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Abstract

This paper is concerned with an application of nonlinear adap-
tive techniques to temperature control in a distributed collector
solar field. In the approach followed, the partial differential
equation describing the field is approximated by a lumped pa-
rameter bi-linear model, whose states are the temperature val-
ues along the field. By using feedback exact linearisation to-
gether with a Lyapunov’s approach, an adaptive controller is
designed. This paper improves on previous work by using a
better approximated model which takes into account that, in the
field considered, temperature measures are only made at the in-
put and at the output and not along the pipe. The design based
on the improved simplified model allows faster convergence
of parameter estimate and improved transient responde. The
advantages of the new algorithm proposed are illustrated by
means of simulations performed in a detailed physical model
of the plant. c© IEE - ECC 2003.

1 Introduction

This paper is concerned with an application of nonlinear adap-
tive techniques to temperature control in a distributed collector
solar field. Standard methods for nonlinear control design are
used. The contribution of the paper stands on showing that an
improved simplified plant model, which comply with the actual
sensor positions, can be used to achieve a significantly increase
of performance with respect to [1].

1.1 The plant.

Distributed collector solar fields are spatially distributed en-
gineering systems which aim at collecting and storing energy
from solar radiation. They are formed by mirrors which con-
centrate direct incident sun light in a pipe where an oil able to
accumulate thermic energy flows. The oil flowing in the pipe
is an incompressible fluid, able to support temperatures up to

300oC. Since this oil is a very poor thermal conductor, heat dif-
fusion effects in it may be neglected. The oil is extracted at low
temperature from the bottom of a storage tank, passed through
the field where it is heated by solar radiation and returns to the
tank, where it is injected at the top.

1.2 The control problem.

The control objective considered in this paper consists of mak-
ing the average of the loop outlet oil temperatures (hereafter
simply referred as "outlet oil temperature") to track a reference
signal by manipulating the oil flow in the presence of fast act-
ing disturbances caused by passing clouds. Other main dis-
turbances are changes in radiation due to atmosphere scattered
water steam, in the temperature of the inlet oil coming from the
bottom of the storage tank and in ambient temperature. Dust
deposition and other factors such as wind, changing collectors
shape, also act as disturbances because they alter mirror reflec-
tivity, calling for adaptive methods.

1.3 State of the art review.

The above control problem may not adequately be solvable
with a constant gain linear controller relying on a simple de-
sign. [1] provides an example in which a PID controller tuned
for higher values of the flow (low temperatures) yields unac-
ceptable oscillatory responses in set-point changes. This mo-
tivated research on more sophisticated controllers of which
[1, 3, 4, 6, 7, 8, 9, 10, 12] are significant examples.

While adaptive control already provides some form of ac-
commodation of nonlinear behavior by adjusting the controller
gains according to the operating point, explicit recognition of
plant nonlinearities and their exploitation is expected to lead
to performance and robust stability improvements. First steps
in this direction were made by employing gain scheduled con-
stant parameter GPC [4] and switched multiple model supervi-
sory controllers [9]. In [1] a nonlinear controller is developed
which explicitly takes into account the distributed parameter
model of the solar plant.



2 Field models

The solar field considered is a spatially distributed system and,
as such, it is best described by a partial differential equation.
From this distributed parameter model a bilinear state-space
model is obtained.

2.1 Distributed parameter model.

Each of the field loops is approximately modelled by the PDE
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F (t)

∂

∂z
T (z, t) + αR(t) (1)

whereT (z, t) is the increment with respect to the ambient tem-
perature of the oil temperature at locationz (measured along
the pipe) and at timet, F (t) is the oil flow, R(t) is the cor-
rected solar radiation,S is the area of the inner cross section of
the pipe andα is a parameter measuring collector optical effi-
ciency. On the r. h. s. of eq. (1) the first term (first order space
derivative) reflects the change of temperature due to oil flow.
The second term models oil heating by solar radiation and the
third term models losses along the pipe. No losses or diffusion
effects are assumed. Temperature measurements are made at
z = 0 andz = L (beginning and end of the active part of the
loops).

2.2 Bilinear model.

Assuming a smooth variation of oil temperature along the pipe,
it is possible to approximate the temperature distribution by a
piecewise linear curve, so that the following finite difference
approximation holds:
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whereh is the length of each segment,n is the number of
segments,zi = ih, L = nh is the pipe length andTi =
T (ih, t)− T (0, t).

Defining the state variables

xi(t) = Ti(t) i = 1, . . . , n (3)

process dynamics is thus approximately described by the sys-
tem of nonlinear ordinary differential equations:

ẋi = −u
1
h

(xi − xi−1) + αR, i = 1, . . . , n (4)

where the dot denotes derivative with respect to timet and
x0 = 0.

