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Abstract because mass action reaction terms are used and each infected

- - . T cell is assumed to producé viral particles over its life span.
E)f(pl(:_ltlng t?(: factt thaﬁ stancilatr_d mobde:_s”\(;f \;V'Itah'n'POSt V'tr he interaction between these cells and virus particles is then
infections of target cell populations by of Perelson et af, by the following equations:

and Nowak and May give rise to competitive three dimensional
dynamical systems, we provide a global analysis of their dy- T = f(T)—kVT

namics. If the basic reproductive numb®s < 1, the virus - X

. . . . ’ . ™ = —-pT T 1
is cleared and the disease dies outRif > 1 then the virus . AT™ + kV N (1)
persists in the host, solutions either approaching a chronic dis- V.= —V+NST

ease steady state or a periodic orbit. The latter can be ruled v(\)/itere we have relabeled many of the parameters used in [12,

in some cases but not in general. Also simple drug treatm(ir& The functional form off differs by author:
schemes are investigated. ' y '

1. (Perelsonetal [12)f(T) = f1(T) =6 — oT + pT(1 —
T
Toar )

Recently there has been a substantial effort in the mathematp, (Nowak-May [10]):f(T) = fo(T) =6 — oT.
cal modeling of HIV dynamics see e.g. [9]. Perelson and Nel-

son [12] and Nowak and May [10] provide excellent revieWarameters, 3, 7, 3, k, N, p andTya are positive.
These models focus on the disease dynamics within an infected

individual and contrast with an earlier paralle! literature on th&e briefly summarize the interpretation of the different param-
dynamics within the human population. Simple HIV model8ters in the model. Parameters/s and~ are the death rates
have played a significant role toward a better understandingfhe uninfected T cells, the infected T cells and the virus par-
the disease and the various drug therapy strategies used agifi8 respectivelyk is the contact rate between uninfected T
it. For example, they provided a quantitative understandi§!lS and virus particlesi represents a constant production of

stage of HIV infection, see [11, 12, 10]. assumed to be constant, but to depend on virus loads. Usually

_ ¢ is then replaced by a decreasing function of the concentration
We focus on the HIV models here but note, following [10ef virus particles. NV is the average number of virus particles

that the basic model applies to many other viral infections. Broduced by an infected T cell. In cage= fi, healthyT-
brief review of the salient features of the role of HIV in thee|ls are assumed to proliferate logistically, although the mech-
disease will be useful. The mechanism of an HIV infection ignisms forr-cell proliferation are largely unknown. Theand

as follqws: Fl_rst, the HIV virus enters _|ts tgrget, aT cell Ir_1TmX are the growth rate, respectively carrying capacity asso-
side this cell it makes a DNA copy of its viral RNA, hence igjated to a logistic growth of uninfected T cells in the absence
falls into the class of so-called retroviruses. In this processit virus particles, infected-cells and natural body sources
needs the enzyme reverse transcriptase (RT). The viral DNfch as the thymus. Note that simplifying the logistic term
is then inserted into the DNA of the T cell which will hencepT(l —(T+T")/Tmax) t0pT (1 — T /Timax) is ot always per-
forth produce viral particles that can bud off the cell to infeghrmed. From a mathematical point of view, this simplification
other uninfected T cells. Before leaving the host cell the virysads to a competitive system which opens up a whole arse-
particle is equipped with protease, an enzyme used 10 cleaygaf of tools in the subsequent analysis. We will elaborate on
long protein chain. If this feature is lost, the virus particle ifhis below. Another simplification, found in all models in the
not capable of successfully infecting other T cells. literature, is that (logistic) proliferation df’* cells has been

The models considered in [12, 10] have three state variables:neglected.

of productively infectedl” cells, andV’, the concentration of _ 1 7 which should appear in the equation, i.e.,

free virus particles in the blood. In chemical reaction notation,

1 Introduction

V =—V 4+ NBT* — kVT,



representing the loss of a free-virus particle once it enters tiie a contradiction to their existence, extends under suitable
target cell, arguing that this small term can be absorbed inmtsstrictions.
the loss term-~ V. We will consider (1) with and without this

term added on. We identify a basic reproductive numbedi,, for the model

which gives the number of infected T cells produced by a single
An important feature of this model is that it ignores the reaaafected T cell in a healthy individual. Our main results are
tion of the immune system, and therefore the model descrilfiesmulated in terms of this number and extend the existing ones
a worst-case scenario in some sense. See [10, 9] for modelhe following five directions:
which include an immune response to the virus. More realistic
models also include a compartment for latently infected T cellsl. If Ry < 1 we show that the virus is cleared.

