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Abstract

In an aluminium strip processing line, the main concern is to
control independently velocity and tension. This paper deals
with two control systems applied to a basic unwinder-rewinder
system: the first one is based on classic PI controllers includ-
ing specific compensations. The second is a LQG control.
Simulations demonstrate the effectiveness of both solutions.

1 Introduction

Modern high-speed process lines demand good tension control
for maximum efficiency [1][2]. In an aluminium strip process-
ing line, tension control is required in many operations (rolling,
coating, washing...). For such systems, it is very important to
prevent the occurrence of strip break by decoupling the strip
tension and the strip velocity [1]. The strong coupling between
both variables is induced by the strip elasticity: a physical mod-
elling of this process is given in section 2. Generally, on in-
dustrial production lines, the control is based on simple PID
techniques and the know-how of the operators [3]: it is often
non-optimal with low dynamic performances. The first con-
trol strategy presented in this paper is an optimised PI control
including specific disturbance compensations: it is based on
the inversion principle of the physical modelling deduced from
the general laws of physics (c.f. section 3). The second is a
LQG control based on an optimal statistical Kalman filtering
(c.f. section 4). Both strategies are compared and show an
ability to decouple velocity and tension.

2 System Modelling

A continuous aluminium strip processing line typically can be
described as a system of rolls and a strip stretched between
them [4]. This is the simplest unit of a continuous strip pro-
cess. At each side, a motor provides torque to the roll. Our
laboratory prototype exhibits the inherent problems of metal
transport system (see figure 1). An induction motor (3 kW)

1That work has been performed to meet requirements of Sylvain Leirens’s
end of studies internship with Pechiney. Sylvain Leirens is now with the ASH
Team of Supelec (sylvain.leirens@supelec.fr), Avenue de la Boulaie, BP 81127
35511 CESSON-SEVIGNE Cedex - France.

drives the rewinder: it provides torque to the roll with high dy-
namic through a rotor field oriented control. A pneumatic brake
is used for the unwinder. Two load cells measure the tension in
the aluminium strip. An incremental encoder implemented on a
non-motorized roll measures the linear speed. Both acquisition
and control systems are implemented in real time on a Matlab-
Simulink/dSpaceTM 1103 card software-hardware package.

Figure 1: Laboratory prototype

A simplified diagram is given in figure 2. The gear ratio be-
tween motor and roll is one to one. It is assumed that there is
no slip between roll and strip.
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Figure 2: Unwinding-Rewinding system

The aim of this study is to build a model of this system. First,
a mathematical model of both rolls and strip tension dynamics
is established. Second, this model is developed under a state-
model form.



Nomenclature

L : Span length (m)
l : Span width (m)
e : Span thickness (m)
A : Cross-sectional area of web (mm2)
ρ : Density of aluminium strip (kg/m3)
E : Modulus of elasticity (Pa)
Vi : Strip velocity (m/s)
T : Strip tension force (N)
ri : Roll radius (m)
r0 : Empty roll radius (m)
Ji : Polar moment of inertia of roller (kg.m2)
Ji0 : Polar moment of inertia of empty roller (kg.m2)
fi : Friction coefficient (kg.m2/s.rad)
Ωi : Roll rotational speed (tr/mn)
Ci : Torque (N.m)

2.1 Strip tension force

The system under consideration is thepiece of strip between
the unwinder and the rewinderwhose lengthL is assumed to
be constant. It is a typicalmass flowsystem.
Moreover, the strip is assumed not to be strained beyond its
limit of elasticity.
The mass balance equation is:

(
d
dt

[
mass stored
in the system

])
=

(
input
mass flow

)
−

(
output
mass flow

)
. (1)

The strip density is assumed to be constant. Equation (1) gives:

d
dt

[ ∫ L

0

A(x, t) dx

]
= A1(t)V1(t)−A2(t)V2(t) (2)

where subscripts1 and2 denote unwinder and rewinder respec-
tively.
Considering an infinitesimal element of span (lengthdx), ele-
ment stretching can be written as:

dx =
(
1 + ε(x, t)

)
dxu. (3)

Both unstretched (subscriptu) and stretched element volume
are equal:

dv = A(x, t) dx = Au(x, t) dxu. (4)

A combination of (3) and (4) takes the following form:

A(x, t) =
Au(x, t)

1 + ε(x, t)
. (5)

