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Abstract

This paper proposes an exact (Kalman-like) observer for the
simultaneous state and parameter estimation in asynchronous
motors - including speed and resistant torque estimation -, as
well as a simulation study of its use under an estimate-based
speed control scheme. The simulation setup includes the model
of a PWM-controlled voltage source inverter, and the results
are quite promising.

1 Introduction

The asynchronous motor is a multivariable, nonlinear, highly
coupled process with time-varying parameters, which has mo-
tivated a lot of work in the control community during the last
decade (see e.g. [5] for a recent overview). One of the chal-
lenging problems the literature has dealt with is the sensorless
speed control, which implies the estimation of the mechanical
speed from the only measurements of the stator currents. An-
other well-known problem is that electrical parameters might
not be accurately known, or might significantly vary when the
motor is operating, which has motivated various proposals for
their identification. This results in problems of simultaneous
state and parameter estimation that sometimes include speed
estimation. Among the wide range of available contributions in
this direction, one can find results for the estimation of a limited
number of required electrical parameters, or a limited number
of required states, or a combination of both, under more or less
simplifying assumptions (see e.g. [1, 9, 12, 13, 14, 15, 17] to
cite a few).

In the present paper, following previous results on simultane-
ous estimation of states and parameters under stator currents
and speed measurement [2], the considered problem is that of
speed control under only stator currents measurement, with on-
line estimation of all state variables - including the speed itself
(and the resistant torque) and all identifiable electrical parame-
ters. A full description and justification of the proposed obser-
vation scheme is given, and its performances are illustrated in
simulation, using a classical Park model for the motor [11], to-

gether with a commutation-based model for a PWM-controlled
voltage source inverter [10] and a DTC-like control law for the
speed [11, 5].

Section 2 formulates the considered problem, while section 3
presents the observer design proposed as a solution. Some cor-
responding simulation set-up and results are proposed in sec-
tion 4, and section 5 draws the final conclusions.

2 Problem statement

Under classical simplifying assumptions (no saturation, iron
losses, end-windings and slot effects), a continuous-time model
of the machine can be considered in the stator reference frame
(α, β) [11], with stator currents Isα, Isβ and stator fluxes
φsα, φsβ as state variables, stator voltages Usα, Usβ as input
variables, and the first two state variables (stator currents) as
measured outputs:
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and where R (resp. L) stands for the resistance (resp. induc-
tance) parameter with index s (resp. r) to refer to the stator
(resp. rotor), σ is equal to 1 − M2

LsLr
(with M the maximum

mutual inductance between a winding on the stator and one on
the rotor), and p denotes the number of pairs of poles of one
stator winding. The differential equation of the currents also
involves the mechanical speed of the rotor Ω, whose dynami-
cal behavior is described by:

Ω̇ = − fv

Jm
Ω +

1
Jm

pyT Jz − 1
Jm

τl (3)

where z =
[

Z I
]
x represents the stator flux. In (3), τl

is the resistant torque, Jm is the total inertia momentum (rotor



plus load), and fv is the viscous friction coefficient. Through-
out this paper, the values of Jm and fv will be assumed to be
known, while the value of the resistant torque τl will be esti-
mated as a constant parameter.

As regards the electrical parameters, notice that not all five pa-
rameters that fully characterize the electrical part of the motor
(Ls, Lr, Rs, Rr, M ) are identifiable from the above input-
output mapping and one can only identify four parameters [3],
which are in bijection with:

Lr

Rr
, Rs, Ls, σ. (4)

The stator currents are assumed to be the only available mea-
surements, while the stator flux (z in the model (1)-(2)-(3)) as
well as the rotor speed Ω are to be estimated. Since the model
is nonlinear with respect to all these unknown variables (states
and parameters), there is no systematic solution to their estima-
tion. Usually, a general approach to this problem can be given
by the so-called extended Kalman filter, namely a Kalman filter
based on a linear approximation of the model (see e.g. [7, 8, 16]
for some particular cases), but it does not guarantee the asymp-
totic convergence of the estimations. Instead, a global expo-
nential observer has been recently proposed for state and pa-
rameter estimation when the speed is assumed to be available
through measurement [2], based on the transformation of the
considered model into a representation that is affine with re-
spect to all to-be-estimated variables. Under sufficiently excit-
ing input signals assumption, this representation allows the use
of an exact Kalman-like observer.

