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Abstract

This paper describes the application of H,, design synthesis to
the control of a mechanical stabilisation system with
uncertain and time-varying first structural resonance
frequency. The class of mechanisms under investigation is
described and the design aims and classical control techniques
currently employed are presented. It is shown that both an
increase in performance and robustness to mechanism
uncertainty can be achieved.

1 Introduction

Platform stabilised systems are becoming increasingly
prevalent on both new-build and refit military land, sea, air
and space programmes. Systems such as airborne electro-
optic pointing & tracking, navigation, satellite positioning,
shipboard weapon aiming and tank gunnery sights all rely on
a platform stabilisation mechanism of some kind. Of these
systems, often the highest performance specifications are
applied to electro-optic (EO) systems. Although research is
ongoing for new methods of stabilisation (such as phased-
array beamsteering & digital image stabilisation), current EO
systems precision line-of-sight (LOS) stabilisation is often
realised through a stabilised mirror mechanism.

A stabilised mirror is often the critical stabilisation
mechanism in an electro-optic system. Essentially, it is a
small, two-axis gimbal mechanism with the mirror mounted
on the inner gimbal. Connected to the mirror via a 2:1
reduction drive is a separate shaft housing two gyroscopes
whose measurement axes are aligned with the LOS. As the
gyroscope maintains orientation with respect to an inertial
reference, the LOS angular position with respect to inertial
space can be measured. Actually, the gyros pick-off coils
measure the deviation of the gimbal axes from the inertial
(spin) axes, which is the error signal in a feedback loop to the
motors on each gimbal. The motors then torque the gimbal
set to maintain the LOS along an inertial vector, thus
stabilising against the motion of the host platform.

In most stabilised EO systems, overall performance is
critically dependant on the accuracy of the stabilisation sub-
system. More stringent operational requirements, such as
increased stand-off ranges, will typically necessitate higher
resolution focal plane array cameras and narrow field-of-view
optics. This in turn imposes a smaller jitter budget on the
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sightline stabilisation system, which can only be achieved
through iterative optimisation of the mechanical, optical,
sensor and actuator design. Central to this process however,
is the design of the control law.

The critical performance parameter for a platform
stabilisation system is the compliance, or stiffness, of the
controller [4], [8], i.e., how much the LOS changes to a unit
disturbance torque.  There are four main sources of
disturbance torque — bearing friction, motor drag (through
back-EMF coupling), mass imbalance and mirror accelerating
torques [9]. Of these, the most critical to compliance is the
bearing friction. Friction effects can be reduced either
through adaptive friction compensation schemes (not be
considered here) or by increasing the bandwidth of the
controller. However, the controller bandwidth is limited by i)
phase lag induced by finite sensor bandwidth ii) limitations
imposed by sampling rate/latency in the case of digital control
and iii) the frequency of the first structural/mechanical
resonance. Resonance limitations can be mitigated by using
tuned notch filters (pole-zero cancellation) assuming that the
frequency of the resonance is known and constant.

The system under consideration in this investigation will not
be named for obvious reasons but (in common with many
stabilised mirror mechanisms), exhibits a resonance
associated with the mechanical linkage between the mirror
and gyro platform. A schematic of the mirror assembly is
shown in figure 1.

Figure 1: Schematic of the stabilised mirror mechanism

In meeting the volume and packaging constraints, the
mechanical design of the mirror mechanism is such that the
orientation of the system influences the frequency of the
resonance, which also varies substantially between
mechanisms. As a consequence, each mechanism’s
compensation has to be individually tuned which means a
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store of all possible notch filter kits (currently 5) must be
kept, (which along with the time required to individually tune
each mechanism, impacts profitability). As the resonance is
orientation-dependant, care must be taken that the controller
cannot de-tune during operation.

