
DESIGN OF SUPERVISORY MACHINE CONTROL
N.J.M. van den Nieuwelaar

��
, J.M. van de Mortel­Fronczak

�
, J.E. Rooda

�
�
ASML, De Run 1110, 5503 LA Veldhoven, The Netherlands�

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
email: {n.j.m.v.d.nieuwelaar, j.m.v.d.mortel, j.e.rooda}@tue.nl

Keywords: supervisory control, complex manufacturing ma­

chines, task resource systems, design framework, optimal be­

haviour.

Abstract

This paper presents a basis for a framework for the design of su­

pervisory machine control. Machine behaviour is described us­

ing the task resource system (TRS) paradigm. Analysis is per­

formed to classify system descriptions leaving room for control

choices up to a certain extent: selected untimed TRS, instanti­

ated unselected TRS and TRS constraints. As a consequence of

the physical nature of machines and products, some machine­

speci¿c issues are involved. Furthermore, an overview of exist­

ing techniques that are suitable to support the design of super­

visory control is given. This overview involves techniques from

different research areas that help to make well­founded design

decisions and identi¿es relevant issues.

1 Introduction

The purpose of a manufacturing machine is to add value to

products. To this end, physical manufacturing processes must

be carried out. To actually do the work, mechatronic systems in

the machine must be deployed. In this context, the machine can

be considered as a task resource system [8]. A manufacturing

process can be associated with a task, whereas a mechatronic

system can be associated with a resource. Complex manu­

facturing machines consist of multiple mechatronic systems.

Control of the separate mechatronic systems is referred to as

low­level control, and is primarily not considered in this pa­

per. Many possibilities exist to deploy the available resources

to perform tasks that lead to the desired manufacturing purpose,

resulting in different machine behaviour. In this paper, super­

visory machine control is considered that co­ordinates mecha­

tronic systems operating in parallel.

Supervisory machine control is an emerging application area

as machines become more and more Àexible, complex, and

expensive. This effect is boosted by the rapidly increasing

processing power that can be applied in machine control sys­

tems. Minimization of the machine’s Cost of Ownership (CoO)

[7] is an important issue in industry. It can be achieved by op­

timising machine performance through ef¿cient usage of avail­

able resources, which is the purpose of supervisory machine

control. Control of mechatronic systems has received much

attention in literature [5]. Also the analysis of discrete­event

and timed systems has been an important subject in the area of

computer science and operations research [13]. The applica­

tion area of supervisory machine control involves multiple re­

search areas. Therefore, a framework is required that combines

the relevant issues for supervisory machine control from these

areas.

The purpose of this paper is twofold. First, as a basis for

reasoning, temporal machine behaviour is described that results

from a de¿nition of the system according to the task resource

paradigm. Several system de¿nitions are discussed, that leave

more or less room for choices that affect machine behaviour.

These choices can be made during the design, which implies

static scheduling. When dynamic scheduling is applied, these

choices are made run­time by supervisory control. Second, an

overview of the existing techniques that can support the choice­

making process and design decisions is given. This paper pro­

vides a ¿rm foundation for a framework for the design of su­

pervisory control. It gives an overview of issues involved and

relevant techniques known. Open issues, which are currently

under investigation, are pointed out. For illustration, examples

and cases from a wafer scanner [1] are used. A wafer scanner

is a machine used in semiconductor industry. It projects a mask

on a wafer (a slice of polished silicon) covered with a thin layer

of photo­sensitive emulsion, using light. A wafer scanner is a

good example of a complex manufacturing machine, in which

numerous actuators and sensors are involved that have to be co­

ordinated and controlled within nanometer accuracy. Several

control problems related to material Àow also play an essential

role.

This paper is structured as follows. Section 2 describes the

time behaviour of a TRS in terms of a sequence of state trans­

itions for each resource, imposed by tasks in a certain order.

First, the time required for execution of a single task is de­

termined based on the behaviour of the individual resources.