[12, 10] which are capable of but npt a(?tl\{ely produqng VITUS. 5 Ry > 1then a chronic disease steady state exists which
A related modeling approach consists in incorporating a delay ™ . . : »
. . . . is globally asymptotically stable under certain conditions.
term describing the delay between the time of infection of a T ; i o .
In particular, these conditions are satisfied for the special

cell and the time of emission of virus particles from this cell casef — £, Using parameter values appropriate for HIV.
[2]. Our model also neglects virus mutations which occur very 2 gp pprop '

frequently and on a fast time-scale. Some of these mutation8. Forf = f; and bothi = 0, 1, orbitally asymptotically sta-
cause drug resistance which makes effective treatment a very ble periodic orbits are shown to exist and to attract almost
difficult task. all solutions under suitable conditionshif, > 1. These

System(1), with or without the—kV'T term in theV" equation, conditions are apparently not satisfied for HIV.

is competitive with respect to the cote := {(T’, ", V) € 4. Part of the analysis of our model holds for rather general
R* T, V >0, T* <0}, see [13]. Indeed, the Jacobian matrix  functions f which model healthyl" cell dynamics, be-

of system(1) at an arbitrary point oR? possesses the follow-  cause this function is poorly known. We will show that
ing structure (where @ can be replaced by eitheraor a—): particular choices fof may result in different qualitative
. 4 behavior. For. gxample, fof = f the chronic disegse
o @) steady staFe -if it exists- is always locally asymptotically
BT stable, while forf = f; this steady state may be unsta-

ble and sustained oscillations may occur. This sensitivity
which is sign-symmetric. The incidence graph associated to of the behavior tof in particular calls for a better under-
this matrix, where edges between the nodes are furnished with standing of mechanisms @f cell proliferation.
a + or a —sign, depending on the sign of both correspond- L i
ing entries in the above Jacobian matrix, satisfies the follow=>" Appllcatlon,s are made to drug therapy following Perelson
ing property: Every closed loop in this graph possesses an odd 2nd Nelson's treatment in [12].
number of edges with-signs. This property implies that the
system is competitive. Alternatively, the change of variabl& Main Results
T* — —T* results in a system the Jacobian for which has non- . o .
positive off diagonal terms on the relevant domain and hence/¥§ consider a model of a virus infecting a target cell popula-
competitive in the usual sense. The theory of competitive (afi@n- Denoting byl the target cell and using the same symbol
cooperative) systems was initiated by M. Hirsch in a series fgr its concentration in the appropriate bodily fluid, we assume

six well-known papers, of which we list [4, 5, 6, 7]. For a moréhat the target cell population is regulated in a healthy individ-
recent review, see [13]. ual according to some dynamics given by

A particular consequence of the theory of competitive systems T = f(T)

s a g_eneralization of the PoinéaBendixsqn Theorem to di'Wheref is a smooth function. We expect homeostasis to be
mensions3, see e.g. [4, 5] or Theorem1 in [13]: A COM-  ainained in a healthy individual with cell levels at some

pact limit set of a competitive system i’ which contains no ,sitive steady statg > 0. Therefore, assume thatsatisfies
steady states is a periodic orbit. Furthermore, a periodic orBit

of a competitive system if®> must contain a steady state in- f(7) >0if 0<T < T, f(T)<0if T > T, f'(T) <0,
side a certain topological closed ball on the surface of which 3

lies the periodic orbit [13]. These results will play a major rOI%onsider an individual infected with a virdé which attacks

in our analysis. target cells producing productively infected céll$ which in
We will also exploit the “isomorphism” between systei) turn produce on averag¥ virus particles during its life span.
with f = f, and the standard SEIR model with constant popé&ollowing [12, 10], we obtain the following system for the dy-
lation size, analyzed by Li and Muldowney in their well-knowmamics ofl’, T*, V.

