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Abstract

In this paper a sensorless controller for induction motor ispre-
sented. It provides local exponential stability properties with
an explicit estimation of the convergence domain since Lya-
punov direct method is adopted in the design/investigationpro-
cess. Full-order model of the induction motor is consideredand
no simplifying assumptions on the speed dynamics (as negligi-
bility of the speed time-derivative) are introduced. The load
torque is assumed constant but unknown. Simulation results
are provided.

1 Introduction

High performance drives based on induction motor (IM) can be
implemented by means of a speed/flux controller which relies
on field orientation concepts [1, 7]. This control algorithmis an
output feedback controller based on the measured currents and
rotor speed/position, normally obtained with a shaft encoder.
The position sensor reduces the robustness and reliabilityof the
IM drive and increases its cost. Hence, in recent years speed
sensorless controllers for IM (i.e. without the speed/position
measure) have become an attractive task from the industrial
perspective and as a benchmark for different nonlinear control
techniques.

Excellent surveys on different control techniques appliedto
sensorless control of IM can be found in [10, 11] and [4].
In [3] a sensorless control algorithm which guarantees semi-
global exponential rotor velocity/rotor flux tracking for the full-
order nonlinear model of the IM is presented. In particular,
an observer, designed assuming known mechanical dynamics
and external load torque, provides the speed estimation with
assignable convergence rate. The initial conditions for rotor
fluxes are assumed to be known and the rotor flux is estimated
by means of an on-line pure integration algorithm. In [8] a
sensorless controller for the current-fed IM, which guarantees
local exponential stability and global asymptotic stability of the

closed-loop dynamics, is proposed. The speed is estimated us-
ing an adaptive observer based on the magnetic dynamics of
the IM. The following assumptions are made: the estimation
of the rotor flux is performed by means of pure integration of
the stator winding electric model, the load torque is assumed
known. In [12] sliding-mode technique has been exploited to
develop a speed-flux observer and a torque controller, which
are used in the speed control assuring local asymptotic stability
properties.

In this work the sensorless control scheme proposed in [9] is
deeply revised in order to achieve stronger theoretical andprac-
tical results relaxing some hypothesis on the speed error dy-
namics. A flux controller based on indirect field oriented con-
trol and a speed controller designed assumingunknown con-
stant load torque are realized. Since the latter controllers de-
pend on the estimated speed, an adaptive speed/flux observer,
based on the current regulation error dynamics, is designed,
providing an exponential speed estimation convergence. Itis
worth noting that the speed estimator is realized in a closed-
loop way, since it is integrated in the current regulator. Inthis
way, reduction of the dynamic order of the speed estimator is
obtained. A model-based flux observer, similar to those in [3]
and [8], is added to speed-up the speed estimation dynamics,
but it is not used in flux control or to obtain direct field ori-
entation of the reference frame. In the controller design, mo-
tor parameters are assumed constant and exactly known and
the initial conditions of IM state-variables are assumed tobe
known.

The proposed solution provides local exponential speed track-
ing and local exponential flux amplitude regulation and field
orientation, with an explicit estimation of the domain of attrac-
tion of the zero equilibrium point of the error model. The over-
all system stability is proved using Lyapunov-like technique
applied to two feedback interconnected subsystems: speed
tracking and flux regulation dynamics on one side, and current
regulation dynamics with the speed/flux observer on the other
side. The stability proof is carried on proving the exponential
stability of the above subsystems and taking into account fea-
tures of the coupling terms in order to evaluate the properties
of the whole dynamics.



The paper is organized as follows. In Section 2 the IM model,
the control objectives and the regulation/estimation error def-
initions are reported. The proposed solution is presented in
Section 3. In 4 the stability properties of the closed-loop sys-
tem are analyzed. In Section 5 some simulations are reported;
particular attention is devoted to the robustness with respect to
mechanical parameter uncertainties.