After that, time required for execution of the total system is

determined based on resource behaviour imposed by the tasks

in a certain order. In Section 3, two classes of more relaxed

system de¿nitions are discussed within the context of super­

visory machine control. First, a system de¿nition is considered

that leaves room for some alternatives with respect to tasks, re­

sources, and precedences. Subsequently, a system de¿nition

describing the constraints on task precedences is introduced,

based on integrity constraints on task pre­ and post­conditions.

Furthermore, several aspects to be taken into account during

the design of supervisory machine control are discussed. Sec­

tion 4 discusses suitability of known techniques to support the

design of supervisory control. Finally, concluding remarks are

presented in Section 5.

2 Time behaviour of a task resource system

Machine resources generally show continuous behaviour. At
supervisory level, resource behaviour is considered at discrete
points in time only: at the start and at the end of a task. Super­
visory control imposes certain resource states at these points

in time, and puts some additional restrictions on the transition

behaviour. In this context, only the required duration of the

resource state transitions is relevant, which is restricted by the

resource performance parameters or capacities. In this section,

¿rst the time required for a single resource state transition is

discussed. In fact, this forms a bridge from the continuous be­

haviour of machine resources to the abstraction level required

by supervisory control. After that, the time required for a sin­

gle task involving multiple resources is determined based on

the behaviour of the single resources involved. The resources

involved have to co­operate in order to carry out the task. In the

sequel we refer to this as synchronous concurrency. Finally, the

time required for execution of the total system is determined,

involving multiple sequential and partly parallel tasks and two

forms of resource concurrency: synchronous concurrency in­

side tasks, and asynchronous concurrency between tasks.

Let U be the set of resources in the system, and let W be the

set of tasks in the system. Let V be the set of possible states

of all resources in the system. As stated before, ¿rst a single

state transition of a single resource r is considered. Let V(r)

be the set of states of resource r. The capacity of resource

r, f+u,> can be described by a certain number of parameters:

+;u = u 5 U= +<q = q � 3 = f+u, 5 U�,,= Let E(r,t) be a set of

Differential Algebraic Equations (DAEs), including inequali­

ties, describing the allowed continuous behaviour of resource

r for task t. The behaviour description of resource r depends

on the capacity restriction f+u,. Let �(E(r,t)) be the set of pos­

sible solutions of E(r,t). Furthermore, the minimal time � 5
W required for a state transition of r depends on the begin and

the end states v�+u,, v�+u, 5 V(r). Here, W, stands for time and

equals the set of non­negative real numbers U�. This minimal

time � 5 W is the time for which holds:

+<*= * 5 +W $ V+r,,
= * +3, @ v�+u, a * +�, @ v�+u, a * 5 �+E+r> t,,, (1)

As an example, consider one­dimensional motions. Let x be

the considered dimension, which can be associated with a po­

sition, depending on time. Then, the ¿rst, second and third

time derivative of x can be associated with speed v, accelera­

tion a, and jerk j. First, no transition restriction is considered.

Suppose that the resource capacity f+u, is described by con­

straints on the absolute value of x and its ¿rst, second and third

derivative, X, V, A, and J, respectively. Furthermore, the be­

gin position, acceleration, and jerk are zero, as well as the end

acceleration and jerk. The begin speed is y�, whereas the end

position and speed are {� and y�, respectively. Then, minimal

time needed for this particular resource state transition can be

de¿ned by substitution in Expression 1 as follows:

v�+u, @

5

9

9

7

3
y�
3
3

6

:

:

8

, v�+u, @

5

9

9

7

{�
y�
3
3

6

:

:

8

, and E+r> t, =

;

A

A

?

A

A

=

{ � m[m
b{ � mY m
�{ � mDm
...{ � mM m

.

An example of a transition restriction imposed by a task would

be constant speed, which means that A and J are replaced by 0.