The servo compensation on this type of mirror is limited by
the resonance of the mechanical linkages between the gyro
platform, mirror and balancer [7]. The existing compensator
is a phase-lead type, augmented with a state-space pole-zero
cancellation filter, de-tuned to provide attenuation in the
presence of resonance drift. The resonance nominally has a
frequency of around 200Hz, which coincidentally is the
frequency of the gyro swash. To combat this noise source, a
200Hz notch filter is placed on the gyro output which also
helps to control the influence of the resonance in the closed
loop. The gyro signal also passes through three other notch
filters, each specifically tuned to attenuate a gyro noise
source. This servo arrangement performs well enough,
although the resonance drift has forced the servo bandwidth
and closed loop stiffness below the original desired values.

The aim of this investigation was therefore to design a
controller that is robust to variations in the frequency of the
resonance while simultaneously improving the compliance.
As both of these objectives can be combined into a single Heo
norm minimisation problem (robust performance), H,,
synthesis is a natural framework for designing a viable
controller. Applying H,, controllers to flexible stabilised
platforms is nothing new (see [6], [2] & [3]), however
controlling over such a wide range of resonance frequencies
is. The interesting result of this study was the quality of the
controller obtained against the specific nature of the problem.

2 Mathematical Moddl

The stabilised mirror mechanism shown in figure 1 can be
adequately approximated by a three-mass, lumped parameter
model with a flexible connection between each mass, figure
2.
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Figure 2: Free-body diagram of the mirror mechanism

From this diagram, the equations of motion for the
mechanism alone can be shown to be,
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The values of ki, k,, ¢; and ¢, were obtained by curve fitting
in the frequency domain to match the estimated transfer
functions obtained by experiment from the actual mechanism.
Although the mirror assembly dynamics are much more
complex than this simple model can depict, the dominant
transfer function characteristics were captured. Indeed, this
model was sufficiently representative for use in the design of
the original compensator. It should be noted that this model
was validated by experiment against several mechanisms to
be a good representation of the dominant mechanism
response.

The second stage of the modelling exercise concerns the
simulation of the brushless DC motor. A standard DC motor
model was used [5] assuming constant, known torque
coefficient, back-EMF coefficient, armature resistance and
inductance. The motor is voltage driven with base-motion
disturbance coupling through the back-EMF minimised by
integral action in the compensator.

Finally, a gearing of 2:1 is included in the linkages to remove
the effect of optical doubling and refer the sightline position
to an inertial axis set.

3 Controller Design

Recall that there are two specifications on the control i) that
the closed-loop stiffness is improved and ii) that robust
performance is maintained over the spread of possible
resonance frequencies . Consider the block diagram of figure

Figure 3: Stabilised mirror block diagram

Figure 3 is the mirror equations of motion represented in
standard form [12] with G the nominal mechanism transfer
function, M the motor transfer function, K the compensator,
Wy & Wy shaping filters and A representing mechanism
uncertainty. The transfer function from torque disturbance to
output (compliance) is SG where the sensitivity S=(/+L)" and
L =GMK is the loop gain. It is obvious that to minimise the
effect of a torque disturbance (friction) on the output, the
sensitivity function should be small. Alternatively, finding a
stabilising controller K such that

Ws(jw)sijw)|,, <1 2

will shape the compliance through the dynamic weighting
Ws(jw) applied to the error signal. The uncertainty in the
frequency (and damping) of the first resonance of the
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mechanism structure can be represented by a complex,
multiplicative uncertainty on the output such that;

Gp=(1+Ws)Gy, Ae RH, , |4_<1 (3
The weighting (W,) was obtained simply by perturbing the
plant between the (known) upper and lower bounds of the
uncertainty.  For the mirror, this involved moving the
frequency of the resonance between the limits described in
Table 1 above. The multiplicative uncertainty associated with
the perturbed plant is given by,

GP _GO

0

WA = C))

A plot of the multiplicative uncertainty is shown in figure 4,
for £18% deviation of the resonance frequency (maximum
range over all mechanisms). This range encompasses the
total deviation over all four mechanisms. This graph clearly
shows the regions where the perturbed plant differs from the
nominal. At low and high frequencies (with respect to the
resonance frequency) the magnitude of the uncertainty is very
small as the plant is well known in these regions. In the
vicinity of the resonance frequencies, the uncertainty is large,
as expected.
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Figure 4: Multiplicative uncertainty and bounding
function.