paper [8]. Although, this isomorphism breaks down when 7o F(T) = kVT

f # fo or when the—kV'T term is included in thd” equa- .

tion, the method used by Li and Muldowney to prove orbital " = —pI"+kVT

asymptotic stability of any periodic orbit, and thereby to de- V = —AV 4+ NBT* —ikVT (4)



wherei = 0 if we choose, following [12, 10], to ignore the lossOur main result says that if a typical productively infected tar-
of a viral particle when it enters a target cell,ice 1 when we get cell, introduced into an otherwise healthy individual where
do not. T = T, cannot replace itself by producing virus that infect

at least one healthy target cell, then the virus is eventually

The basic reproductive number for the model is easily det%géared and the individual returns to the virus-free state. How-

mined by considering the fate of a single productively infecte : : ) i

cell in an otherwise healthy individual with normal target ce ver, i t_he m_fe_cted_cell can repla(_:e itself, then the dlsegse

level T = T. This infected cell produced virions, each with persists indefinitely into the future in the sense that the viral
) ' load is ultimately bounded from below by an initial-condition-

life span~~!, which will infect kT N~y~! healthy target cells. . . .
L - ST independent value. Moreover, the omega limit set either con-
Thus we expect that the amplification factor to¥eN~~"*. In ) L o A
tains the chronic disease staig, coinciding with it in case

fact,

KT(N — i) it is locally attracting, or is a nontrivial periodic orbit. In the
Ry = ——— (5) latter case, the viral load and the target cell populations cycle
] o v ) ] _Periodically.
reflecting the loss of the original productively infected cell i
i = 1. Inany case, ad is typically large, this is a minor point. If f/ = f2 andRq > 1, then f’ = —a < 0 is automati-

] ] ) ) cally satisfied and thereforg, is globally asymptotically sta-
Our main result is the following one which shows that thgie’if ; — 0 orif i = 1 and kf>(0) — min(a*, B)8 =

global dynamics is largely determined By. k& — min(a, 8)8 < 0. In case of HIV,a < 3 is expected

Theorem 1. 1. ForR, < 1the only steady state is the virus10 hold, expressing that removal rates for healthy target cells is
free stateE, = (T',0,0) and it is globally attracting; the less than that for infected target cells, and thus the last condi-
virus is cleared. tion reduces tdd — a8 < 0, which is easily verified for the

. N . ~ (biologically plausible) numerical data for HIV.
2. For Ry > 1, in addition to the disease-free state, which is

unstable, there is a “chronic disease” steady stéte = N the special cas¢ = fi, E. is asymptotically stable when
(T.,T*,V.) given by Ry > 1andRy—1 small but this stability can be lost for certain

~ parameter values. Periodic oscillations in the viral load and T

T.,=T/Ry, T;=~V./(N—-i)3, V.= f(Te)/kTe. cell populations are possible, see [3]. The parameter values are
(6) not chosen to match those for a particular viral infection; they

which is locally attracting if f'(7.) < 0, e.g. when are chosen simply to establish the possibility for oscillations.
[ =fa See Lemma 4 for more information about parameter ranges for
In particular, with Ry as a bifurcation parametez, ex- which periodic solutions are expected.
changes its local stability properties with, when R, . . . .
passes through, makingE, locally attracting if R, > 1 Qgr rgsults can be us.ed to give a ma}hemaﬂcally rigorous jus-
andR, — 1 small. tification for the plausible approximation arguments employed
The disease persists in the sense that there exists0 by Perelson and Nels_on _[12] to _show tha}t combination drug
and M > 0, independent of initial dat&Zp, Tz, V) sat- therapy can be effective in clearing the virus. Currently, the

isfyingT; + Vo > 0, such that main.drugs are RT inhibitors and protease inhibitors and in
practice cocktails of several of these drugs have been most suc-
e<T),T*(t),V(t) <M cessful. The first type inhibits the copying of viral RNA to
DNA and results in unsuccessful infection of the T cell by the
for all large ¢.