Subsequently, minimal time required for execution of a task

is considered. If only one resource is involved, the minimal

time required for the task is equal to the minimal time required

for the state transition of this resource. However, for one task

multiple resources might be involved. These resources have to

transform their state synchronously for this task. A typical ex­

ample from a wafer scanner is an exposure scan, during which

the reticle and the wafer are moved synchronously in oppos­

ite directions. Let I be a function that assigns to each task t
the set of resources involved: I5 (W $ S+U,,, where S+U,
is the powerset of U. Let S�> S� 5 (W � U $ V, be func­

tions assigning a begin and an end state, respectively S�(t,r),

S�(t,r) 5 V+r,, to each resource involved in task t. Let � � 5
(V+r, � V+r, � E $ W,, where E is the set of all possible

DAEs, be the function determining the minimal time required

for a state transition of resource r from state v�+u, to state v�+u,
within the constrained behaviour, as is described previously.

Usually, the time taken for a state transition is allowed to be

anything larger than the result of � �. In [10] an exception to

this assumption can be found, which is not relevant for this pa­

per. Under this assumption, minimal time required for the syn­

chronous resource state transitions of task t can be derived from

the involved asynchronous state transition durations as follows:

+pd{ u = u 5 L+w, = � �+V�+w> u,> V�+w> u,>E+r> t,,, (2)

Finally, minimal time required for the realisation of an entire

system implying execution of multiple tasks in a prede¿ned or­

der is discussed. Let P5 S+W � W , be the precedence relation

between tasks de¿ning this order, such that the precedence re­

lation does not contain any cycles, and the sequence of tasks

per resource is a chain.

Suppose that S � � S is the union of all these resource task

chains. The remaining task precedences are then SqS �= The

system behaviour from supervisory machine control point of

view can be described by the start and ¿nish times of (syn­

chronous) resource state transitions, related to the tasks in their

prede¿ned order, which can be graphically displayed in a Gantt

chart. Let � � : (W $ W) be a function determining the min­

imal time required for a task, that is, for the synchronous state

transitions of this task, such that � �(t) is de¿ned by (2). Let

� Ss(t) and �Fs(t) be the start and end time of the synchronous

resource state transitions of task t, respectively. Between tasks,

resources behave without any transition behaviour constraints

implied by tasks. Let E+u, be the set of DAEs describing the

behaviour of resource r in this case. Let � S�(r, t1, t2) and �F�(r,

t1, t2) be the start and end time of a resource state transition of

resource r between tasks t1 and t2, respectively. Suppose that

the system contains an initialisation task t	, preceding all other

tasks and having an initial resource state assigned to it as the

begin state and as the end state as well. Then, for the minimal
time � 5 W required for the realisation of the total system state
transition holds:

+;w = w 5 W = � � �
�+w, a ���+w, � 3
a�
�+w, @ � ��+w, . � �+w,,

a+;t1> t2 = +t1> t2, 5 SqS � = � ��+t2, � �
�+t1,,
(3)a+;t1> t2> u =+t1> t2, 5 S � a u 5 L+t1, _ L+t2,

=���+t2, � �
�+r> t1> t2,
a� ��+r> t1> t2, � �
�+t1,
a�
�+r> t1> t2, @ ���+r> t1> t2,

.� �+V�+t1> u,> V�+t2> u,>E+u,,,

3 Supervisory control analysis

In this section, the underlying design decisions are discussed
that eventually lead to the desired machine behaviour. First,
to outline the decisions involved, system de¿nitions are intro­

duced that leave more or less room for choices with respect

to resources, tasks, and task precedences. After making these

choices, system behaviour can be determined as has been de­

scribed in the previous section. TRS de¿nitions can be classi­

¿ed by the level of restriction of these choices. The most re­

strictive TRS de¿nition has already been discussed in the pre­

vious section: an selected, untimed system. The only room for

choices not affecting minimal system realisation time concerns

tasks that have Àoats. A TRS de¿nition that is less restrictive

de¿nes the alternatives to choose from. A TRS de¿nition that

is even more relaxed de¿nes only the constraints that must be

satis¿ed. By making choices, less restrictive TRS de¿nitions

can successively be transformed into more restrictive TRS def­

initions, ¿nally resulting in timed machine behaviour. This lay­

ered choice framework is visualised in Figure 1. In the sequel,

the TRS de¿nition classes and choices that transform TRS def­

initions into more restrictive de¿nitions are referred to by digits

and letters, respectively, as in Figure 1. Additionally, due to

Instantiating

Selecting

Tim ing

3:

