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ABSTRACT

Iterative Learning Control (ILC) is a known
technique for improving the performance of sys-
tems or processes that operate repetitively over
a fixed time interval. ILC generates a feed-
forward signal effective for providing good track-
ing control. However, there still exist a num-
ber of problems which hinder extensions of ILC
schemes. The major obstacle is perhaps the re-
quirement that the trajectory (or repetitive dis-
turbance) must be strictly repeatable over op-
erations. ILC has also liability to deal with
stochastic effects.
This paper presents the design and the im-
plementation of a time-frequency adaptive ILC

that is applicable for motion systems which ex-
ecute the same kind of repetitive tasks. For the
motion system, we show that the adaptive algo-
rithm we propose leads to design one (learned)
feed-forward signal suitable for different set-
points. We demonstrate that, when implement-
ing time-frequency adaptive ILC, very good
time performance (tracking errors) is obtained.
The proposed algorithm converges faster than
standard ILC. With time-frequency adaptive
ILC noise amplification is reduced.
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1 Introduction

Iterative Learning Control (ILC) is a effective
technique for improving the transient response
and tracking performance of processes or sys-
tems that execute the same trajectory, motion
or operation over and over. The ILC method
overcomes some of the traditional difficulties
associated with the design of feedback control
systems [4]. However, there still exist a num-
ber of problems which hinder extensions of ILC
schemes. The major obstacle is perhaps the re-
quirement that the trajectory (or repetitive dis-
turbance) must be strictly repeatable over op-
erations. If any change occurs due to the varia-
tions of control objectives or task specifications
the control system has to start the learning pro-
cess from the very beginning and the previously
learned control input profiles can no longer be
used, in order to have negligible control errors
again.

Generally speaking, there are two kinds of non-
repeatable problems encountered in learning
control [1]: non-repeatability of a task or dis-
turbance and non-repeatability of a process. In
this paper we will focus on non-repeatability of
a task, in particular for (scanning) motion sys-
tems where the point-to-point motion contains
a constant velocity phase with variable length.
Hence, the acceleration and deceleration part
of trajectory are fixed and only the scan length
(where accurate positioning and settling are
specified) varies. Different trajectories, (see Fig.
1), require the learning process to be performed
again. Redesigning the learned feed-forward
signal and iterating to converge takes time.
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Figure 1: Different scanning profiles.

Therefore, the throughput of such a motion sys-
tem is obstructed. Finding a technique that
leads to a scan length independent learning feed-
forward is attractive, since this requires to learn
only once for a variety of scans with different
lengths.

This paper presents a time-frequency adap-

tive ILC that is applicable for motion systems
which execute the same kind of repetitive tasks.
The control scheme is the same as for stan-
dard ILC [5], the only difference being that the
fixed robustness filter Q(jω), ω ∈ R becomes
Qk(jω, t̃, σk(t̃)), where k ∈ N gives the trial
index, the parameter σk can vary throughout
the length of each trial k as function of time t̃,
t̃ ∈ [t0(k), t0(k) + T ], where t0(k) is the starting
time of the trial k and T is the trajectory length.
We remark that throughout this paper the time
t̃ is given (time instants where measurements
are performed). t̃ might be seen as a time in-
stant within the interval [t0(k), t0(k) + T ] or as
a time vector including all given time instants
within the same interval. Depending on choice,
the equations which contain the parameter t̃ will
be scalar respectively vectorial.
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Figure 2: Closed-loop LC configuration.

The Q-filter changes not only within one trial
as a function of time, but also over trials. The
learning filter L and the convergence criterion
remain the same as in the case of standard ILC
[5].

This paper focuses on the design and imple-
mentation of the time-frequency adaptive ILC.
For the motion system, we show that the adap-
tive algorithm we propose leads to design one

(learned) feed-forward signal suitable for differ-
ent setpoints (see Fig. 1). We demonstrate that,
using the time-frequency adaptive Q-filter, very
good time performance (tracking errors) is ob-
tained. The proposed time-frequency adaptive
ILC converges faster than standard ILC. With
time-frequency adaptive ILC noise amplification
is reduced.