2 Induction motor model and control objectives
formulation

Assuming linear magnetic circuits and balanced operating con-
ditions, the induction motor (IM) model expressed in an arbi-
trary two-phase rotating reference frame(d, q) is given by the
fifth-order model [7]:

ω̇ = µ(ψdiq − ψqid) −
TL

J

i̇d = −γid + ω0iq + αβψd + βωψq +
1

σ
ud

i̇q = −γiq − ω0id + αβψq − βωψd +
1

σ
uq

ψ̇d = −αψd + ω2ψq + αLmid

ψ̇q = −αψq − ω2ψd + αLmiq (1)

where the state variables are the rotor speedω, the stator cur-
rents(id, iq), the rotor fluxes(ψd, ψq); the control inputs are
the applied stator voltages(ud, uq); the load torqueTL is an
unknown constant external input, i.e.̇TL = 0. The slip fre-
quency is defined asω2 = ω0 − ω. Parameters of the above
model are related to the mechanical and electrical IM parame-
ters as:

σ = Ls

(

1 −
L2

m

LsLr

)

, β =
Lm

σLr

, α =
Rr

Lr

γ =
Rs

σ
+ αLmβ, µ =

3

2

Lm

JLr

where Rs, Rr, Ls, Lr are stator/rotor resistances and induc-
tances,Lm is the magnetizing inductance,J is the rotor inertia.

The rotating reference frame(d, q) has angular speedω0 and
relative angular positionε0, with dynamics given byε̇0 = ω0,
with respect to the stationary reference frame(a, b). The fol-
lowing relations are introduced to link variables in the station-
ary reference frame(a, b), where physical variables are de-
fined, with the corresponding ones expressed in the rotating
reference frame(d, q):

[

id
iq

]

= e
−Jε0

[

ia
ib

]

,

[

ua

ub

]

= e
Jε0

[

id
iq

]

where

e
Jε0 =

[

cos ε0 − sin ε0

sin ε0 cos ε0

]

.

In sensorless control, the measured variables are the stator cur-
rents(id, iq), while the variables to be controlled are the rotor

velocityω and the rotor flux amplitude
√

ψ2
d + ψ2

q . In the pro-

posed scheme an explicit estimation of the mechanical speed
and load torque are adopted. Let define the following notations
for regulation errors:

ĩd = id − i∗d ψ̃d = ψd − ψ∗ ω̃ = ω − ω∗

ĩq = iq − i∗q ψ̃q = ψq

and for estimation errors of speed and torque correspondingly:

˜̃ω = ω − ω̂ = ω̃ − ˆ̃ω T̃L =
TL

J
− T̂L

whereψ∗ is the constant reference flux,ω∗ is the smooth refer-
ence speed signal, with bounded time-derivativesω̇∗, ω̈∗. Ref-
erence currentsi∗d, i

∗
q , estimated speed tracking errorˆ̃ω and es-

timated (normalized) load torquêTL are signals to be defined
later. The estimated speed is defined asω̂ = ω∗ + ˆ̃ω. The
asymptotic speed tracking objective corresponds to imposethe
convergence to zero of the speed tracking errorω̃ while the
asymptotic flux regulation and field orientation of the(d, q) ref-
erence frame correspond to impose the convergence to zero of
ψ̃d andψ̃q. Asymptotic estimation of the mechanical speed is
achieved iff the speed estimation error˜̃ω tends to zero.

3 Controller definition

3.1 Flux and speed controller

Considering indirect field orientation as the framework, the fol-
lowing flux and speed controllers are designed:

i∗d =
1

αLm

(ψ̇∗ + αψ∗)

ω0 = ω∗ + ˆ̃ω +
αLm

ψ∗
i∗q

and

i∗q =
1

µψ∗
(−kω

ˆ̃ω + T̂L + ω̇∗)

˙̂
TL = −kωi

ˆ̃ω

wherekω, kωi are control gains and the estimated speed track-
ing error ˆ̃ω will be defined later. The controller statêTL is in-
troduced to compensate for the unknown constant load torque.