Equation (2) gives:

d
dt

[ ∫ L

0

Au(x, t)
1 + ε(x, t)

dx

]
=

A1u(t)V1(t)− A2u(t)
1 + ε2(t)

V2(t) (6)

considering that the tension force in the strip of the unwinder
roll is neglected in comparison withT .
When the span is not stretched,Au = A1u = A2u and (6) can
be simplified:

d
dt

[ ∫ L

0

1
1 + ε(x, t)

dx

]
= V1(t)− V2(t)

1 + ε2(t)
. (7)

Assuming thatε ¿ 1, high order terms can be neglected:
1/(1 + ε) ≈ 1− ε. Equation (7) becomes:

d
dt

[ ∫ L

0

(
1− ε(x, t)

)
dx

]
= V1(t)− V2(t)

(
1− ε2(t)

)
. (8)

Meanwhile supposing that the strainε does not vary withx, i.e.
ε(x, t) ≈ ε2(t), (8) can be written as:

−L
dε2
dt

= V1(t)− V2(t)
(
1− ε2(t)

)
, (9)

so:

L
dε2
dt

= V2 − V1 − ε2V2 (10)

omitting timet.
Using Hooke’s law,i.e. ε2 = T/AE and notationd

dt ( ) = ˙( ),
equation (10) gives:

LṪ = AE(V2 − V1)− TV2. (11)

Considering small variations around a steady-state operating
point:

V1 = V10 + ∆V1,

V2 = V20 + ∆V2,

T = T0 + ∆T.

Then we have:

L
d∆T

dt
+ V20∆T = AE(∆V2 −∆V1). (12)

With s the Laplace variable, (12) becomes:

(Ls + V20)∆T = AE(∆V2 −∆V1), (13)

which gives:

∆T =
AE

Ls + V20
(∆V2 −∆V1). (14)

Omitting the notation ”∆” to improve readability, Equation
(14) can be written as a classic first order transfer:

T =
Kb

Tbs + 1
(V2 − V1) (15)

whereKb = AE/V20 etTb = L/V20.



2.2 Roll dynamics

Details are given for the unwinder (which is similar to the
winder). Radii vary with time and their expressions take the
following form by writing roll surfacesSi [5]:

S1(t) = π r2
1(t), (16)

then differentiating with respect to time:

Ṡ1 = 2π r1 ṙ1 (17)

omitting timet.
And

Ṡ1 = −V1 e = −r1 Ω1 e. (18)

Hence:
Ω1 e = −2π ṙ1, (19)

so:

ṙ1 = −Ω1 e

2π
. (20)

As radiusr1, inertiaJ1 is time-varying too:

˙(J1Ω1) = J̇1Ω1 + J1Ω̇1 (21)

with:
J1 = J1motor + J1roll (22)

so:

J1 = J10 +
1
2
πρ l r4

1 −
1
2
πρ l r4

0
︸ ︷︷ ︸

wound strip

. (23)

J1 can be written as:

J1 = J1constant + J1variable (24)

which is the sum of a constant inertiaJ1constant and a variable
inertiaJ1variable. Hence:

J1constant = J10 − 1
2
πρ l r4

0, (25)

J1variable =
1
2
πρ l r4

1. (26)

Differentiating (26) with respect to time:

J̇1 = 2πρ l ṙ1r
3
1. (27)

The dynamic principle applied to a rotation movement gives:

˙(J1Ω1) = C1d − C1c (28)

whereC1d etC1c denote driving and load torques respectively:

C1d = C1 + Tr1, (29)

C1c = f1Ω1. (30)

It gives:
˙(J1Ω1) = C1 + Tr1 − f1Ω1. (31)

Similarly, we obtain for the rewinder:

ṙ2 = Ω2 e
2π ,

J̇2 = 2πρ l ṙ2r
3
2,

˙(J2Ω2) = C2 − Tr2 − f2Ω2.

(32)

2.3 Models

Nonlinear time-varying model

Using results above, the model below was built:





J̇1Ω1 + J1Ω̇1 = Tr1 + C1 − f1Ω1

J̇2Ω2 + J2Ω̇2 = C2 − Tr2 − f2Ω2

J1 = a1 + b1r
4
1

J2 = a2 + b2r
4
2

J̇1 = 2πρ l ṙ1r
3
1

J̇2 = 2πρ l ṙ2r
3
2

ṙ1 = −Ω1 e
2π

ṙ2 = Ω2 e
2π

V1 = r1Ω1

V2 = r2Ω2

LṪ = AE(V2 − V1)− TV2

(33)

where : {
ai = Ji0 − 1

2πρ l r4
0

bi = 1
2πρ l

with i = 1, 2.
This model requires knowledge ofJ10, J20, r0, r10 et r20.