C :

1:

0 :

ro
om

 f
or

 c
ho

ic
es

tim ed

selected untim ed

A:

2:

B:

instantiated unselected

constraints for TRS

TRS

TRS

TRS

Figure 1: Layered Task Resource System framework

the physical nature of machines and products being manufac­

tured by them, some special issues arise. These issues involve

product con¿guration, material logistics, material capacity of

resources and hardware limitations. Finally, the aspects to be

taken into account during the design of supervisory control are

addressed.

In the previous section, a restriction on the precedence rela­

tion is that it must de¿ne a chain of tasks per resource. When

disregarding resources, only a subset of these task precedences

is necessary to ensure a feasible order of tasks. However, a

resource can execute only one task at a time: mutual exclusive­

ness. For each pair of tasks that share some resource, it must be

decided which one to do ¿rst. In some cases, in a system mul­

tiple resources capable of the same job might exist. Examples

from a wafer scanner are handling robots and wafer chucks. In

some cases, in a system multiple tasks having the same effect

might exist. Examples from a wafer scanner are exposure scans

that can be executed in either scanning direction. After selec­

tion from the various alternatives (B), the system must satisfy

the restrictions described earlier. To illustrate the fact that be­

haviour can be inÀuenced considerably by these choices, con­

sider the following case from a wafer scanner involving choices

from task precedence alternatives implied by mutual exclusive­

ness of resources. The system in this case consists of 30 cali­

bration tasks and 15 resources. Considering task order feasibil­

ity, it appears that 41 task precedences are involved, excluding

redundant ones. Total amount of work (the summed­up dura­

tion of the calibration tasks) equals 38.8 time units, and time

needed between tasks can be neglected in this case. In Section

4 it is shown that optimal selection of precedences results in a

system realisation time that is considerably less than 38.8 time

units.

In some cases, products are produced in batches. For exam­

ple, wafers are produced in lots. Furthermore, a product can

consist of or can be part of a number of other manufacturing

entities. For example, a wafer consists of a number of chips.

The same goes for the other entities required for manufactur­

ing. For example, one or more IC circuit masks are required for

lithographic manufacturing of one layer of a chip and multiple

masks can be placed on one reticle. For the purpose of this

paper, an instance of the aggregate of these entities including

a product batch is called a recipe. In general, some manufac­

turing processes are related to some of these entities, and have

to be executed for several instances of these entities. In fact, a

combination of such a process and such an instance of a man­

ufacturing entity forms a task. For example, the lot size limits

the range of instances of the wafer manufacturing entity. The

manufacturing process ’load wafer’ has to be executed for all
wafers. A generic unselected TRS de¿nition (2) for any num­

ber of instances of entities should be based on processes in a

de¿ned order for any number of instances of entities. This sys­

tem de¿nition is not elaborated further as it is currently under

investigation.

Besides general precedence restrictions some additional spe­

ci¿c restrictions might be appropriate for the unselected TRS

de¿nitions (2), for instance the ones imposed by material lo­

gistics. These restrictions are referred to as logistic (integrity)

constraints in the sequel, and have to do with the fact that the

system handles material. This can be either material ending up

in the product to be manufactured or material that is required

to enable manufacturing. Examples from a wafer scanner are

wafers and reticles, respectively. Some of the tasks can be as­

sociated with material. Material resides in resources, which

have limited capacity to hold it. For the purpose of this paper,
only one type of material is considered, and one task gets only
one material instance associated to it. In this case, material
capacity of a resource can be described by an integer number.
Moreover, we assume that there is no task concurrency pos­

sible for one material instance. Taking logistic integrity into

account, the following additional restrictions are imposed on

the precedence relation resulting after selection:

� The tasks involving the same material instance must form

a chain, and must be consistent with respect to resources:

material can be processed by some resource only if it was

put there before.

