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Abstract

This paper deals with a chance-constrained stochastic
production-planning problem under hypotheses of imperfect
information of inventory variables. Assuming a linear-
Gaussian nature to the inventory balance system, the mean
and covariance, statistical variables, are estimated from the
Kalman filter equations. As a consequence, an approach –
originally developed for stochastic problems under perfect
information of state [8] – is adapted to provide sub-optimal
solution for this problem. A simple example illustrates the
basic ideas presented.

1   Introduction

The production-planning problem requires a set of decisions
that is used to adjust the industrial resources of the company
in order to satisfy the exogenous demand for its products.
Such decisions are taken over different planning horizon at
various levels in the planning decision hierarchy [4]. The
fluctuation of demand affects strongly such decisions [8].

At a higher planning level of a hierarchical process, decisions
are usually taken over a long-term horizon, and  the
production-planning problem can only be elaborated at the
aggregate pattern of product families [4]. A common
problem in this level is to identify the quantity of inventory
related to  material resources that will be used by company at
future periods. Surely, this is not an easy task even for an
expert manager. The reason is that there are a variety of
uncertainties associated with the process of identifying the
quantity of these materials to be used in the shop floor. These
uncertainties are due to exogenous and endogenous factors.
For example, exogenous factors are to know a priori if a
given supplied material will be considered appropriate by

consume during the quality test; or to know precisely how
will be the behavior of demand in the next month. On the
other hands, endogenous factors are related to the quantity of
material lost or robed during its handle in the storeroom. As a
direct consequence of the exogenous and endogenous
randomness, the inventory variable can not be measured
precisely. Thus, in order to deal with the lack of accuracy
about inventory, a stochastic optimal control problem under
hypothesis of imperfect information of state must be
formulated.

This paper considers a single stochastic inventory balance
system. The idea is to minimize the expected production and
holding costs over a finite time horizon [0,T]. It is assumed
that demand at each period of time is a Gaussian process.
Besides, as said above, the inventory level is not accurately
measured. Additionally, probabilistic constraints on
inventory and production levels are included. Thus, this kind
of problem can be formulated as a linear-stochastic optimal
control problem under imperfect information of state and
with chance-constraints on production and inventory
variables.

A control structure for the above problem is possible by
using Kalman Filter [2] to identify the estimates of the
inventory level. This structure allows not only determining
the optimal mean decision policy but also accommodating
the effects of  the evolution of the variances of production
and inventory variables. Based on Separation Theorem [1-2],
the stochastic problem can be split into two other sub-
problems: the first one determines a linear optimal gain from
the solution of a minimum variance problem [1]. The second
solves a deterministic equivalent problem that allows
obtaining a mean optimal policy for the stochastic problem.
As a result, a sub-optimal decision policy for the stochastic
production-planning problem is obtained from the merge of
the solution of these two sub-problems. This result is denoted
as a linear feedback decision rule [8].



2   The Stochastic Inventory Problem

Let us introduce the notation to be used henceforth:

Ik  =  inventory level at period k,
Pk =  production level at period k,
Yk =  level of inventory effectively measured at period k,
Dk = demand level at period k,
vk =  noise level during inventory measured at period k,

( )   Ih 2
k =⋅ holding cost of the inventory level at period k,

( )   Pc 2
k =⋅ production cost at period k.

Consider a linear, discrete-time, stochastic inventory balance
equation:
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where the demand kD  is a Gaussian variable with mean kD̂
and time-invariant variance 02

D ≥σ . It's assumed that at
0k =  the initial inventory level Io is estimated. Associated

with (1), there is an output device described as follows:
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where the variable Yk denotes the output variable (i.e.,
inventory level plus an error) and vk denotes an error of
measuring Ik from the output device. This error is defined as
a normal distributed random variable, with mean 0v̂k =  and
finite variance 02v >σ .

Since Ik is not directly accessible for control purpose, it is
important to introduce the vector Γk, which contains all
current, and past information related to output (Yk) and
control (Pk) variables.

Γk = {Po, P1, ..., Pk-1, Y0, Y1, ..., Yk} ⊃ Γk-1           (3)

Based on the available information given by (3), an optimal
non-negative production policy {Po, P1, ..., PT-1}, for some
fixed 1T ≥ , can be find by mean of a control strategy that
minimizes the following expected production and holding
costs:
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besides, (4) is subject to (1)-(2) and the probabilistic
constraints given by:
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where [ ]1,, 2
1∈βα  denotes probabilistic indexes fixed a

priori by the manager.