Linear time-invariant model

Assuming that inertiae change slowly compared to the strip dy-
namics, therefore radii and inertiae are considered as constant
now. In addition, we detail the model by considering torque
loops of our asynchronous motors. CallingC∗i the torque ref-
erence, a first order system is used to represent this loop :

Ci

C∗i
=

1
Tcs + 1

(34)

wherei = 1, 2 andTc is the time constant of the torque loop.

As before, the results above are collected and the following
model is (see figure 3):





Ω1 = 1
J1s+f1

(C1 + Tr1)
Ω2 = 1

J2s+f2
(C2 − Tr2)

C1 = 1
Tcs+1C∗1

C2 = 1
Tcs+1C∗2

V1 = r1Ω1

V2 = r2Ω2

T = Kb

1+Tbs (V2 − V1)

(35)

where : 



Ji = ai + bir
4
i

ai = Ji0 − 1
2πρ l r4

0

bi = 1
2πρ l

.

with i = 1, 2.
This model requires knowledge ofV10, J10, J20, r0, r1 et r2.
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Figure 3: Linear time-invariant model

Figure 3 shows the strong coupling between the speedV2 and
the strip tensionT . Whenever speed changes, it affects tension
trough the difference∆V = V1 − V2. Variations of tension
disturb the speed through the load torqueTr2 as well.

Finally, the state-form of the linear time-invariant model can be
written.
With vectors:

X =




C1

C2

Ω1

Ω2

T




, U =
(

C∗1
C∗2

)
and Y =

(
T
V2

)
,

and matrix:

A =




− 1
Tc

0 0 0 0
0 − 1

Tc
0 0 0

1
J1

0 − f1
J1

0 r1
J1

0 1
J2

0 − f2
J2

− r2
J2

0 0 −Kbr1
Tb

Kbr2
Tb

− 1
Tb




,

B =




1
Tc

0
0 1

Tc

0 0
0 0
0 0




and C =
(

0 0 0 0 1
0 0 0 r2 0

)
,

the state-model is obtained:
{

Ẋ = AX + BU
Y = CX . (36)

3 PI-based control

An optimised PI-based control is proposed here. PID control
techniques are often considered as non-adapted to control ve-
locity and tension independently [3]. In fact industrial control
schemes are non-optimised. The proposed strategy is based on
the model inversion principle [6]. Modelling of physical phe-
nomena has allowed a good understanding of the way the en-
ergy is converted in the system. Therefore, the system can be
efficiently controlled by appropriate corrections and compen-
sations [6].

3.1 Control design

To control the strip linear velocityV2, we choose to work on
the motor of the rewinder (see figure 4). This choice is classic
[1]. The strong problem comes from the coupling betweenV2

andT throughTr2. The influence ofTr2 must be compensated
in the tension control loop (see figure 4). Then a PI-controller
(called Speed PI-2) is tuned (c.f. section 3.2). Its tuning is
based on mechanical and torque loop dynamics (modelled as
first order transfers). Using this type of controller, the static
error (step response) is cancelled.

In the same way, to control the strip tensionT , we choose to
work onV1 throughC1. Therefore we use a similar structure
to the rewinder speed loop and tune two PI-controllers (called
Speed PI-1 and Tension-PI). The first one is calculated by us-
ing mechanical and torque loop dynamics (similar toV2 speed
loop). The second one is based on strip andV1 speed loop dy-
namics. The controller output∆V ∗ = V ∗

2 − V ∗
1 (∗ denotes

reference) allows to obtainV ∗
1 using the referenceV ∗

2 .

This control is based on the compensation of load torquesTr1

and Tr2. These torques disturb loops significantly and the
quality of compensation is very important. We use the strip
tension model to improve the dynamic of these compensations
(see figure 4). Furthermore, it is necessary to use referenceV ∗

2

to obtain efficient feedforward action on the tension controller
output.
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Figure 4: PI-based control scheme

3.2 PI controllers tuning

The model of the system is rewritten as follows:

Hbo(s) =
K

(T1s + 1)(T2s + 1)
(37)

whereT1 etT2 denote the small (parasitic) and large time con-
stants respectively.
PI controllers have the following form:

CPI(s) =
Kp(Tis + 1)

Tis
(38)



whereKp et Ti denote proportional gain and integral constant
(s) respectively.