3.1 Design for Robust Performance.

A control system is said to be robust if it maintains stability
and performance in the presence of differences between the
actual system and the model of the system used to design the
controller. Nominal performance is guaranteed if

PsSo|l. <1 (or eS| <1 Vo ). Robust performance

requires that the nominal performance condition holds for all
possible plants, including the worst-case uncertainty [11].
RP & |WsSy| <1

VS,, Vo (5)

It can be shown, by considering Nyquist criterion that robust
performance for a SISO system is given by,

RP & max (S| +|w,T| )< 1 ©6)
[

This condition can be very closely approximated by the
standard mixed-sensitivity H,, condition,

WSSO

vl mac)zx\/|WSSO|2 + W, <1

(7

oo

to within a factor of at most\/z , i.e., if the performance
bounds on the sensitivity function and the robust stability
bounds on the complementary sensitivity function are met,
the loop will exhibit robust performance.

An unfortunate side issue of the mixed-sensitivity H,,
approach is that the plant should ideally not have any jw -axis
poles or zeros [1],[10]. The simple cure is to replace s with
(ste) for some small number €. However, this changes the
relative position of the poles and zeros of the plant, so the
more accurate solution is to use a bilinear transform to move
the whole plant into the LHP, design the controller, then
move the controller back by the exact same amount. The
inconvenience is offset however, because the transformation
adds an additional design parameter as the sensitivity function
changes with how far the plant model has been shifted. The
bilinear transform is given by,
=5tp
S
2

®)

where the numbers -p; and -p, are the end-points of the
diameter of a circle in the left s-plane that is mapped by the
equation above onto the j @ -axis in the s -plane. The
bilinear transformation preserves the performance, but in
practice p; and p, must be appropriate to the problem.
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Figure 5: The effect of bilinear shifting on the shape of
the sensitivity.
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As an example consider figure 5. This diagram illustrates the
shape of the sensitivity function corresponding to two shifts
of p; = -0.1 and p; = -8. For the lower value of p;, the
sensitivity remains closer to the inverse weighting function in
the vicinity of the low frequency breakpoint than for p;, = -8.
As the design aim is to minimise the sensitivity function at
low frequencies, the faster roll-on and, by extrapolation, the
better design, is obtained by using p; = -8. Selection of p; is
an iterative procedure, terminated when the design
specifications are met.

Other methods do exist for overcoming the limitations of the
mixed-sensitivity approach when controlling a plant with jo-
axis poles or zeros, most notably the technique of introducing
integral action into the sensitivity weighting.

4 Reaults

The sensitivity weighting function was specified as follows,

Blos® + 20, as + o)
(Bs* + 28,04/ Bs + @F)

Ws(s) = 9

after several iterations, the parameters of this weight selected
for this example design were, f=500; = 0.5; @, = 160; {;=
& =07 o was set at 160rad/s to force an increase of
bandwidth but also has the added effect of acting as a tuning
parameter for improving the stiffness as it increases the DC
gain of the controller.

The complementary sensitivity weighting function was
composed of two terms, one for specifying the closed-loop
high-frequency response and the other to allow for model
uncertainty.  The nominal part of the complementary
sensitivity weighting is,

Wr = —— (10)

Wpr
where @y; = 600 rad/s. The second part of this weighting
function must be a transfer function satisfying the upper
bound magnitude limits of the multiplicative uncertainty plot,
i.e. the gain must be higher than all the lines in figure 4.
Several estimates of this transfer function were tried. The
first transfer function examined was an almost exact fit of the
upper bound, generated by combining two highly-
underdamped second order poles with an s* term in the
numerator. This transfer function yielded controllers which
were only marginally stable. The second transfer function
was a much simpler fit, figure 4,

8e6s>
s +1197s +1.166e9s + 8.649¢11

Wey = (1

This weighting resulted in a stable controller. Simplifying the
bound still further by removing the roll-off resulted in an

overly conservative specification which required the
bandwidth of the sensitivity weighting lowered for the
algorithm to find a stabilising controller. The final
complementary sensitivity weight was selected as,

s2(s* +1197s® +1.166e9s> + 8.649%¢11 + w}, 8e6)
h,(s* +1197s° +1.166e9s” + 8.649¢11)
(12)

W, =

With these weightings, a 13™ order H., controller was
computed (figure 6).