The magnetic and mechanical regulation error dynamics are

˙̃
ψd = −αψ̃d + (ω0 − ω)ψ̃q + αLmĩd

˙̃
ψq = −αψ̃q − (ω0 − ω)ψ̃d + αLmĩq + ψ∗ ˜̃ω (2)

˙̃ω = −kωω̃ − T̃L + kω
˜̃ω + φ1(̃id, ĩq, ψ̃d, ψ̃q, ˜̃ω, ω̃, T̃L)

˙̃TL = kωiω̃ − kωi
˜̃ω (3)

with

φ1(̃id, ĩq, ψ̃d, ψ̃q, ˜̃ω, ω̃, T̃L) =

µ(ψ̃dĩq − ψ̃q ĩd) + µψ∗ĩq + µi∗qψ̃d − µi∗dψ̃q. (4)



3.2 Current controller and speed/flux estimator

The current controller is defined as

ud = σ
(

i̇∗d + γi∗d − kidĩd − ω0iq − αβψ∗ + νd

)

uq = σ
(

i̇∗q + γi∗q − kiĩq + ω0id + βψ∗ω̂ + νq

)

whereki, kid are controller parameters andνd, νq are auxiliary
signals to be defined later.

Hence, the current error dynamics is

˙̃id = −(γ + kid)̃id + αβψ̃d + βωψ̃q + νd

˙̃iq = −(γ + ki)̃iq + αβψ̃q − βωψ̃d − βψ∗ ˜̃ω + νq (5)

In order to design an adaptive speed observer, defining the sig-
nal ˆ̃ω, let introduce the following variables

zd = id + βψd, zq = iq + βψq.

From (1), the dynamics of the z-variables are expressed by

żd = −
Rs

σ
id + ω0zq +

1

σ
ud

żq = −
Rs

σ
iq − ω0zd +

1

σ
uq.

Hence, current error dynamics (5) is rewritten as

˙̃id = −kdĩd + αzd − αβψ∗ − αi∗d + ω(zq − iq) + νd

˙̃iq = −kI ĩq + αzq − αi∗q − ω(zd − id) + βψ∗ω̂ + νq

with kd = γ+α+kid, kI = γ+α+ki. Let define the auxiliary
signals:

νd = −αẑd + αβψ∗ + αi∗d − ω̂(ẑq − iq)

νq = −αẑq − βψ∗ω̂ + αi∗q + ω̂(ẑd − id)

which are based on the following(zd, zq) estimator:

˙̂zd = −
Rs

σ
id + ω0ẑq +

1

σ
ud

˙̂zq = −
Rs

σ
iq − ω0ẑd +

1

σ
uq.

Define the estimation errors̃zd = zd − ẑd, z̃q = zq − ẑq whose
dynamics is

˙̃zd = ω0z̃q

˙̃zq = −ω0z̃d. (6)

Assuming known initial conditions for the IM state variables
and imposing that

ẑd(0) = zd(0) = id(0) + βψd(0)

ẑq(0) = zq(0) = iq(0) + βψq(0)

from (6) it follows that

z̃d(t) = 0

z̃q(t) = 0, ∀t.

Defining the speed estimation law

˙̂
ω̃ = −

1

γ1
βψ∗ĩq − kω

ˆ̃ω + φ̂1

φ̂1 = µ

[(

ẑd − id
β

− ψ∗

)

ĩq −
ẑq − iq

β
ĩd

]

+ µψ∗ĩq+

+ µi∗q

(

ẑd − id
β

− ψ∗

)

−
µ

β
i∗d(ẑq − iq)

with the positive gainγ1, and recalling the definition ofνd, νq,
the current and speed estimation error˜̃ω dynamics are rewritten
in matrix form

[

˙̃id
˙̃iq

]

=

[

−kd 0
0 −kI

] [

ĩd
ĩq

]

+

[

0
−βψ∗

]

˜̃ω +

[

βψ̃q
˜̃ω

−βψ̃d
˜̃ω

]

(7)

˙̃̃ω =
1

γ1
βψ∗ĩq − T̃L. (8)

It is worth noting that the z-variable estimator is a sort of flux
estimator based on an on-line pure integration algorithm, which
may suffer from drift problems due to measurement offset, pa-
rameter uncertainties and numerical implementation. The same
solution is adopted also in other works [3, 8] and still remains
an open problem for sensorless control. Different technical so-
lutions have been proposed in order to reduce the sensitivity of
the open-loop estimation algorithm[6, 5].