In the present paper, it is shown how the transformation method
can be extended to the additional estimation of the rotor speed
Ω and the resistant torque τl. Moreover, in order to reproduce
more realistic operating conditions, the motor is simulated to-
gether with a voltage source inverter, which in turn injects har-
monics in the inputs of the motor, and can thus help in the
identification process. Studying the effect of these harmonics
is of particular interest when the speed is regulated close to
zero, where the system is known to become unobservable if no
additional excitation signal is present [6].

The employed control law is roughly a ”Direct Torque Control”
law (see e.g. [5]) and it will not be described here any further.
Notice that it only uses estimated variables, namely it is based
on the variables given by the observer, whenever such variables
are required.

3 State and parameter estimation through
Kalman observer

The goal in this section is to show how the nonlinear model
of the asynchronous motor (1)-(2)-(3) can be transformed into
a representation which is affine with respect to the unmeasured
variables. The estimation of its states allows the retrieval of the
original unmeasured states and parameters of interest (z,Ω, τl

and the parameters in (4)). The estimation of the unmeasured
states in the new representation can indeed be given by a classi-

cal Kalman observer provided the input signals are sufficiently
exciting for the system.

Let us first define the following constant parameters:

θ1 :=
1

σTr
; θ2 :=

1
Ts

; θ3 :=
1

σTrTs

θ4 :=
1

σLs
; θ5 :=

1
σLsLr

; θ6 := Rs

θ7 :=
Rs

σTs
; θ8 := τl; θ9 := τlθ2; θ10 := τlθ4

where Tr = Lr

Rr
and Ts = Ls

Rs
.

Then, since the stator currents coincide with the measured out-
puts y, their differential equation admits the following equiva-
lent expression:

ẏ = −y · θ1 − y · θ2 + pJy · Ω + θ5z

−pJ · Ωθ4z + u · θ4 (5)

From this, in order to get an affine representation, let us con-
sider five new state variables: θ1, θ2, θ5z, Ωθ4z, θ4. Each
one of them satisfies a new state equation; it is trivial that the
derivative is zero if the state is constant.

As regards the speed, its state equation is:

Ω̇ = − fv

Jm
· Ω +

1
Jm

pyT J · z − 1
Jm

· θ8 (6)

which is already affine w.r.t. three states: Ω, z, and a new
constant one, θ8. The same happens for z w.r.t. θ6 since ż
reads (from (1)):

ż = −Rsy + u = −y · θ6 + u. (7)

Now if we set z1 := θ5z and z2 := θ4z, we get:

ż1 = θ5ż = −y · θ3 + u · θ5 (8)

ż2 = θ4ż = −y · θ2 + u · θ4 (9)

which are linear w.r.t. θ2, θ3, θ4, θ5.
We still need the differential equation of Ωz2. We have:

˙̂Ωz2 = Ω̇z2 + Ωż2. (10)

First, we compute:
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[
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]
− 1

Jm
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which is linear if four new state variables are considered,
namely θ4z(1)2, θ4z(2)2, θ4z(1)z(2) and τlz2. For θ4z(1)2

and θ4z(2)2 we have successively:

˙̂
θ4z(1)2 = θ42z(1)ż(1)

= 2z(1)θ4[−y(1)θ6 + u(1)] (12)

= −2y(1) · θ2z(1) + 2u(1) · θ4z(1)

˙̂
θ4z(2)2 = θ42z(2)ż(2)

= 2z(2)θ4[−y(2)θ6 + u(2)] (13)

= −2y(2) · θ2z(2) + 2u(2) · θ4z(2)