� The actual material content of a resource implied by the

tasks involving this resource may not exceed its material

capacity.

Besides task precedence restrictions also resource state transi­

tion restrictions might exist, imposed by the physical machine.

It might be the case that a resource state transition imposed by

a chosen precedence relation is not possible asynchronously.

Due to physical limitations, such a resource state transition im­

plies a resource state transition for one or more other resources

to take place synchronously. An example from a wafer scanner

is reticle manipulation using a single manipulator that can con­

tain two reticles. Movement of this manipulator for one reticle

implies a synchronous move of the other reticle. As one task

gets only one material associated to it (see above), the manipu­

lator must be divided into two resources. Manipulation of one

reticle involves synchronous state transitions of two resources.

In an unselected TRS de¿nition (2), some basic precedence re­

lation exists. Previously in this section, the statement has been

made that this precedence relation is necessary to ensure a fea­

sible task sequence. However, in some cases, several feasible

task sequences might be possible. De¿nition of the set of all

possible precedence relations implies a less restrictive system

description. The precedence relation of this system description

is completely based on integrity constraints (3). Above, logis­

tic integrity constraints have been described, concerning ma­

terial Àow and material capacity. Additionally, other relevant

integrity constraints must be taken into account. This implies

the introduction of task conditions for all relevant aspects.

A TRS de¿nition based on integrity constraints (3) might re­

veal possibilities for timing optimisation that do not exist in an

unselected TRS de¿nition (2). Moreover, up to now it has been

assumed that the system behaves as expected. When consid­

ering exceptional system behaviour, it appears that, to enable

recovery from various exceptional system states, a system def­

inition should be based on integrity constraints (3).

The choices (A­C) of what task to execute when and on what
resource relate to scheduling, which can be performed stati­
cally or dynamically. In case of static scheduling, choices are

made during design by the designer, whereas in case of dy­

namic scheduling choices are made run­time by supervisory

control. The decision to apply dynamic scheduling has impact

on the behaviour of the machine, as well as on the complexity

of supervisory control. This is why this decision should be a

careful trade­off. If a highly Àexible behaviour with respect to

recipes, as well as a highly optimised timing behaviour for a

diversity of recipes are desired, this suggests a decision for dy­

namic scheduling based on unselected TRS de¿nitions (2). If

a highly robust behaviour with respect to exceptions is desired,

this suggests dynamic scheduling based on integrity constraints

concerning pre­ and postconditions related to tasks (3). In this

case, the scope of supervisory control reaches from the low­

est layer to the highest layer of Figure 1. The most important

drawbacks of dynamic scheduling for supervisory control are

the complexity and the amount of domain knowledge that must

be explicitly de¿ned. In practice, a mix of static and dynamic

scheduling for certain control scopes and abstraction levels is

thinkable. In any case, it is important to have techniques at

one’s disposal that support the design decisions in this context.

In case of dynamic scheduling, these techniques even have to

be embedded in supervisory control in order to achieve the re­

quired functionality.

4 Supervisory control synthesis

This section discusses known techniques suitable to perform

timing analysis based on the system de¿nitions as discussed in

the previous section.

A task resource system can be classi¿ed as a hybrid system as

it contains both continuous­time and discrete­event character­

istics. In computer science, several generic hybrid paradigms

and associated languages exist which are accompanied by vari­

ous analysis tools [9, 4]. After a mapping of the original sys­

tem onto such a paradigm and language, timing analysis can be

performed. Supporting tools can be classi¿ed as either model

checkers or simulators, in case of exploration of the complete

state space (all realisations) or exploration of just any realisa­

tion, respectively. To determine suitability of these tools for

the analysis of a completely prede¿ned system, consider, for

instance, the one­dimensional motion problem. Only one tra­

jectory corresponds with the minimal solution of Expression

1. However, the set of DAEs leaves also room for other so­

lutions. Therefore, a simulator is not suitable for derivation

of the minimal duration. A model checker is able to deter­

mine whether a certain property holds. This property could

be whether a solution exists that takes no more than a certain

amount of time. Embedding a model checker in an optimisa­

tion algorithm that iterates towards the optimal solution would

be a possible though inef¿cient solution to ¿nding the minimal

time for which Expression 1 holds. Some model checkers have

limited optimisation extensions.