4 Closed-loop system stability

The full-order error dynamics is represented by the7th order
system given by: a) the “outer” magnetic and mechanical regu-
lation error dynamics, described by (2), (3); b) the “inner”dy-
namics given by the current regulation dynamics and the speed
estimation law, represented by (7) and (8). The subsystems are
interconnected by means of linear and bilinear terms, as syn-
thetically depicted in Fig. 1.

System stability is investigated, first considering stability prop-
erties of the isolated outer and inner subsystems, then exploit-
ing the features of the coupling, by means of a composite Lya-
punov function.

Let assume the following technical hypothesis, in order to sim-
plify the stability proof:

kωi =
k2

ω

2
kd =

kI

2

k2
I

2
=

β2ψ∗2

γ1

Defineψ̃ = (ψ̃d, ψ̃q)
T and

w1 =
kω

2
ω̃ w2 =

kω

2
ω̃ + T̃L w = (w1, w2)

T

ξ1 =
kI

2
ĩq ξ2 =

kI

2
ĩq + βψ∗ ˜̃ω ξ = (ξ1, ξ2, ĩd)

T .

Full-order system dynamics is rewritten with respect to thenew
state variables as

˙̃
ψd = −αψ̃d + ω2ψ̃q + αLmĩd



φ1(·)

(ψ̃d, ψ̃q)

kωi

(ω̃, T̃L)
T̃L

(̃id, ĩq)
αLm

˜̃ω
ψ∗

(ψ̃d, ψ̃q)

˜̃ω

(̃id, ĩq)
(̃id, ĩq, ˜̃ω)

T̃L

Figure 1: Closed-loop system structure. (solid lines: lin-
ear/bilinear interconnection, dashed line: bilinear interconnec-
tion)

˙̃
ψq = −αψ̃q − ω2ψ̃d +

2αLm

kI

ξ1 +
1

β
(ξ2 − ξ1)

ẇ1 = −
kω

2
w1 −

kω

2
w2 +

k2
ω

2βψ∗
(ξ2 − ξ1) +

kω

2
φ1

ẇ2 =
kω

2
w1 −

kω

2
w2 +

kω

2
φ1

˙̃id = −
kI

2
ĩd +

ψ̃q

ψ∗
(ξ2 − ξ1)

ξ̇1 = −
kI

2
ξ1 −

kI

2
ξ2 −

kI

2

ψ̃d

ψ∗
(ξ2 − ξ1)

ξ̇2 =
kI

2
ξ1 −

kI

2
ξ2 −

kI

2

ψ̃d

ψ∗
(ξ2 − ξ1) − βψ∗(w2 − w1)

whereφ1 is defined in (4). Recall thatTL

J
+ ω̇∗ is bounded. In

the following, let assume that the Euclidean norm‖ · ‖ of the
flux regulation error is bounded, i.e. suppose that‖ψ̃(t)‖ < Ψ,

where0 < Ψ < min

(

(1−ε1)
4 ψ∗, (1−ε2)

1+ 4

kI

ψ∗

)

, whereε1, ε2 are

chosen such that0 < ε1 < 1, 0 < ε2 < 1. At the end of the
stability proof, it will be shown that this hypothesis is satisfied
with proper initial conditions of the state variables.

First, let consider the two dynamics which represent the outer
subsystem. For the flux subsystem, it is worth noting that the
following inequality holds forω2:

|w2| ≤ B1 +

(

2

βψ∗
+

2αLmkω

µβψ∗3

)

‖ξ‖ +
2αLm

µψ∗2
‖w‖

where

B1 >

∣

∣

∣

∣

αLm

µψ∗2

(

TL

J
+ ω̇∗

)
∣

∣

∣

∣

,

henceω2 is bounded if the state variables are bounded. Consid-
ering the following Lyapunov function for the flux regulation
error subsystem (2)

Vψ(t) =
1

2

(

ψ̃2
d + ψ̃2

q

)

the following inequality holds for its time-derivative:

V̇ψ(t) ≤ −α‖ψ̃‖2 + C1‖ψ̃‖‖ξ‖

with

C1(kI) ≥ αLm +
2αLm

kI

+
2

β
.

Hence, the isolated flux regulation error dynamics is globally
exponentially stable.