Some important comments about these formulations:

(a) the Quadratic Criterion model in (2), as justified by [6],
represents a realistic structure for production planning
process. For instance, the holding costs are incurred for
both negative (backlogged sales) and positive inventory
(customer satisfaction). Another positive aspect, is that,
it allows uncertainties to be handled directly by
computing the expected value of the cost;

(b) in long-term planning horizons, the decisions are
strongly influenced by stochastic fluctuation of
demands. It does not make sense, therefore, to consider
deterministic problems in order to favor the application
of some mathematical programming procedure, because
the result deterministic (i.e. open-loop) production plan
has a big chance of becoming a "disaster" when applied
for planning purpose in the company; and

(c) the probabilistic constraints (5) are included into the
model to ensure that both inventory and production
levels won't violate their physical upper ( )P and I  and
lower ( P and I ) boundaries. Note that the lower
boundaries have the following physical interpretations:
if we consider 0I > , it means a hedge against
uncertainty, otherwise if we choose 0I = , for all k, it
means that we eliminate all backlogging. In the same
way, if we consider a minimal production  level ( )0P > ,
it  allows studying the  effect of  different  production
capacity policies [7].

3   Kalman Filter

Since the structure of the system (1-2) is linear and the
uncertainty (i.e. demand variables) involved is Gaussian,
then the density probability function of the state (Ik)
“conditioned” to (3) will be also Gaussian and can be
therefore parameterized  by the conditional mean and
covariance that are generated over the time from the Kalman
filter, as follows [2]:
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and,
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where  }I{EI kkkk Γ= and  }.)II{(EV 2kkk
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denotes respectively the mean and covariance estimates of
inventory variable. Note that the operator E{.} denotes the
expected value of a random variable with the distribution
function F(.).

The initial conditions for (6) and (7) are given by:
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denotes respectively the mean and covariance of the initial
state I0.

Since the equations (6) and (7) concentrate all available
information about the current state of the inventory in the
balance system (1), the approach presented in [3] to deal with
the stochastic problem under perfect information of state can
be adapted here to deal with the problem described in section
2. Next, this approach will be briefly discussed.

4   The Linear Feedback Rule

As said before, the imperfect information of the state relate
to the stochastic inventory equation (1) can be completely
represented by its conditional mean and covariance equations
given by (6) and (7) respectively.

From the above facts, a linear decision rule can be
formulated in order to help to solve the stochastic problem.
Such rule is given by:

( )kkkkk ÎIGP̂P −⋅+= λ            (9)

where ( ){ } { }.IEkIEEÎ and gainlinear   theis G kkkk ==λ

Note that the control policy (9) is analogous to the one
obtained to the perfect information of state [8], the difference
is that the statistic information are related to the estimate
values of the state given by the Kalman filter (6-7).

The inventory balance equation (1) is represented by kkI

and kk
IV given by (6) and (7). The means kP̂  and λG  must

be determined by the procedure described next. Note that the
inventory level kkI  is a quantity to be estimated from (6) at

each period k, and the term ( )kkk ÎIG −⋅λ  means a release

adjustment according to whether the estimated inventory
( kkI ) is greater or less than expected inventory )Î( k . For

determination of G, the minimum variance problem can be
stated [1]:
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where kkkkk ÎII −=δ denotes the error of estimation. The

parameter +ℜ∈λ  denotes the trade-off between the
production and inventory variances. The closed-loop optimal
solution of (10) is given by
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where the linear gain is defined as λ+λ = 1
1G . Thus, the

close-loop variance of the inventory system (1) can be
written as follows:
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Note from (11) and (12) that the variance of inventory k
IV

increases over the time periods and, as an immediate
consequence, the production variance k

PV  increases
proportionally over the same periods.

