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Keywords: Control Applications, Solar Energy, Adaptive300°C. Since this oil is a very poor thermal conductor, heat dif-
Control, Nonlinear Control, Distributed Parameter Systems. fusion effects in it may be neglected. The oil is extracted at low
temperature from the bottom of a storage tank, passed through
the field where it is heated by solar radiation and returns to the
Abstract tank, where it is injected at the top.

This paper is concerned with an application of nonlinear adap-
tive techniques to temperature control in a distributed collectfrz The control problem
solar field. In the approach followed, the partial differential

equation describing the field is approximated by a lumped Pgse control objective considered in this paper consists of mak-
rameter bi-linear model, whose states are the temperature Yal- the average of the loop outlet oil temperatures (hereafter

ues along the field. By using feedback exact linearisation igmny referred as "outlet oil temperature”) to track a reference
gether with a Lyapunov’s approach, an adaptive controller dgna| by manipulating the oil flow in the presence of fast act-
designed. This paper improves on previous work by usingdy gisturbances caused by passing clouds. Other main dis-
better approximated model which takes into account that, in g ances are changes in radiation due to atmosphere scattered
field considered, temperature measures are only made at theBrer steam, in the temperature of the inlet oil coming from the
put and at the output and not along the pipe. The design bagg#lom of the storage tank and in ambient temperature. Dust
on the improved simplified model allows faster convergenggnosition and other factors such as wind, changing collectors

of parameter estimate and improved transient responde. Thagne also act as disturbances because they alter mirror reflec-
advantages of the new algorithm proposed are illustrated th)fty calling for adaptive methods.

means of simulations performed in a detailed physical model
of the plant.© IEE - ECC 2003

1.3 State of the art review.

1 Introduction The above control problem may not adequately be solvable

This paper is concerned with an application of nonlinear adafith @ constant gain linear controller relying on a simple de-
tive techniques to temperature control in a distributed colleci@}@"- [1] provides an example in which a PID controller tuned
solar field. Standard methods for nonlinear control design 4R higher values of the flow (low temperatures) yields unac-
used. The contribution of the paper stands on showing thatGPtable oscillatory responses in set-point changes. This mo-
improved simplified plant model, which comply with the actudjvated research on more sophlst!cated controllers of which
sensor positions, can be used to achieve a significantly incresé 4 6, 7, 8, 9, 10, 12] are significant examples.

of performance with respect to [1]. While adaptive control already provides some form of ac-
commodation of nonlinear behavior by adjusting the controller
1.1 The plant gains according to the operating point, explicit recognition of

plant nonlinearities and their exploitation is expected to lead
Distributed collector solar fields are spatially distributed erte performance and robust stability improvements. First steps
gineering systems which aim at collecting and storing energythis direction were made by employing gain scheduled con-
from solar radiation. They are formed by mirrors which corstant parameter GPC [4] and switched multiple model supervi-
centrate direct incident sun light in a pipe where an oil able sory controllers [9]. In [1] a nonlinear controller is developed
accumulate thermic energy flows. The oil flowing in the pip&hich explicitly takes into account the distributed parameter
is an incompressible fluid, able to support temperatures upnt@del of the solar plant.



2 Field models with matrix B given by

The solar field considered is a spatially distributed system and, 10 ... 0

as such, it is best described by a partial differential equation. 1] -1

From this distributed parameter model a bilinear state-space B = 5 _

model is obtained. S P
0 -1 1

2.1 Distributed parameter model. Forn high enough, the piecewise linear approximation of the

Each of the field loops is approximately modelled by the PDEpatial distribution of temperature is acceptable and model (4)
9 1 P (or, equiyalently, (5)) despripes reas.onably well the transport
&T(z,t) = —EF(t)aT(z,t) + aR(t) (1) and heating phenomena inside the pipe.
whereT(z, t) is the increment with respect to the ambient tené
perature of the oil temperature at locatioffmeasured along
the pipe) and at time, F(t) is the oil flow, R(¢) is the cor- . _
rected solar radiatiors is the area of the inner cross section of? ©rder to design a temperature controller for the field, an ap-
the pipe andy is a parameter measuring collector optical efferoach relying on the following steps is considered [11]:
ciency. Onther. h. s. of eq. (1) the first term (first order space® Firsta control transformation is performed in order to lin-
derivative) reflects the change of temperature due to oil flow, ©&rize the model. The resulting model is driven by the
The second term models oil heating by solar radiation and the Parameter estimation error of mirror reflectivity.
third term models losses along the pipe. No losses or diffusion® AN @daptation rule is obtained by minimizing a joint Lya-
effects are assumed. Temperature measurements are made afPunov function for control and parameter estimation.

z = 0andz = L (beginning and end of the active part of the . L
loops). 3.1 Feedback linearization.