Let define

A1(kω, kI) =
2µ

kI

+ µ +
2kω

βψ∗2
, A2 > µi∗d +

1

ψ∗

∣

∣

∣

∣

TL

J
+ ω̇∗

∣

∣

∣

∣

such that

‖φ1‖ < A1(kω, kI)‖ψ̃‖‖ξ‖+A2‖ψ̃‖+
2µψ∗

kI

‖ξ‖+
2

ψ∗
‖ψ̃‖‖w‖.

Let consider the following candidate Lyapunov function forthe
mechanical subsystem:

Vw(t) =
1

2

(

w2
1 + w2

2

)

.

The time derivative ofVw(t) along the trajectory of (3) satisfies

V̇w(t) ≤ −ε1
kω

2
‖w‖2 + kωA2‖ψ̃‖‖w‖+

+ kω

(

kω

βψ∗
+

2µψ∗

kI

+ A1(kω, kI)Ψ

)

‖ξ‖‖w‖.

Hence, the isolated linear system (3) (i.e. with null inputs
(ξ, ψ̃) = 0, and henceφ1 = 0) is globally exponentially stable.

Let define the candidate Lyapunov function for the inner sub-
system

Vξ(t) =
1

2
(ξ2

1 + ξ2
2 + ĩ2d)

with time-derivative along the trajectories of (7), (8) given by

V̇ξ ≤ −ε2
kI

2
‖ξ‖2 + 2βψ∗‖ξ‖‖w‖.

Hence, the inner subsystem is globally exponentially stable.
Note that this property is achieved if the flux reference is pos-
itive (ψ∗ > 0), in accordance with the results presented in [9],
related to a condition on persistency of excitation that hasto be
satisfied to obtain the estimation convergence.

Let consider now the full-order system, whose state variables
areX = (ψ̃T , wT , ξT )T . Let define

V (t) = Vψ(t) + ηwVw(t) + ηξVξ(t)



with ηw, ηξ > 0 to be defined later. Exploiting the unidi-
rectional linear interconnection between the magnetic andme-
chanical subsystems and the freedom in the choice of the rate
of convergence of the inner subsystem (through the selection of
the control parameterkI ), and applying Young’s inequalities,
after some lengthy computations the following relation holds
for the time-derivative ofV (t):

V̇ (t) ≤ −αψ‖ψ̃‖
2 − αw‖w‖2 − αξ‖ξ‖

2

where,δi > 0, i = 1 . . . 4, ηω, ηξ, αψ, αw, αξ and control
gainskω, ki are chosen in order to satisfy the following rela-
tions

α − ηωkωA2

2δ1

− δ2C1(kI)
2 ≥ αψ > 0

ηωkω

(

ε1

2 − A2δ1

2 − δ3

2

(

kω

βψ∗
+ 2µψ∗

kI
+ A1(kω, kI)Ψ

))

−

−δ4ηξβψ∗ ≥ αw > 0

ηξε2kI

2 − ηωkω

2δ3

(

kω

βψ∗
+ 2µψ∗

kI
+ A1(kω, kI)Ψ

)

−
ηξβψ∗

δ4

− C1(kI)
2δ2

≥ αξ > 0

Defininga1 = 1
2min (1, ηω, ηξ), a2 = 1

2max (1, ηω, ηξ), a3 =
1
2min (αψ, αω, αξ), noting thata1‖X‖2 ≤ V (t) ≤ a2‖X‖2

and V̇ (t) ≤ −a3‖X‖2 if ‖ψ̃(t)‖ < Ψ and applying standard
techniques from Lyapunov stability analysis, it follows that

‖X(t)‖ ≤

√

a2

a1
exp

(

−
a3

2a2
t

)

‖X0‖

whereX(0) = X0 are the initial conditions for the state vari-

ables. Hence, imposing that‖X0‖ <
√

a1

a2

Ψ = XM , it fol-

lows that‖ψ̃‖ < Ψ and henceV̇ (t) < 0. Therefore, the state
variablesX(t) of the error model is bounded and tend expo-
nentially to zero. The local exponential stability of the origin
of the full-order system, with estimated domain of attraction
‖X(0)‖ < XM , has been proved.