The maximum values reached by the inventory and
production variances occur at T and T-1 periods respectively.
Thus, the idea is to find a value to λ that reduces
simultaneously  the growing of the both variances. Two
alternatives was presenting by [3]. The most simple is the
one that uses the Tchebycheff inequality to show that
approximately, the trade-off value of λ can be determined as
follows:
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where PPPandIII −=∆−=∆  that denote respectively the
space between the upper and lower levels of the inventory
and production constraints.
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Fig. 1. Schematic representation of the system

Production capacity:                                            0P =                                12P =

Inventory Level:                                                   5I =                                15I =
Holding and Production costs:                             2h =                                1c =
Initial and final inventory:                                    10II T0 ==
Probabilistic measures:                                         85.0=α                           β=0.5
Demand features:                                                 42.1D =σ

Month (k) Jan Feb Mar Apr May Jun Jul Ago Sep Oct Nov Dec
kD̂ 7 8 7 7 6 4 5 4 5 5 6 8

Table 1 Company’s data

Finally, we can introduce the sub-optimal strategy to solve
the stochastic production-planning problem, stated in the
previous section, as follows:

Let the production policy given by:

( )kkk*kk ÎIGP̂P −⋅−= λ         (14)

where kk P̂ ,Î  and *G λ  are determined by the following
procedure:

Step 1) Minimum Variance Problem:  the parameter ∗λ  is
computed from (13) and used to determine the linear gain

*Gλ =1/(1+λ∗). The optimal gain complete the definition of
the linear production rule (14) that is employed to adjust the
estimated inventory levels )I( kk  to desired levels ( kÎ ).

Step 2) Mean Problem:  knowing *Gλ  and the estimates
given by (5) and (6), it is possible to calculate the close-loop
inventory and production variances (11) and (12) and their
respective probabilistic distributions functions ( )⋅+1k,IF  and

( )⋅k,PF , for each [ ]1T,0k −∈ . As a consequence, the
stochastic problem, described by (1-4) can be reduced to a
deterministic equivalent whose solution can be provided by
any applicable method of mathematical programming:
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IÎIÎ       

FF

FF
   

where F-1(.)  denote  the  inverse  of  the  probability
distribution function,  and α  and  β   are probabilistic index
provided by the manager.

Note that (15) provides the mean value of inventory ( kÎ ) and
production ( kP̂ ) that are used as set points in this strategy,
see in figure 1 a schematic representation of this situation.

5   Example

A company, whose sales are subject to the effects of seasonal
fluctuating demand, tries to develop an aggregated
production plan which minimizes total costs over a finite
planning horizon (T=12 months). The sub-optimal strategy
discussed in previous section has been employed  here to
provide a decision policy for managers. Table 1 shows the
numerical data of the company.
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Figure 2. Optimal mean solutions

The optimal solution for the variance problem (step 1) is:
( ) 59.0G and 69.0 =λ=λ ∗∗ . From this result, the mean

problem (15) can be formulated (step 2) and solved by
dynamic programming algorithm. Figure 2 compares the
mean optimal (MO) feedback solution of (15) – obtained by
using a sub-optimal approach named Open-Loop Feedback
Controller (OLFC) [5] – with the true optimal (TR) solution
– obtained from the application of stochastic dynamic
programming algorithm. It is worth mentioning that the true
optimal solution was determined from the same stochastic
problem,  described in the section 2, but under hypothesis of
perfect information of state [5]-[8]. The analysis of the two
trajectories shows that the MO solution tries to follow the
true solution as close as possible. This interesting
characteristic can be explained through the fact that during
the solution of the deterministic problem (15), the evolution
of variances of inventory and production variables are
controlled to the linear gain and, as a consequence, the
variances can not grow freely over the time what implies in a
smoothing optimal solution [8] .

6   Conclusion

In this paper, a sub-optimal solution for a chance-constrained
stochastic production problem under imperfect information
was discussed. Considering the linear-Gaussian nature of the
inventory balance system, the entire information gathering
for control purpose (statistic sufficiency) can be concentrated
in the first and second statistic moments, which are estimated
from Kalman filter. As a result, the Separation Theorem can
be applied to obtain a feedback rule that is  based on
variances control. This decision rule consists in a linear
feedback gain used to reduce the effect of uncertainty due to
fluctuating demand over the inventory and production levels.
From a simple example, the true optimal solution (TR)
derived of the stochastic problem under perfect information

of states was compared with mean optimal (MO) feedback
solution provided from the application of OLF procedure to
the equivalent deterministic problem (15). The results
obtained from this sub-optimal approach allows concluding
that the linear decision rule, discussed in section 4, can be a
good strategies to deal with aggregated production planning
problems with imperfect information of decisions variables.
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