Approximate feedback linearization

Consider the system defined by (4) with the output defined by

: - : , y=nhz)=an (6)
Assuming a smooth variation of oil temperature along the pipe,
it is possible to approximate the temperature distribution byTe relative degree is given by the number of times the output
piecewise linear curve, so that the following finite differenceas to be differentiated at a given tirfieso thatu(t,) explicitly

2.2 Bilinear model.

approximation holds: appears. Differentiating the output given by (6) one obtains:
8T E — Ti,1 . Ty — Tp—
e g - 4 = 1 PRI 2 J = 3 = _ n n 1
82’ 2€(zi1,21] L ) 1 ) ,n ( ) y In aR A

whereh is the length of each segment, is the number of and it is concluded that the relative degree of this system is

segmentsz; = ih, L = nh is the pipe length and; = r = 1. The linearizing control law is given by

T(ih,t) —T(0,1).

Defining the state variables = —Lsh(z)+v _ _aR-v h @)
Lyh(z) Ty, — Trpe1

whereuw is the input of the linearised system, hereafter called
process dynamics is thus approximately described by the sy "virtual control”.

tem of nonlinear ordinary differential equations: Eq. (7) provides a transformation such that, from the trans-
1 . formed inputv to the outputy, the dynamics reduces to a pure
T = _uﬁ(]’i —zi1)taR, i=1,...,n (4) integrator. It is remarked that this computation requires the

o ) ) values of the states,, andx,,_; which must be available for
where the dot denotes derivative with respect to timend measurement. The measuresqf ; is not available in the plant
To = 01 i , considered. According to the approach of [1], the temperature
Defining the state: = [z ... z,]" and the vector fields .~ g replaced by the inlet oil temperatufg(0, ¢). The ef-
fect of this approximation is shown in Example 1.

1 T1
1 1 T — X1 . L
f(z)=aR | . g(z) = % _ 3.2 Example 1 — Feedback linearization.
i . —.wnq Fig. 1 shows the time evolution of the outlet oil temperature
) ] i when the feedback linearising transform (7) is applied. Since
system (4) is written in the form the virtual inputv (top of fig. 1) is a square wave, and the
& = f(z) + g(x)u 5) linearised system is an integrator, the output will be a triangular

wave, as seen on the bottom of fig. 1. In this case,; is the
Itis remarked thaf (x) is actually independent afand, in par- temperaturd m before the end of the pipe.
ticular, f(0) # 0. Furthermore, the fielg(z) may be written Consider now the case in which the exact linearising con-
as trol is approximated by replacing,_; with the inlet oil tem-
g(x) = Bx peratureT'(0,¢). The result is seen on fig. 2. As is apparent,
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Example 1: Exact feedback linearization.
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Figure 3. Example 2: Adaptive control with approximate
feedback linearizationy = 2 x 10~1%. Output temperature.

r being a constant reference to track.
Parameter adaptation:

A= — 11
& T Re (11)
Actual control applied to the plant:
we MY (12)
Y—Y

whereL = 180 is the length of the active part of the field.

3.4 Example 2 — Adaptive control with approxi-
mate feedback linearization.

Example 2 presents a simulation of the above described adap-

Figure 2. Example 1: Approximate feedback linearization.tive controller, in which feedback linearization is approximated

by using the inlet oil temperature instead of the temperature
measure located dt/n before the pipe outlet. This example

the edges of the triangular wave are not as sharp. The systéfiresented as a base-line to which other algorithms can be
is better approximated by a first order filter in series with gfPmpared. Fig. 3 shows the oil output temperature, and fig. 4

integrator. This key feature will be explored below.

3.3 Adaptive control with an approximate model.

In [1] the following simplified model is assumed:

J=—u(y — o)~ +aR ®)

L

wherey is the outlet oil temperaturey, is the inlet oil tem-

perature and: is the oil flow velocity. This model may be

interpreted by taking. = 1.

An adaptive control law is yielded by considering a

showsa. The value of the adaptation gaimis= 2 x 10719,

As seen in fig. 4, the adaptation éfis slow and sensitive
to the tracking erroe. This results in noticeable overshoot
when the reference changes. Increasing the adaptationygain
does not improve the situation. The speed of convergence of
the estimatex does not improve in a significant way but the
response of the output temperature becomes more oscillatory.
This is such that further increases on the value ofay result
in an unstable behavior (fig. 5).