Defining the statex = [x1 . . . xn]T and the vector fields
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system (4) is written in the form

ẋ = f(x) + g(x)u (5)

It is remarked thatf(x) is actually independent ofx and, in par-
ticular, f(0) 6= 0. Furthermore, the fieldg(x) may be written
as

g(x) = Bx

with matrixB given by
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For n high enough, the piecewise linear approximation of the
spatial distribution of temperature is acceptable and model (4)
(or, equivalently, (5)) describes reasonably well the transport
and heating phenomena inside the pipe.

3 Approximate feedback linearization

In order to design a temperature controller for the field, an ap-
proach relying on the following steps is considered [11]:
• First a control transformation is performed in order to lin-

earize the model. The resulting model is driven by the
parameter estimation error of mirror reflectivity.

• An adaptation rule is obtained by minimizing a joint Lya-
punov function for control and parameter estimation.

3.1 Feedback linearization.

Consider the system defined by (4) with the output defined by

y = h(x) = xn (6)

The relative degree is given by the number of times the outputy
has to be differentiated at a given timet0 so thatu(t0) explicitly
appears. Differentiating the output given by (6) one obtains:

ẏ = ẋn = αR− xn − xn−1

h
u

and it is concluded that the relative degree of this system is
r = 1. The linearizing control law is given by

u =
−Lfh(x) + v

Lgh(x)
=

αR− v

xn − xn−1
h (7)

wherev is the input of the linearised system, hereafter called
the "virtual control".

Eq. (7) provides a transformation such that, from the trans-
formed inputv to the outputy, the dynamics reduces to a pure
integrator. It is remarked that this computation requires the
values of the statesxn andxn−1 which must be available for
measurement. The measure ofxn−1 is not available in the plant
considered. According to the approach of [1], the temperature
xn−1 is replaced by the inlet oil temperature,T (0, t). The ef-
fect of this approximation is shown in Example 1.

3.2 Example 1 – Feedback linearization.

Fig. 1 shows the time evolution of the outlet oil temperature
when the feedback linearising transform (7) is applied. Since
the virtual inputv (top of fig. 1) is a square wave, and the
linearised system is an integrator, the output will be a triangular
wave, as seen on the bottom of fig. 1. In this case,xn−1 is the
temperature1 m before the end of the pipe.

Consider now the case in which the exact linearising con-
trol is approximated by replacingxn−1 with the inlet oil tem-
perature,T (0, t). The result is seen on fig. 2. As is apparent,
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Figure 1. Example 1: Exact feedback linearization.
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Figure 2. Example 1: Approximate feedback linearization.

the edges of the triangular wave are not as sharp. The system
is better approximated by a first order filter in series with an
integrator. This key feature will be explored below.

3.3 Adaptive control with an approximate model.

In [1] the following simplified model is assumed:

ẏ = −u(y − y0)
1
L

+ αR (8)

wherey is the outlet oil temperature,y0 is the inlet oil tem-
perature andu is the oil flow velocity. This model may be
interpreted by takingn = 1.

An adaptive control law is yielded by considering a
quadratic candidate Lyapunov function, amounting to the fol-
lowing equations:

Virtual control computation:

v = kpe− kdẏ (9)

wherekp andkd are controller gains ande is the tracking error
given by:

e(t) = r − y(t) (10)
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Figure 3. Example 2: Adaptive control with approximate
feedback linearization,γ = 2× 10−10. Output temperature.

r being a constant reference to track.
Parameter adaptation:

˙̂α = − γ

1 + kd
Re (11)

Actual control applied to the plant:

u =
α̂R− v

y − y0
L (12)

whereL = 180 is the length of the active part of the field.

3.4 Example 2 – Adaptive control with approxi-
mate feedback linearization.

Example 2 presents a simulation of the above described adap-
tive controller, in which feedback linearization is approximated
by using the inlet oil temperature instead of the temperature
measure located atL/n before the pipe outlet. This example
is presented as a base-line to which other algorithms can be
compared. Fig. 3 shows the oil output temperature, and fig. 4
showsα̂. The value of the adaptation gain isγ = 2× 10−10.

As seen in fig. 4, the adaptation ofα̂ is slow and sensitive
to the tracking errore. This results in noticeable overshoot
when the reference changes. Increasing the adaptation gainγ
does not improve the situation. The speed of convergence of
the estimatêα does not improve in a significant way but the
response of the output temperature becomes more oscillatory.
This is such that further increases on the value ofγ may result
in an unstable behavior (fig. 5).