H-Infinity & reduced order controllers
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Figure 6: magnitude plot of full & reduced-order
controllers/

The unfortunate feature of the controller is the rise in gain at
frequencies beyond 700 Hz, which results in much of the high
frequency gain lift of 60 dB. This figure is far beyond that of
the baseline controller, which peaks at about 35 dB. It is not
clear whether any real use is made of this gain rise, or
whether it is simply a consequence of the weights used in the
design. However, the H,, algorithm fails to produce a stable
controller if specific efforts are made to reduce this gain
through normal sculpting of either the control or
complementary sensitivity weightings.

Schur BST-REM balanced residualisation and the optimal
Hankel norm model reduction algorithms were applied to
reduce the controller order. The Hankel norm algorithm
performed very poorly in comparison to the Schur BST-REM
algorithm. After a process of trial and error, a 9th order
model was settled upon. The 4 states removed from the
controller had a negligible impact on the controller input-
output structure as no real degradation in performance was
observed (figure 6). Reducing the order still further yielded
stable controllers, but the phase margins were significantly
reduced. The lower limit for this operation was about 6th
order.
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Controller performance was assessed against the robustness to
changes in the resonance frequency. To fully exercise the
controller, the perturbed plant has the resonance peak located
at the farthest spread distance over the four mechanisms. The
step response the H.. servo is shown in figure 7. The H..
controller performs well with a minor resonance-induced
oscillation impacting on the response. It is worth noting at
this point that the classically-designed controller would have
experienced significant difficulty under this test condition.

Compliance plots for the existing, baseline controller and the
He controller are shown for comparison in figure 8. It is
obvious that the new controller is stiffer than the baseline,
yielding improved rejection of friction torque. Taking the DC
levels, the gain is almost half (0.06 compared to 0.112),
increasing the loop stiffness by a factor of 1.867. Comparing
the peaks, this reduces to 1.42, still over a 40% improvement.

The concerns regarding the high frequency gain of the
controller were shown to be founded by inspection of the
noise transfer function (the transfer function from the gyro
signal to the motor input when the feedback loop has been
closed). It is obvious from figure 9 that the control signal will
be highly sensitive to sensor noise (ImV at the gyro gives
10V at the motor over the band 2-10 KHz). High loop gain
roll-off minimises the impact of sensor noise on the output.
However, because the control signal is subject to a voltage
limit, excessive noise reduces the effective range over which
accurate control can be achieved. If the noise on the sensors
is significant (cheap/old sensor technology) the NTF would
prohibit deployment of the He controller. Low noise sensor
technologies (such as fibre-optic gyros) should alleviate this
problem however.
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Figure 7: Step response of the perturbed servo (0.01s
step on time).
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Figure 8: Compliance of existing & Hw controllers.
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Figure 9: Noise transfer functions of existing & He
controlled servos.

Converting the controller to digital form would raise a
number of issues. The first is that the digitisation rate required
for the fastest pole is quite at high at over 10 kHz, and the
computation load would be significant, given the complexity
of the controller. Any of the standard means of conversion
could be used, although the bilinear method would probably
be used for the first attempt. The main problem is that the
robustness of the system can no longer be guaranteed - the
sampler adds phase shift to the plant which was not allowed
for in the design. However, the effect should be confined to
higher frequencies.
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5 Conclusions

The particular application presented a good design benchmark
because the conventional controller is not robust across an
adequate range of plant resonances, and it thus provided an
opportunity for investigation of this claim of H.. design.

The Bilinear transform was shown to provide a useful
additional design degree of freedom, without which it is
doubtful an acceptable controller would have been found.

The objective of achieving a robust controller of adequate
performance was met, indicating that H,, design methods are
applicable to certain classes of servo-mechanism. However,
the design achieved had excessive noise bandwidth, so further
development would be required for a practical controller.
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