However, from supervisory machine control point of view, only

task start states and end states are considered. Therefore, ab­

straction from continuous behaviour is possible by embedding

speci¿c mathematical functions in the model, assigning the re­

quired duration to the resource state transitions de¿ned. Using

these mathematical functions, the model is simpli¿ed to the
class of discrete­event systems. In the one­dimensional mo­

tion example, the domain knowledge can be used that the op­

timal trajectory consists of sub­trajectories for which alterna­

tively b{ = V, �{ = A, or
...{ = J holds. The determination of the

required duration of the resource state transition can be per­

formed by combining analytical functions for most cases. Only

in very special cases, an approximation algorithm is required.

As this concerns a very restricted solution area, a very sim­

ple bisection algorithm suf¿ces [10]. These dedicated mathe­

matical functions take less computing power to ¿nd a solution

than a generic solver. Also for discrete­event systems, a wide

range of paradigms and languages exists, e.g. [3]. Support­

ing tools can be classi¿ed analogously to the tools supporting

hybrid languages. Because there are no alternatives in case of

a completely prede¿ned system, both tool classes are suited

for analysis. This leaves the disadvantage of mapping of the

original system onto the generic discrete­event paradigm and

language. Even this mapping can be prevented, as calculation

of the minimal time for which Expression 3 holds is in fact a

linear programming (LP) problem [16]. This enables the usage

of a variety of mathematical tools, to derive the total system

behaviour from the durations of resource state transitions.

In case of dynamic scheduling, it is desirable that computation

of system behaviour starts with tasks that can be dispatched

¿rst, called forward computation. In this way, some tasks can

already be released, while timing determination of the rest of

the tasks is still under progress. Forward computation is not

applicable for generic LP problem solvers. A mathematical

approach for which this is applicable is the Heap of Pieces ap­

proach [15]. A restriction of this approach is that it cannot cope

with precedence relations as discussed in this paper.

TRS de¿nitions of class (2) and (3) can have several realisa­

tions. Therefore, in principle a simulator is not suited for analy­

sis, whereas a model checker is because it evaluates all possi­

ble realisations. However, the combination of possible choices

blows up the number of realisations exponentially. In model­

checking terminology, this phenomenon is known as state­

space explosion. Therefore, most model checkers are equipped

with state­space reduction techniques. Intuitively, it should

be possible to ¿nd recurrent patterns concerning different in­

stances of the same manufacturing entity. However, it appears

that this is not the case, as these techniques are based on inter­

relations between clock variables rather than repetition counter

variables. Furthermore, the mapping of the original model onto

a generic paradigm and language usually introduces even more

possibilities than exhibited by the original model. Therefore,

model checkers are in principle not suited to analyse practical

cases. In operations research, several approaches can be found

that address certain aspects of the choices from alternatives.

The choice of tasks and task precedences for one resource re­

sults in different realisation times. This issue is widely dis­

cussed in literature, and is referred to as the Travelling Sales­

man Problem [11], or more speci¿c: the Rural Postman Prob­

lem or the Vehicle Routing Problem [14]. Because only one re­

source is considered, there is no parallelism. The choice from

resource alternatives and task precedence alternatives for re­

sources is also widely discussed in literature, and is referred to

as the (Generalized) Job Shop Scheduling problem (JSS) [16].

In this context, time required between the tasks gets very little

attention. Using JSS, optimisation of the calibration case can

be addressed. A sequential realisation would take 38.8 time

units (Figure 2a), whereas an optimised realisation takes only

32.8 time units (Figure 2b), which gives an improvement of

15%. Due to the combinatorial nature of these scheduling prob­

lems, they are NP­hard to solve [13]. TRS de¿nitions in terms

of integrity constraints are analogous to rules of games [2]. Ap­

plication of game theory in this domain is unknown.