4 Control with an improved model

If the exact linearizing control transformation (7) is applied to
the bilinear model given by (4), the relation between the virtual
input v and the outputy becomes an integrator. As shown in
Example 1, if the input oil temperature is used in the lineariz-
ing transform instead ofxn−1, this results in an extra filtering.
Therefore, when (12) is applied to the plant, this results in the
following model for the relation betweenv andy:

τ ÿ + ẏ = v + Rα̃ (13)
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Figure 4. Example 2: Adaptive control with approximate
feedback linearization,γ = 2× 10−10. α̂.
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Figure 5. Example 2: Adaptive control with approximate
feedback linearization,γ = 10× 10−10. Output temperature.

The effect of further increasingγ.

where
α̃ := α− α̂ (14)

is the estimation error of the optical efficiency parameterα.
The time constantτ is a parameter modelling the filtering effect
seen on example 1 andR is solar radiation.

Assume that a PD defined by (9) is used to generate the
virtual inputv. Use (9) in (13) to get the following equation for
the closed loop system:

τ

kp
ÿ +

kd + 1
kp

ẏ + y = r +
1
kp

Rα̃ (15)

In order to obtain an adaptation rule for the estimateα̂ define
the reference model

τ2
mÿm + 2ξmτmẏm + ym = r (16)

whereym is the output of the reference model andτm andξm

are parameters to select, and the error of the actual output with
respect to the output of the reference model

em = ym − y (17)

Let the parameters in the reference model be selected as

a := τ2
m =

kd + 1
kp

b := 2ξmτm =
kd + 1

kp
(18)

As may be shown using standard arguments [2], the minimiza-
tion of a suitable Lyapunov function yields the following adap-
tation law:

˙̂α = −k1Rėm − k2Rem (19)

in which

k1 = − 2γτ

(kd + 1)2
k2 = − γ

kd + 1
(20)

The term−k1Rėm causes a stabilizing effect, allowing to im-
prove the velocity of convergence and reducing sensitivity of
the estimate to the transients ofe. By makingτ = 0 the adap-
tation law (11) of [1] is recovered. Furthermore, the adaptation
law (19) can be also obtained by using an argument based on
passivity.

4.1 Example 3 – Passivity based adaptation.

Example 3 shows the results obtained with the above adaptive
control algorithm, based on an improved model. Figs. 6 and 7
show, respectively, the oil output temperature andα̂. Compare
fig. 7 with fig. 4. As seen in these figures, with the algorithm
based on the improved model, convergence ofα̂ is much faster
and this estimate is much less sensitive toe.

4.2 Example 3 – Passivity based adaptation:
Large set-point jumps.

Example 3 is concerned with the performance of the modified
adaptive controller in the presence of large set point changes.
Sinceα̂ is much less sensitive toe, a sudden set point change
of 50o can be performed with acceptable overshoot, as seen in
fig. 8.
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Figure 6. Example 3: Passivity based adaptation. Output
temperature.
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Figure 7. Example 3: Passivity based adaptation.α̂.
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Figure 8. Example 4: Passivity based adaptation with large
set-point jumps. Output temperature.
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Figure 9. Example 5: Passivity based adaptation: Fast
disturbance rejection. Output temperature.

0 1 2 3 4 5 6 7
−2

0

2

4

6

8

10

Time [h]

u 
[l/

s]
, v

, R
 [W

/m
2 ]

Sinais

R 

u 

v 

Cloud 

Figure 10. Example 5: Passivity based adaptation: Fast
disturbance rejection. RadiationR divided by100, control

variableu and virtual controlv.

4.3 Example 5 – Passivity based adaptation: Fast
disturbance rejection.

Example 3 is concerned with the performance of the modified
adaptive controller in the rejection of fast, large, disturbances
cause by passing clouds. Results are shown in figs. 9-11. As
seen in fig. 10, at4.5 h after the begining of the experiment,
a cloud causes a drastic drop in solar radiation, reducing it to
about half its value in a short period of time. Feedback action
reduces the manipulated variableu in order for the oil to be
heated for a longer time, and the disturbance is rejected. As
seen in fig. 11 the occurrence of the disturbance causes little
impact on the adaptation of̂α.

5 Conclusions

Nonlinear adaptive control of distributed collector solar fields
is considered assuming that there are no temperature measure-
ments taken along the pipe where the oil to be heated flows.
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Figure 11. Example 5: Passivity based adaptation: Fast
disturbance rejection.̂α.

This is a common technological constraint, presente. g. in
the ACUREX field of Plataforma Solar de Almeria (Spain).
An algorithm able to cope with this limitation is derived and
shown, by simulation in a detailed physical model of the plant,
to improve the results of [1], still preserving the simplicity of
modelling.
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