Th limit set of luti ith initial d_virus. The second type results in virus particles that are non-
€ omega limit Set of every soiution with initial ConGiz, ¢a oigys, Following [12], the system describing uninfected

:“?r?slas r_esdt_ncteg.tabove, either contaifs or is a non- and infected T cells, infectious vird4 and noninfectious virus
rivial periodic orbit. Vs is given by

If f/(T) < 0for T € [0, T] and denotingd < a* =

—maxrep, 1) f'(T), Ee is a globally asymptotically sta- 7= F(T) — k(1 — npr)ViT
ble steady state for systefh) with respect to initial con-

ditions not on thel” axis in casei = 0 or in casei = 1 ™ = T+ k(1 = nrr)ViT .
andkf(0) — min(a*, 8)3 < 0. Vi = —Vi+NB(—np)T* —ikViT  (7)
In the special cas¢ = f;, for bothi = 0, 1, there exist Vi = —Vni+ Npnp/T*

parameter values for whick. is unstable with a two di-

mensional unstable manifold (see Lemma 4). In this casejere, again; = 0 corresponds to the system treated in [12]

there exists an orbitally asymptotically stable periodic orandi = 1 takes account of the loss of a virus particle when it

bit; every solution except those with initial data on thenters a target cell (whether or not the virus is able to convert

one-dimensional stable manifold &% or on theT axis its RNA to DNA and insert itself in the host genome). The

converges to a non-trivial periodic orbit. “effectiveness” coefficientggr for RT inhibitor andnp; for

protease inhibitor are assumed to lie somewhere between zero,

Observe that, ag(T) > 0 only if T < T, the positivity of V., meaning totally ineffective, and one, which represelis%
requires thal, < T, or equivalently,R, > 1. effectiveness.



Of course, the primary focus of drug therapy is on the possibilemma 3. If Ry < 1, then all solutions approach the virus-
ity of clearing the virus. Observing that the first three equatiofiee stateF,.
are decoupled from the last one and that this subsystem is es-

sentially similar to (4), we can calculate the basic reproductiygoof. On consideration of the competitive vector field given
number, R, under combination therapy by linearizing abougy (4) on the three faces of the positive orthant, we see that
the virus-free staté/, to obtain any nontrivial periodic orbit must lie entirely in the interior of
_ . the positive orthant. I denotes such a nontrivial periodic or-
FIINQ = nrr) (L= ner) = 1 (8 bit, then it follows that the smallest bax containingP whose
v sides are parallel to the coordinate planes must also lie interior

Comparing with (5), we see that in essendéhas been re- to the positive orthant. We can expra8aisB = [p, ¢|x where
K denotes the con&” = {(T,T*,V) : T,V > 0,T* < 0}.

duced toN (1 —ngr)(1 —npr). Asiis typically much smaller b , ,

thanN and can be neglected, we see that the two inhibitors é%?eec?i?/,ellfXminﬁﬁifne)cé?lsg))g)rgfgafgnft;s%Eevmj:ltrr?gmegire-
in concert to reduc&y in (5) by the facto1 —ngr)(1—np1). z b'y],D h o P *d’ C P s pP

If RS < 1, the virus is cleared. odic orbit P, thenp = (T, T*", Vp) andg = (T, Tp, V).

0 By Proposition 4.3 [13],B must contain a steady state of (4).
Corollary 1. If R§ < 1 then the virus-free steady staf is However, £, is the only steady state anfth ¢ B. We con-
globally attracting. IfR§ > 1, thenE) is unstable. clude that no nontrivial periodic orbit exists. By the Poir&zar

Bendixson theory for three dimensional competitive systems

In view of the fact that current treatment does not allow fgid the local stability of, all solutions must approadh, in

HIV eradication in an individual, this result implies either ondhe limit. H

of the following: The efficiency of drugs is never high enough

to makeRS < 1 or model(7) is not appropriate to describeThe same result holds for (7) witR in place of Ry. The

HIV dynamics in a treated individual. It is argued in the recegntirely similar argument uses the fact that an endemic steady
paper by Callaway and Perelson that the first explanation is gtate exists only when the virus-free state is unstadjex 1).
viable. The second is adopted instead and modified models g6 \ve deal with the stability properties of the nontrivial equi-
proposed to bring reality and theory closer to each other, sgei | m point .

[1] for details.