4 Control with an improved model

quadratic candidate Lyapunov function, amounting to the fqkthe exact linearizing control transformation (7) is applied to

lowing equations:
Virtual control computation:

(9)

wherek, andk, are controller gains anglis the tracking error
given by:

v =kpe — kqy

e(t) =r —y(t) (10)

the bilinear model given by (4), the relation between the virtual
input v and the outpuy becomes an integrator. As shown in
Example 1, if the input oil temperature is used in the lineariz-
ing transform instead of,,_1, this results in an extra filtering.
Therefore, when (12) is applied to the plant, this results in the
following model for the relation betweanandy:

Ti+9=v+ Ra (13)
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Figure 4. Example 2: Adaptive control with approximate

feedback linearizationy = 2 x 10719, 4.
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Figure 5. Example 2: Adaptive control with approximate

feedback linearizationy = 10 x 10~1Y. Output temperature.
The effect of further increasing.

where
a:=a—a (14)

is the estimation error of the optical efficiency parameter
The time constant is a parameter modelling the filtering effect
seen on example 1 ariglis solar radiation.

Assume that a PD defined by (9) is used to generate the
virtual inputv. Use (9) in (13) to get the following equation for
the closed loop system:

l..+kd+1
kYT Tk,

1
J+y=r+—Ra (15)
kp

In order to obtain an adaptation rule for the estimatgefine
the reference model

Tvznym + 25m7_7n,ym + Ymn =T (16)

wherey,, is the output of the reference model angl andé,,
are parameters to select, and the error of the actual output with
respect to the output of the reference model

€Em = Ym — Y (17)
Let the parameters in the reference model be selected as

2 kg+1
a:=T15=—
kp

kqg+1

P

b:= 20T = (18)

As may be shown using standard arguments [2], the minimiza-
tion of a suitable Lyapunov function yields the following adap-
tation law:

& = —k1Ré,, — kaRep, (19)
in which
2T ¥
k= - ky=-— 20
VT T T TR (20)

The term—k; Ré,,, causes a stabilizing effect, allowing to im-
prove the velocity of convergence and reducing sensitivity of
the estimate to the transientscofBy makingr = 0 the adap-
tation law (11) of [1] is recovered. Furthermore, the adaptation
law (19) can be also obtained by using an argument based on
passivity.

4.1 Example 3 — Passivity based adaptation.

Example 3 shows the results obtained with the above adaptive
control algorithm, based on an improved model. Figs. 6 and 7
show, respectively, the oil output temperature an€Compare

fig. 7 with fig. 4. As seen in these figures, with the algorithm
based on the improved model, convergencé &f much faster

and this estimate is much less sensitive.to

4.2 Example 3 — Passivity based adaptation:
Large set-point jumps.

Example 3 is concerned with the performance of the modified
adaptive controller in the presence of large set point changes.
Sinced is much less sensitive tq a sudden set point change
of 50° can be performed with acceptable overshoot, as seen in
fig. 8.
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Figure 6. Example 3: Passivity based adaptation. Output
temperature.
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Figure 7. Example 3: Passivity based adaptatian.
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Figure 9. Example 5: Passivity based adaptation: Fast
disturbance rejection. Output temperature.
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Figure 10. Example 5: Passivity based adaptation: Fast
disturbance rejection. Radiatidghdivided by100, control
variableu and virtual controb.

4.3 Example 5 — Passivity based adaptation: Fast
disturbance rejection.

Example 3 is concerned with the performance of the modified
adaptive controller in the rejection of fast, large, disturbances
cause by passing clouds. Results are shown in figs. 9-11. As
seen in fig. 10, at.5 h after the begining of the experiment,

a cloud causes a drastic drop in solar radiation, reducing it to
about half its value in a short period of time. Feedback action
reduces the manipulated variahlein order for the oil to be
heated for a longer time, and the disturbance is rejected. As
seen in fig. 11 the occurrence of the disturbance causes little
impact on the adaptation &f

5 Conclusions

Figure 8. Example 4: Passivity based adaptation with larggonlinear adaptive control of distributed collector solar fields

set-point jumps. Output temperature.

is considered assuming that there are no temperature measure-
ments taken along the pipe where the oil to be heated flows.



x10° [8]

(9]

—A
f [10]

[11]

[12]

4
Time [h]

Figure 11. Example 5: Passivity based adaptation: Fast
disturbance rejection.

This is a common technological constraint, presentg. in

the ACUREX field of Plataforma Solar de Almeria (Spain).

An algorithm able to cope with this limitation is derived and

shown, by simulation in a detailed physical model of the plant,
to improve the results of [1], still preserving the simplicity of

modelling.
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