0 10 20 30 4 0

Res1

Res2

Res3

Res4

Res5

Res6

Res7

Res8

Res9

Re s10

Re s11

Re s12

Re s13

Re s14

Re s15

R
es

ou
rc

e
s

Time

R1 5

R1 4

R1 3

R1 2

R1 1

R1 0

R9

R8

R7

R6

R5

R4

R3

R2

R1

2

2

2

2

3

3

3

3

3

4

4

4

5

5

5

5 6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

12

1 2

1 2

1 2

12

1 2

1 2

15

15

15

15

15

18

1 8

1 8

18

1 8

18

1 8

1 8

1 9

1 9

1 9

1 9

1 9

1 9

1 9

1 9

1 9

1 9

2 0

2 0

20

2 0

20

2 0

2 0

20

2 0

2 5

2 5

2 5

2 5

2 5

2 5

2 5

2 5

2 5

2 6

26

26

26

2 6

26

2 6

26

26

2 6

26

26

26

2 6

26

2 7

2 7

2 7

2 7

2 7

2 7

2 7

2 7

2 7

2 7

28

28

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

0 10 20 30 40

RH

WH

R S

M I-E

I P

U L

D O

RM

I F

C I-E

WS-E

WS-M

L E

A F

MI-M

R
e

so
u

rc
es

Tim e

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 6

2 7

2 7

2 7

2 7

2 7

2 7

2 7

2 7

2 7

2 7

2 8

2 8

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

2 9

9

9

9

9

9

9

9

9

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 5

1 5

1 5

1 5

1 5

1 8

1 8

1 8

1 8

1 8

1 8

1 8

1 8

1 9

1 9

1 9

1 9

1 9

1 9

1 9

1 9

1 9

1 9

2 0

2 0

20

2 0

20

2 0

2 0

20

2 0

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

2

2

2

2

3

3

3

3

4

4

4

5

5

5

6

6

6

6

6

6

6

2 5

2 5

2 5

2 5

2 5

2 5

2 5

2 5

2 5

3 5

1 2

1 2

1 2

1 2

1 2

1 2

1 2

R1 5

R1 4

R1 3

R1 2

R1 1

R1 0

R 9

R 8

R 7

R 6

R 5

R 4

R 3

R 2

R 1

(a) worst realisation

(b) best realisation

Figure 2: Case: wafer scanner calibration

However, the machine­speci¿c issues of logistic integrity and

physical limitations are not well addressed in scheduling liter­

ature. The same goes for recognition of patterns concerning

repetitive behaviour for different instances of the same manu­

facturing entity.

Usage of predictions based on a model in a control system is

known in control theory literature as model­based predictive

control [12]. The underlying line of thoughts can also be used

in supervisory control. In some cases, a well­founded deci­

sion can only be made if future behaviour can be predicted, for

instance, by a model of the system that is embedded in super­

visory control.

5 Conclusions

Machines are hybrid systems: discrete­event and continuous­

time. In the context of supervisory control, the continuous be­

haviour of the machine between discrete states can be captured
by durations of tasks. Therefore, system de¿nitions based on
tasks and resources are suited for description of the dynamic
behaviour of machines.

TRS de¿nitions are classi¿ed by the level of restriction of the
control choices. In the case of unselected TRS de¿nitions
(2), some machine­speci¿c restrictions are applicable: hard­

ware limitations and logistic integrity constraints. Within the

context of supervisory control, a further relaxation consider­

ing task precedences can be obtained by de¿nition of integrity

constraints for all relevant aspects.

Scheduling can be performed statically or dynamically.

Dynamic scheduling allows better performance than static

scheduling with respect to timing behaviour and robustness for

exceptions. In the design process, trade­offs should be care­

fully evaluated considering the aspects mentioned and the com­

plexity of the resulting supervisory control.

Techniques to support the design of supervisory control orig­

inate from several research areas. Generic techniques from

computer science are not well suited for analysis of hybrid

models, not even of class (1), because optimisation is involved.