If we define:

z3 = θ2z =
[

θ2z(1)
θ2z(2)

]
with:

ż3 = θ2ż = −y · θ7 + u · θ2 (14)

then (12) and (13) are equivalent to:

˙̂[
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]
= 2

[
u(1) 0

0 u(2)

]
· z2

−2
[

y(1) 0
0 y(2)

]
· z3 (15)

Notice the apparition of two new state variables, z3 and θ7.
Next, using the definitions of z2 and z3, the differential equa-
tions of θ4z(1)z(2) and τlz2 are respectively:

˙̂
θ4z(1)z(2) = θ4ż(1)z(2) + θ4z(1)ż(2) (16)

= −y(1) · θ2z(2) + u(1) · θ4z(2)
−y(2) · θ2z(1) + u(2) · θ4z(1)

= [ u(2) u(1) ] · z2 − [ y(2) y(1) ] · z3

and:
˙̂τlz2 = τlż2 = −y · θ9 + u · θ10 (17)

Equation (17) introduces two new constant states, θ9 and θ10.
Finally, for Ωż2 we have:

Ωż2 = −y · θ2Ω + u · θ4Ω (18)

which completes the set of the new state variables with θ2Ω and
θ4Ω. Their differential equations are:

˙̂
θ2Ω = θ2Ω̇ (19)
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which indeed only depend on already defined state variables.

Equations (5). . . (20), and the differential equations of the con-
stant states give a new representation of the system, which is
now affine w.r.t. the new state vector X , in the following sense:

Ẋ = A(u, y)X + Bu (21)

y = CX (22)

Some elements in the new state vector X are made up of two
components (y, z, z1...3, Ωz2, τlz2), while all others are scalars
(Ω, θ4z(1)2, θ4z(2)2, θ4z(1)z(2), θ2Ω, θ4Ω, θ1...7, τl, τlθ2,
τlθ4). In order to estimate all these state variables, one idea is
to design a Kalman observer as in (23) and (24) below, with
S(0) = I , ensuring arbitrarily fast exponential convergence by
modifying the tuning parameter λ > 0, under usual excitation
conditions, for any X̂(0) [4].

˙̂
X = A(u, y)X̂ + Bu − S−1CT (CX̂ − y) (23)

Ṡ = −λS − AT (u, y)S − SA(u, y) + CT C (24)

The main advantage when using this kind of observer is that
there is no need to perform any linear approximation, which
guarantees the global convergence of the estimator under suf-
ficiently exciting signals. However, a drawback is that the ob-
server performs redundant estimations. The order of the result-
ing system is indeed thirty, that is six times greater than the
order of the original one. Consequently, there are more than
one possibilities to recover the original states and the parame-
ters of interest. For instance, in order to recover the parameters,
one could use any of the following solutions:

Ls =
θ1

θ5
; Rs =

θ2

θ4
; σ =

1
Lsθ4

; Tr =
1

σθ1
;

Rs =
θ3

θ5
; Ls =

Rsθ1

θ3
; σ =

Rs

Lsθ2
; Tr =

1
σθ1

;

Rs = θ6; Tr =
θ7

Rsθ3
; σ =

1
Trθ1

; Ls =
1

σθ4

4 Simulation results

The simulations were performed with Matlab in the continuous
time domain. The response of the asynchronous motor was
simulated through (1) and (3), with the electrical parameters
chosen as:

Lr = 0.0323H; Ls = 0.0317H; M = 0.031;

Rr = 0.052Ω; Rs = 0.07Ω,

and the mechanical parameters as:

Jm = 2kg · m2; fv = 0.003.

The mechanical parameters were assumed to be available at
any time, and thus they were directly used in the estimation
process. Instead, for the electrical parameters, significant er-
rors with respect to the real values were simulated in the initial
guesses.