Ry =

Lemma 4. Let Ry > 1 and f'(T.) < 0, then the nontrivial
3 Sketches of proofs steady statéZ. € int(R3) is locally asymptotically stable for
system(4), fori = 0,1. If Ry > 1l and f = f, thenE, is
Due to space constraints we cannot include all proofs. For dmstable with a two dimensional unstable manifold under each
tails we refer to [3]. of the following conditions:

Lemma 1. The closed positive orthant is positively invariant(a) i — 0 with
for (4) and there existd/ > 0 such that all solutions satisfy

T(t), T*(t),V(t) < M for all large ¢. 2/ Tmas = —n/2m, 9)

Tmaz large enough and

Proof. The positive invariance of the positive orthant is triv-  holds.
ial; we sketch the ultimate boundedness argument. Sinfs) i = 1 with T, large enough:
T < f(T), we see thal'(t) < T + 1 for all larget, sayt > t. mar '
Let S = maxp>¢ f(T'). Adding the first two equations gives 2~
T +T* — f(T) - BT* < S — BT*. Let A > 0 be such that Flmaz > B4+ 57 (10)
BA > S+1.Then, solong ag'(t) + T*(t) > A+ T + 1 and
t > to we havel'+T* < —1. Clearly, there must exist > t,
such thafl'(¢) + T*(¢) < A+ T + Lforallt > ¢,. Lemma 5. If Ry > 1, then there exists > 0, independent
The asymptotic bound fdF* (¢), namely,T'(t)* < A+ T +1, of initial conditions satisfying™(0) + V'(0) > 0, such that
together with the differential inequality < —V + Ng[A 4 liminf; o X(#) > efor X =T,7%, V.
T+1], which holds for large, leads immediately to the asymp-
totic boundV (t) < v INB[A+ T + 1]. O Proof. The result follows from an application of Theore

. _ in [14] with X; = int(R3 ) and X, = bd(R3.). This choice is
Lemma 2. If Ry < 1 then the virus-free stat&) is a locally jn accordance with the conditions stated in this Theorem. Fur-
asymptotically stable steady state of syste¢mif R, > 1then thermore, note that by virtue of Lemniathere exists a com-
itis unstable. pact setB in which all solutions of systerf4) initiated inR3 ,

ultimately enter and remain for ever after. The compactness

This is based on a simple linearization argument. The saw@ndition(Cy 2) is easily verified for this seB. Denoting the
result holds for (7) withR§ replaced byRy. omega limit set of the solution(¢, z) of system(4) starting

andp large enough.



in 2o € R3 by w(z) (which exists by Lemma), we need from this dominant eigenvalue, does not belong to the closed
to determine the se@s = Uyey,w(y) WhereY, = {z, € positive orthant. Applied here, this means that, p;) ¢ R?.
Xo|z(t, z9) € Xo, Vt > 0}. From the system equatiori$) Consequently,E,(E;) N int(R3) = @ and therefore also
follows that all solutions starting ihd(R3.) but not on thel’ W *(Ey) Nint(R3) = @, which concludes the proof. O

axis leavebd(R3.) and that thel” axis is an invariant set, im-

plying thatY, = {(T, T*, V)T € bd(R3)| T* = V = 0}. Lemma 4 provides sufficient conditions for the Jacobiafat
Furthermore, it is easy to see tfad = {Ey} as all solutions to have two eigenvalues with positive real part and one negative
initiated on thel” axis converge td,. ThenE is a covering of eigenvalue. The dynamical consequences of this are described
22, which is isolated (sinc&) is a hyperbolic steady state un+n the following result.

der the assumption of the Theorem) and acyclic (because there

is no nontrivial solution irbd(R%) which links E, to itself). Proposition 1. If Ry > 1, the omega limit set of a solution
Finally, if it is shown thatEy is a weak repeller forX,, the which is not initiated on th&" axis either containg. or is a

proof will be done. nontrivial periodic orbit. IfRy > 1 and if the Jacobian matrix
By definition, E, is a weak repeller fok, if for every solution &t Ee has two eigenvalues with positive real part and one neg-
starting inzo € X, ative elger_\va_lue, then there eX|st_s an orbitally asym_ptqtlpglly
stable periodic orbit. Every solution except those with initial
limsup d(z(t, z0), £o) > 0 (11) data on the one-dimensional stable manifold#pfor on theT
t—+o0 axis approaches a non-trivial periodic orbit.
We claim that(11) is satisfied if the following holds:
Proof. For Ry > 1 it follows from the persistence result in
W*(Ep) Nint(R}) = 0 (12) Lemmas that the omega limit set of a solution which is not
initiated on theT" axis cannot contain a point on tife axis.
' Since there is only one steady st&té which does not belong
to theT" axis, the first statement of the Theorem follows from
the generalized PoindgaBendixson Theorem for competitive
systems in dimensios.