In the stability proof, due to intensive use of inequalitiesand
implicit conservative nature of Lyapunov-like method, strict
conditions on control parameters and initial condition have
been obtained. Nevertheless, from a practical point of view,
it is possible to use a set of control parameters which does not
satisfy the given conditions but that still achieves local expo-
nential stability.

5 Simulation results

Examples showing the performance attainable with the pro-
posed controller are illustrated. The parameters of the 6Nm
induction motor tested by means of simulation are reported in
the Appendix. The tuning parameters of the controllers and
the observer arekω = 40, kωi = 800, ki = 250, kid = 3,
γ1 = 0.0025. In the first test, the operating sequences, reported
in Fig. 2, are the following:

1. the machine is excited during the initial time interval 0-
0.28s using a smooth flux reference trajectory with steady-
state value equal to 0.9Wb,
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m
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Figure 2: Reference trajectories and load torque profile (first
test)
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Figure 3: Transients during speed tracking, with load torque
TL = 6Nm.

2. the unloaded motor is required to track the smooth speed
reference trajectory, starting at t = 0.3s from zero initial
value, characterized by two time intervals with constant
reference speed respectively equal to 55 rad/s and 100
rad/s,

3. at time t=1.8s a constant load torque, equal to the 100% of
the motor rated value (6Nm), is applied; at time t = 2.4s
load torque is set to zero.

Simulation results are reported in Fig. 3. The speed is correctly
estimated, and speed tracking, flux amplitude regulation and
field orientation are obtained with unknown load torque.

In the second test, the same flux reference trajectory is applied.
The speed reference, reported in the first graph of Fig. 4, with
a transient from 0 rad/s to 50 rad/s with maximum acceleration
equal to1050rad/s2, followed by a sinusoidal profile with fre-
quency equal to 40 rad/s, is applied to the IM, with null load
torque. Since the controller is based on the mechanical model
of the IM, it is interesting to evaluate the performance of the
controller with respect to uncertainties on the rotor inertia J ,
considering a20% error (the value of J used in the controller
is Ĵ = 0.012kg · m2). Results are depicted in Fig. 4. Due
to uncertainties in the feed-forward actions in the controller,
speed tracking error is non-null, but it still remains bounded.
Since the mechanical dynamics bandwidth is 28 rad/s, while
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Figure 4: Transients during speed tracking, with no load
torque, with20% uncertainties onJ .

the speed estimation dynamics bandwidth is 350 rad/s, during
the sinusoidal speed reference the speed estimation error am-
plitude is small, thanks to the wide bandwidth of the speed es-
timator.

6 Conclusions

The proposed sensorless controller for induction motor pro-
vides local exponential speed tracking and flux regulation
proven by means of Lyapunov direct method applied to the full
order dynamics. Simulation results show that the controller is
effective to track the reference speed and to reject the applied
load torque even if relevant errors on the mechanical model
are present.
In order to achieve these results the only significant require-
ment is to impose a non null flux reference. This fact is in
accordance with the “induction motor physics”: the machine
must be excited to produce torque.
No restrictions on the speed reference and the load torque are
present. This is a very relevant feature since it indicates that
the system could work in any condition, provided sufficiently
small initial error. It is worth noting that this result seems
achievable only if exact knowledge of the fluxes is assumed,
i.e. the fluxes are obtained by pure integration of stator equa-
tion with known initial conditions, in fact there exist conditions
where different speed-flux trajectories are not distinguishable
from voltage-current behavior (e.g. whenω0 = 0 with constant
voltages and currents)[2]. Anyway it is well known that, from
a practical perspective, obtaining reliable pure integration of
the stator equations is a very involved task, in particular in
condition of constant voltages and currents.
Further studies will be devoted to better analyze the above
consideration in order to develop more robust solutions.

IM parameters

rated power 1.9kW rated voltage 380V
rated speed 3000rpmrated current 4.1A
rated torque 6Nm magnetizing current 1.4A
pole number 1

Rs = 6.6Ω, Rr = 5.3Ω,
Ls = Lr = 0.475H,Lm = 0.45H, J = 0.01kg · m2

γ = 233, α = 11.2, σ = 0.0487, β = 19.5, µ = 142
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