The input of the model was a PWM-like voltage waveform gen-
erated by the torque/flux controller through the ideal model of a
voltage source inverter. As regards the set points for the electro-
magnetic torque and squared norm of the flux, the first one was
generated by the speed controller, while the second one was set
to 1Wb. Two simulations were performed: in the first one, the
speed was driven from zero to 50rad/s and back under the ac-
tion of an active resistant torque. In the second one, the speed
was set to zero, in the absence of any resistant torque. Obvi-
ously, due to the initial estimation errors, the voltage initially
applied to the motor is not the appropriate one, and the purpose
here was to check in simulation how this voltage can make the
estimations to converge towards their actual values (sufficient
excitation), and in turn make the control itself to tend towards
the appropriate one.

In order to emphasize the efficiency of the method, the ini-
tial errors on the electrical parameters were chosen to be quite
large:

Lr : −80%; Ls : −50%; M : +70%;

Rr : +100%; Rs : +80%

while for the first simulation the initial guess for the resistant
torque was 7.5Nm (50% off the actual value). The same value
was used for the second simulation, where the real value was
0Nm, as already stated.

The corresponding results in the presence of a constant resis-
tant torque are shown to be fairly good in figures 1 to 3, where
it can be seen that all estimation errors go to zero. Notice
the accurate speed estimation during the second transitory state
(t = 4 . . . 4.5s).
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Figure 1: Auxiliary parameter θ1...7 estimation errors
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Figure 2: State estimation errors in the electrical equation
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Figure 3: State estimation errors in the mechanical equation

In the same time, it can be checked on figures 4 and 5 that the
control achieves the desired tracking (with some oscillations
during the first transitory state, which can be of large magnitude
due to the large initial errors on the parameters).
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Figure 4: Speed tracking
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Figure 5: Tracking errors in the torque/flux controller

Keeping the motor at standstill is an issue of particular interest
in the considered scheme, since the asynchronous motor is
known to become ”unobservable at zero speed” when it does
not produce any electromagnetic torque (notice that in a speed
control loop this condition implies the absence of an external
torque acting upon the rotor). This is an actual consequence
of the physics of such motors: if there is no relative speed
between the stator flux and the rotor, the induction of currents
in the last one cannot take place, meaning no electromagnetic
torque and no information from the rotor side in the stator
currents. See [6] for a theoretical observability study focused
on the induction motor.



In our case, as long as there is an external torque acting
upon the rotor, the machine produces an electromagnetic
torque and the speed oscillates around zero (fig. 6a) with
amplitudes large enough to ensure that the system remains ob-
servable. As a difference, in the absence of the resistant torque
the speed approaches zero (fig. 6b), no electromagnetic torque
is required, and the observability conditions are no longer
fulfilled. As a consequence, estimations that had previously
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Figure 6: Speed tracking at standstill

converged towards the corresponding actual values, start to
worsen, and at some point a divergence occurs in the auxiliary
parameter estimations (fig. 7). The errors become large enough
to determine the speed to deviate from the set point. As the
rotor turns, the motor produces an electromagnetic torque, thus
it becomes observable and the estimation errors as well as the
speed converge again towards zero (fig. 8).
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Figure 7: Auxiliary parameter estimation errors at standstill
with no resistant torque (detail)
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Figure 8: Speed tracking with no resistant torque

Since from those simulations, the harmonics in the PWM
voltage waveform are not enough to keep the system ob-
servable at standstill in the absence of a resistant torque, a
possible solution can be the use of an additional excitation
in the control signal: simulations indeed show that a small
magnitude excitation signal is enough to make the speed to
oscillate around zero and prevent the system from entering an
unobservable state (see fig. 9).
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Figure 9: Speed tracking at standstill with additional excitation
signals

5 Conclusions

In this paper an exact and global method to estimate the flux,
the mechanical speed, the resistant torque, as well as all the
identifiable electrical parameters was proposed. This method
gives accurate estimates provided that the motor is ”excited
enough”, and it was shown in simulation how this can indeed be
the case in practice-like operating conditions, due to the pres-
ence of the inverter feeding the motor. In particular, simula-
tions have been performed under estimate-based control, and
the problem of regulation at zero speed has been considered.
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