whereW#(E,) denotes the stable manifold &%. To see this
suppose thaf11) does not hold for some solution(¢, )
starting inzg € X;. In view of the fact that the closed
positive orthant is positively invariant for systefd) (recall
Lemmal), it follows that liminf; o d(x(t, zo), Eo) =

limsup,_, . d(z(t, z9), Et) = 0 and thus that The assertions regarding the existence of an orbitally asymp-
limy_. o z(t, 7p) = FEy which is clearly impossible if totically stable periodic orbit follow from Theorem 1.2 in [15]
(12) holds. and the fact that nonlinearities in (4) are analytic. In order to

What remains to be shown is thét2) holds. To that end, apply that result, we take the domain for (4) to be the inte-
recall that the Jacobian matrix of systé#) at Fy, is unstable rior of the positive orthant, in which the only steady state is
if Ry > 1. In particular,.J, possesses one eigenvalue witlh’.. Lemma 1 and Lemma 5 imply the dissipativity hypothe-
positive real part, which we denote &s and two eigenvalues sis of Theorem 1.2 is satisfied. The negativity of the Jacobian
with negative real partf’'(T) and an eigenvalue which wedeterminant, also required for Theorem 1.2, follows from our
denote as\_ (Note that\_ may be equal tof’(T)). We hypotheses concerning the eigenvalues. The assertion that suit-
proceed by determining the location &f*(E,), the stable ably restricted forward orbits approach a periodic orbit follow
eigenspace offy. Clearly (1, 0, 0)7 is an eigenvector of, from Theorem 4.2 in [13]. That result is stated for systems
associated tof’(T). If A\_ # f/(T), then the eigenvector which are competitive in the traditional sense and so it applies
associated to\_ has the following structure:(0, po, p3)T, to (4) since it can be transformed to a system which is com-
wherep, andps satisfy the following eigenvector equation: petitive in the traditional sense. See also the remarks following
Theorem 4.2 where it is noted that the second hypothesis of

—p kT ) (P2 _ b2 Theorem 4.2 holds if the Jacobian matrix is irreducible. O
. A (13)
NB  —y—ikT) \ps3 P3

If \_ = f/(T), then)_ is arepeated eigenvalue and an assoQyextis one of the main results of this paper.

ated generalized eigenvector will possess the following strumheorem 2. Suppose thaR, > 1, f/(T) < 0for T € [0, T]
ture: (x, p2, p3)” where the value of is irrelevant for the and denote) < o* = —maxpep, 71 f/(T). If i = 0orif
sequel angh, andp; also satisfy(13). i =1andkf(0) — min(a*, 3)3 < 0, thenE, is a globally
We claim that in both cases (i.&. # f/(T) and\_ = f'(T)) asymptotically stable steady state for syst@mwith respect
the vector(ps, p3)” ¢ RZ. The matrix in(13) is an irre- to initial conditions not on thd” axis.

ducible Metzler matrix, which -by an immediate consequence

of the Perron-Frobenius Theorem- possesses a simple, realpfghf. The proof is based on an extension of the Poiaear
dominant eigenvalde Clearly, this dominant eigenvalue isgendixson Theorem for the class &fdimensional competi-
A+. But the Perron-Frobenius Theorem also implies that &ge systems [13], and a powerful theory of second compound
ery eigenvector which is associated to an eigenvalue, differ@fuations to prove asymptotic orbital stability of periodic so-

1Dominantshould be interpreted in the sense that the real part of any ott“s'ﬂons_’ see [8] and cited references therein. Under the as-
eigenvalue is strictly smaller than this real eigenvalue. sumptions of the Theorem, systé#) possesses an steady state




E. € int(R3), which is unique inint(R%). Moreover, from References
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