Dedicated mathematical functions assigning the minimal du­

ration to resource state transitions are better suited, as they

simplify the problem to the class of discrete­event systems.

Again, generic techniques from computer science are not well

suited for analysis of practical cases described by unselected

TRS de¿nitions (2), because of the state­space explosion prob­

lem. Although the choices result in an NP­hard problem any­

how, state space for model checkers is generally even bigger.

This is caused by the mapping onto a generic timed paradigm

and language, and by the fact that patterns concerning differ­

ent instances of the same manufacturing entity are not recog­

nised. More dedicated techniques originating from operations

research are better suited for analysis of unselected TRS def­

initions. They stick to the bare problem and have intelligent

search algorithms for optimisation purposes. However, the

machine­speci¿c issues concerning hardware limitations and

integrity constraints (3) are not well addressed in literature.

The following open issues remain. To ef¿ciently reason about

system de¿nitions with alternatives, techniques are needed for

pattern recognition concerning different instances of the same

production entity. Moreover, techniques are required that prop­

erly cope with machine­speci¿c restrictions. To achieve bet­

ter machine performance, model­based predictive supervisory

control concepts should be developed. Additionally, the im­

pact of integrating integrity constraints ­related to game theory

concepts­ in supervisory control on exception­robust behaviour

should be investigated.

6 Acknowledgments

The authors would like to acknowledge Cor Hurkens for his

useful comments.

References

[1] www.asml.com

[2] R.J. Aumann, S. Hart. “Handbook of game theory: with

economic applications”, Amsterdam, North­Holland,

(2002).

[3] J.C.M. Baeten and W.P. Weijland. “Process Algebra”,

Cambridge Tracts in Theoretical Computer Science, no.
18, Cambridge University Press, (1990).

[4] D.A.van Beek, J.E.Rooda. “Languages and applications

in hybrid modelling and simulation: positioning of chi”,

Control Engineering Practice, vol. 8, no. 1, pp. 81­91,

(2000).

[5] P.R. Belanger. “Control Engineering: a modern ap­

proach”, Saunders College Publishing, Fort Worth,

(1995).

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,

M. Stal. "A system of patterns", Chichester, Wiley,

(1995).

[7] L.M. Ellram, S.P. Siferd. “Total Cost of Ownership: a

key concept in Strategic Cost Management”, Journal of
Business Logistics, vol. 19, no. 1, (1998).

[8] S. Gaubert and J. Mairesse. “Task Resource models

and (max, +) automata,” Idempotency, Cambridge, U.K.

Cambridge University Press, pp. 133­144, (1998).

[9] H. Gueguen, M. Lefebvre. “A comparison of mixed spec­

i¿cation formalisms”, Proceedings of ADPM2000, pp.

133­138, (2000).

[10] C.M.H. Kuijpers, C.A.J. Hurkens, J.B.M. Melissen. “Fast

movement strategies for a step­and­scan wafer stepper”,

Statistica Neerlandica, vol. 51, no. 1, pp. 55­71, (1997).

[11] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B,

Shmoys. “The Traveling Salesman Problem: A Guided

Tour of Combinatorial Optimization”, Chichester, Wiley­

Interschience, pp. 177­178, (1985).

[12] J.M. Maciejowski. “Predictive control with constraints”,

Harlow, Prentice Hall, (2002).

[13] M. Pinedo. “Scheduling: Theory, Algorithms, and Sys­

tems”, Prentice Hall, Englewood Cliffs, (1995).

[14] P. Toth, D. Vigo. “The Vehicle Routing Problem”,

Philadelphia, SIAM, (2002).

[15] G.X. Viennot. “Heaps of Pieces, I: Basic De¿nitions and

combinatorial lemmas,” Combinatoire Enumerative, La­

belle and Leroux, Eds., no. 1234 in Lect. Notes in Math.,

New York: Springer, pp. 321­350, (1986).

[16] M. Wennink. ”Algorithmic support for automated plan­

ning boards ”, PhD thesis, Eindhoven University of Tech­

nology, (1995).

	Session Index
	Author Index