The tuning of controllers must be effective to obtain good de-
coupling between tension force and velocity. The compensated
open loop transfer function is given by:

HCbo(s) =
Kp(Tis + 1)

Tis

K

(T1s + 1)(T2s + 1)
(39)

and corresponding Bode diagram is represented on figure 5.
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Figure 5: Compensated open loop Bode diagram

To reach a compromise between fast response and disturbance
reject, the crossover pulsation is placed in the middle of the
segment[1/Ti, 1/T1] which has a -1 slope [7]. The time con-
stantTi is calculated as follows:

sin(∆φ) =
Ti − T1

Ti + T1
. (40)

For a phase margin∆φ equal to 37o which means an overshoot
approximately equal to 30%, we obtainTi = 4T1. Then the
crossover pulsation is equal to:

ωc =
1√
TiT1

=
1

2T1
. (41)

At this pulsation, we make the following approximation:

KKp

T2s
= 1 (42)

which means:

Kp =
T2

2KT1
. (43)

Theoretically, the relationTi/T1 = 4 can be considered as an
optimum (c.f. Kessler’s symmetrical optimum [7]). But in
practice, this tuning is too fast and oscillations may appear.
Therefore we can choose a factor greater than 4 ; the sys-
tem will react more slowly. We can add a reference filter to
compensate the zero induced by the PI controller too and de-
crease the overshooting. Such a filter has been implemented
(not showed on the figure for better readability).

3.3 Simulation results

Results for step responses, 100 N for the tension and 1 m/s for
the velocity are given figure 6.
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Figure 6: PI-based control

Figure 6 shows that the decoupling between tension and ve-
locity is efficient. Interactions can be neglected compared to
nominal values of velocity and tension.
Typical strategies are not able to decouple these variables with
such a performance. It is important to note that this result
could be achieved with standard PLC but requires accurate con-
trollers tuning as well as the computation of compensations.
This level of performance is easily obtained with advanced con-
trol strategies (see next section) but their implementation on
standard material is more difficult.

4 State feedback control

In this part, a state approach is studied to build the controller.
For this purpose, we use the state model (36) established in
section 2.

4.1 Control design

For this purpose, a LQG control has been developed with an
optimal statistical Kalman filtering to estimate the state of the
system. The problem is formulated in standard form and the
regulator is optimised using models of the process and its en-
vironment: the state model is enlarged taking into account pre-
dictive models of references and disturbances (see figure 7).
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Figure 7: Deterministic standard model



These predictive models introduce an uncontrollable state part.
The rejection of these modes allows to cancel the static error
(presence of integrators).
To reach the compromise between performance and robustness,
two high level synthesis parameters are used. The choice of
weighting matrix is based on calculating partial grammians ac-
cording to [8]: the tuning needs to specify two horizons,To and
Tc for observation and control respectively.
Writing the gape = CeX between outputs and references, the
controller has to minimize the criterium:

J =
∫ ∞

0

(eTSce + uTRcu)dt (44)

whereSc andRc have been chosen as follows:

Sc = I,Rc = Tc

∫ Tc

0

(Cee
AtB)T (Cee

AtB)dt. (45)

To calculate the Kalman filter, we use noise variance matrixSo

andRo as follows:

So =
[
To

∫ To

0

eA
T tCTCeAtdt

]−1

,Ro = I. (46)

The horizonTo tunes mainly the response time for the distur-
bance reject. The horizonTc allows to manage the compromise
between noise sensitivity of the control inputs and gain/phase
margins.

4.2 Simulation results

Analysing the results for step responses, 100 N for the tension
and 1 m/s for the velocity:
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Figure 8: State feedback control

Figure 8 shows the decoupling between tension and velocity.
The step responses are faster than those for the PI-based con-
trol.

5 Conclusion

For optimal control of an aluminium strip unwinder-rewinder,
two control structures have been outlined. The first one is based
on PI controllers : it is easily implementable on standard PLCs
and gives good results. The second one uses a state approach
and requires a powerful hardware/software system. The state
feedback controller gives better results especially for the strip
tension force. In both cases, the proposed controllers allow a
good decoupling between strip tension and velocity.
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