The paper is organized as follows: Section 2 in-
troduces the concept of adaptive ILC. Section
3 presents the time-frequency adaptive filter de-
sign. Section 4 addresses the implementation
of the adaptive ILC on the motion system test
rig and presents the time domain performance.
Section 5 focuses on the design of the (learned)
feed-forward signal suitable for different scan-
lengths. The last section summarizes conclu-
sions and recommendations.

2 Adaptive ILC

ILC is based on the principle of using the track-
ing error of a system in order to obtain an ideal
input to reduce the tracking error of the sys-
tem ([5], [1]). Fig. 2 shows the ”standard” ILC
loop. We restrict the study to the case where
the plant is a causal, LTI dynamical system G.
C is a feedback controller which insures the sta-
bility of the closed loop system.

We suppose that the desired response r is de-
fined on the interval (t0, t0 + T ), where T < ∞

and the initial conditions are the same at the
beginning of each trial.

The goal of ILC design is to produce the signal
u∗ (the feed-forward signal) such that r = Gu∗.
We seek a sequence of inputs uk with the prop-
erty that limk→∞ uk = u∗, where the index k is
the iteration trial. A prototype update law that
implements ILC by updating the past iteration
input uk on the basis of the past error is [5]

uk+1 = Q(uk + wk), (1)

where

wk = Lek. (2)

The learning filter L has to approximate the in-
verse of the modeled process sensitivity function
Ps(s) (Ps = G

1+GC ) [5]. For a proper minimum
phase modeled process sensitivity function, one
can compute and implement its inverse without
any problems. For non-minimum phase plants,
a stable approximation of the real inverse is
used. When applying standard ILC, the robust-
ness filter Q is a low-pass filter which is equal to
identity in the frequency band where the inverse
of the process sensitivity function approximates
the real inverse well enough and has small values
for the remaining frequencies.

Remark 1. When applying standard ILC to the
motion system for a given scanning trajectory
the cut-off frequency has to be adapted such
that the learned servo error is convergent over-
all along the scanning trajectory, i.e., the fixed
cut-off frequency is reduced such that one ac-
counts for position dependent dynamics whithin
the scanning trajectory. The Q-filter is also
used in order to increase the robustness of the
ILC against high-frequent noise amplification
and plant/model mismatch.

Next we introduce the time-frequency adaptive
Q-filter. With the same learning filter as for
standard ILC, we replace the fixed Q-filter with
a time-varying Q-filter Qk(s, t̃, σk(t̃)), namely a
zero-phase Butterworth filter of a generic order
n and cut-off frequency σk(t̃), whose magnitude
is given by the following formula

Qk(s, t̃, σk(t̃)) =

√

√

√

√

1

1 +
(

ω
σk(t̃)

)2n . (3)

where t̃ ∈ [t0(k), t0(k) + T ], t0(k) is the initial
time of the k-th cycle, T is the time required to
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perform the trajectory. The cut-off frequency
σk = σk(t̃) may vary throughout the length of
each trial. Therefore, at each time instant t̃, the
Q-filter might change its cut-off frequency. In
what follows, we denote by Γ(t, t̃, σk(t̃)) the in-
verse Fourier transform of the Butterworth type
filter Qk(s, t̃, σk(t̃)):

Qk(s, t̃, σk(t̃))
F−1

−→ Γ(t, t̃, σk(t̃)). (4)

Therefore, by (4), the ILC law (1) can be written
as

uk+1(t̃)=Γ(t, t̃, σk(t̃)) ∗ (uk(t) + wk(t)), (5)

where * denotes the convolution operator of two
signals.

We shall apply the adaptation mechanism along
the whole trajectory length time-interval. First,
the design of the time-frequency Q-filter com-
prehends the use of the Wigner distribution. Us-
ing Wigner distribution we identify the high and
low frequency components of the control signals
(namely, the signals uk +wk) as well as their en-
ergy levels so that one could determine if there is
deterministic (low or high frequency) system dy-
namics at a particular time instant (for a given
setpoint, time is equivalent to position) or just
measurement noise. The stochastic definition of
the Wigner distribution allows us to identify the
stochastic effects presented in the control signals
(implicitely in the servo errors) and to consider
these effects in the control strategy.

