant is positively invariant for system(4) (recall
Lemma 1), it follows that lim inft→+∞ d(x(t, x0), E0) =
lim supt→+∞ d(x(t, x0), E0) = 0 and thus that
limt→+∞ x(t, x0) = E0 which is clearly impossible if
(12) holds.
What remains to be shown is that(12) holds. To that end,
recall that the Jacobian matrix of system(4) at E0, is unstable
if R0 > 1. In particular,J0 possesses one eigenvalue with
positive real part, which we denote asλ+ and two eigenvalues
with negative real part,f ′(T̄ ) and an eigenvalue which we
denote asλ− (Note thatλ− may be equal tof ′(T̄ )). We
proceed by determining the location ofEs(E0), the stable
eigenspace ofE0. Clearly (1, 0, 0)T is an eigenvector ofJ0

associated tof ′(T̄ ). If λ− 6= f ′(T̄ ), then the eigenvector
associated toλ− has the following structure:(0, p2, p3)T ,
wherep2 andp3 satisfy the following eigenvector equation:(

−β kT̄
Nβ −γ − ikT̄

) (
p2

p3

)
= λ−

(
p2

p3

)
(13)

If λ− = f ′(T̄ ), thenλ− is a repeated eigenvalue and an associ-
ated generalized eigenvector will possess the following struc-
ture: (∗, p2, p3)T where the value of∗ is irrelevant for the
sequel andp2 andp3 also satisfy(13).
We claim that in both cases (i.e.λ− 6= f ′(T̄ ) andλ− = f ′(T̄ ))
the vector(p2, p3)T /∈ R2

+. The matrix in(13) is an irre-
ducible Metzler matrix, which -by an immediate consequence
of the Perron-Frobenius Theorem- possesses a simple, real and
dominant eigenvalue1. Clearly, this dominant eigenvalue is
λ+. But the Perron-Frobenius Theorem also implies that ev-
ery eigenvector which is associated to an eigenvalue, different

1Dominantshould be interpreted in the sense that the real part of any other
eigenvalue is strictly smaller than this real eigenvalue.

from this dominant eigenvalue, does not belong to the closed
positive orthant. Applied here, this means that(p2, p3) /∈ R2

+.
Consequently,Es(E0) ∩ int(R3

+) = ∅ and therefore also
W s(E0) ∩ int(R3

+) = ∅, which concludes the proof.

Lemma 4 provides sufficient conditions for the Jacobian atEe

to have two eigenvalues with positive real part and one negative
eigenvalue. The dynamical consequences of this are described
in the following result.

Proposition 1. If R0 > 1, the omega limit set of a solution
which is not initiated on theT axis either containsEe or is a
nontrivial periodic orbit. IfR0 > 1 and if the Jacobian matrix
at Ee has two eigenvalues with positive real part and one neg-
ative eigenvalue, then there exists an orbitally asymptotically
stable periodic orbit. Every solution except those with initial
data on the one-dimensional stable manifold ofEe or on theT
axis approaches a non-trivial periodic orbit.

Proof. For R0 > 1 it follows from the persistence result in
Lemma5 that the omega limit set of a solution which is not
initiated on theT axis cannot contain a point on theT axis.
Since there is only one steady stateEe which does not belong
to theT axis, the first statement of the Theorem follows from
the generalized Poincaré-Bendixson Theorem for competitive
systems in dimension3.

The assertions regarding the existence of an orbitally asymp-
totically stable periodic orbit follow from Theorem 1.2 in [15]
and the fact that nonlinearities in (4) are analytic. In order to
apply that result, we take the domain for (4) to be the inte-
rior of the positive orthant, in which the only steady state is
Ee. Lemma 1 and Lemma 5 imply the dissipativity hypothe-
sis of Theorem 1.2 is satisfied. The negativity of the Jacobian
determinant, also required for Theorem 1.2, follows from our
hypotheses concerning the eigenvalues. The assertion that suit-
ably restricted forward orbits approach a periodic orbit follow
from Theorem 4.2 in [13]. That result is stated for systems
which are competitive in the traditional sense and so it applies
to (4) since it can be transformed to a system which is com-
petitive in the traditional sense. See also the remarks following
Theorem 4.2 where it is noted that the second hypothesis of
Theorem 4.2 holds if the Jacobian matrix is irreducible.

Next is one of the main results of this paper.

Theorem 2. Suppose thatR0 > 1, f ′(T ) < 0 for T ∈ [0, T̄ ]
and denote0 < α∗ = −maxT∈[0, T̄ ] f

′(T ). If i = 0 or if
i = 1 andkf(0) − min(α∗, β)β < 0, thenEe is a globally
asymptotically stable steady state for system(4) with respect
to initial conditions not on theT axis.

Proof. The proof is based on an extension of the Poincaré-
Bendixson Theorem for the class of3-dimensional competi-
tive systems [13], and a powerful theory of second compound
equations to prove asymptotic orbital stability of periodic so-
lutions, see [8] and cited references therein. Under the as-
sumptions of the Theorem, system(4) possesses an steady state



Ee ∈ int(R3
+), which is unique inint(R3

+). Moreover, from
the proof of Lemma 5 follows that the omega limit sets of solu-
tions not initiated on theT axis are inint(R3

+). We claim that
the only possible omega limit sets of solutions of system(4)
areEe or nontrivial periodic orbits. Indeed, if an omega limit
set of a solution does not possessEe, then it cannot contain an-
other steady state (Ee is the unique steady state inint(R3

+)), so
it must be a nontrivial periodic orbit according to the extension
of the Poincaŕe-Bendixson Theorem for competitive systems.
On the other hand, if an omega limit set does containEe, it is
{Ee} becauseEe is a locally asymptotically stable steady state
of system(4) according to Lemma 4 (notice that the condition
needed to apply this Lemma,f ′(Te) ≤ 0, is satisfied here be-
causeTe = T̄ /R0 < T̄ andf ′ < 0 in [0, T̄ ] by assumption),
which establishes the claim. Finally we will show below that
if system(4) possesses a nontrivial periodic solution, then this
solution must be asymptotically orbitally stable. This fact will
imply thatEe is a globally asymptotically stable steady state of
system(4) with respect to initial conditions not on theT axis,
which concludes the proof of this Theorem, see [8]. We prove
the following: If system(4) possesses a nontrivial period so-
lution, then this solution is asymptotically orbitally stable. De-
note the periodic solution byp(t) ≡ (p1(t), p2(t), p3(t))T and
suppose that its minimal period isω > 0. Recall that from the
proof of Lemma1

0 ≤ p1(t) ≤ T̄ , ∀t ∈ [0, ω] (14)

To establish asymptotic orbital stability of a periodic solution,
we resort to the so-called method of the second compound
equation, see [8] and cited references therein. The second com-
pound equation is the following periodic linear system:

ż =
∂f [2]

∂x
(p(t))z (15)

wherez = (z1, z2, z3)T and∂f [2]

∂x is derived from the Jacobian
matrix of system(4) and defined as follows:

∂f [2]

∂x
:=

j11 + j22 j23 −j13
j32 j11 + j33 j12
−j31 j21 j22 + j33


wherejkl is the(k, l)-th entry of the Jacobian matrix associ-
ated to system(4). The importance of the second compound
equation is that if system(15) is asymptotically stable, then
the periodic solutionp(t) is asymptotically orbitally stable for
system(4), see [8]. It can be shown that given the assumptions
of this theorem, the function

V (z1, z2, z3; p(t)) := sup{|z1|,
p2(t)
p3(t)

(|z2|+ |z3|)} (16)

is a Lyapunov function for system(15), see [3] for details.
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