The Q-filter bandwidth (cut-off frequency of the
Butterworth type filter σk) varies according to
the current frequency contents present in the
system signals. The filter effectively changes
its bandwidth (cutoff frequency) as a function
of time and the high frequency dynamics will

enter into the learning feed-forward controlled

process at the appropriate time instants. Also,
the bandwidth of the filter is reduced when the
system dynamics do not exhibit high frequency
components and therefore, it avoids noise am-

plification when applying learning feed-forward

control. Therefore, the adaptation algorithm
will adjust the bandwidth frequency as a func-
tion of time to maximize the tracking perfor-
mance while still maintaining a good noise per-
formance.

The use of the time-frequency adaptive filter Q
is, at this moment intuitively speaking, a solu-
tion to better optimize the trade-off motivated
in Remark 1.

3 The time-frequency adap-

tive Q-filter design

In this section we design a time-frequency adap-
tive Q-filter which is going to be implemented
in the closed-loop LC configuration (see Fig.2).
The following steps are followed:

• Implement a feed-forward signal uk. We
denote the obtained servo error with ek.
The first feed-forward signal considered for
implementation is the acceleration feed-
forward signal u0. The corresponding ob-
tained servo error is e0.

• Using time-frequency analysis (Wigner dis-
tribution), one identifies the high and low
frequency components of the control signal
uk + wk as well as their energy levels so
that one could determine if there is deter-
ministic (low or high frequency) system dy-
namics at a particular time instant or just
measurement noise.

• Write an algorithm which designs the cut-
off frequency of a time-frequency adaptive
filter (a low-pass filter whose cut-off fre-
quency varies according to the current fre-
quency contents present in the system sig-
nals).

Next we describe the main steps of the adap-
tation algorithm for an arbitrary fixed iteration
trial k:

The bandwidth profile Fk(t̃). We are inter-
ested to find high-energy frequency components
of the control signal which is going to be Q-
filtered, namely the signal uk + wk defined in
(2). Using the Wigner distribution the energy
corresponding to a certain time and frequency is
computed. We remember here that the Wigner
distribution of a signal w at time t̃ [s] and fre-
quency Ω [Hz] is defined as follows:

W (t̃,Ω) =
1

2π

∫ ∞

−∞

w∗(t̃−
1

2
τ)w(t̃+

1

2
τ)e−jτ2πΩdτ

(6)
where w∗ is the conjugate of the signal w (iden-
tical to w for real signals).

Remark 2. Because of its quadratic non-linear
form, the Wigner distribution puts non-zero
values at time-instants when the actual signal
is zero [6]. Also, the noise around one time
instant could be spread all over the time
frequency plane. As in [8], we expect that for
the system noise occurs with much lower energy
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than determistic dynamics. The appearance of
non-zero or noise terms at times or frequencies
where they do not exist is called interference or

cross terms. In the case of servo errors (when
applying acceleration feed-forward or ILC),
this problem is solved by dividing the compact
time-interval of the signals to be analyzed in
four pieces such that almost no cross terms
will appear [6]. For the discussed system, we
consider the acceleration profile given in Fig.
1, with t1 = 0.1 [s], t2 = 0.2 [s]. The Wigner
distribution of the control signal u0 + w0 is
depicted in the three-dimensional image shown
in Fig. 3.

Figure 3: The 3-D Wigner distribution on the TF

plane of typical control signal uk + wk.

We choose a plane of height ce parallel with
time-frequency (TF) plane (Fig. 3). This plane
should enclose the frequency components hav-
ing enough energy to be picked up at this energy
level. We denote the crossing contour which re-
sults by intersecting the three-dimensional en-
ergy distribution plot with the ce height plane
by ωk(t̃). The constant ce has to be chosen large
enough to identify no noise but small enough to
consider all deterministic dynamics frequencies.
Also, the parameter ce is selected to be large
enough to eliminate the possible remained cross
terms of the Wigner distribution. We remark
that the obtained contour ωk(t̃) is not a func-
tion in mathematical sense, may have the form
depicted in Fig.4, left. We consider the highest
frequency-time profile (envelope), as shown in
Fig. 4, right, i.e.,

Fk(t̃) = max(ωk(t̃)), for Wk(t̃, ωk) = ce. (7)

Based on the contour Fk(t̃), the Q-filter band-
width profile at any time instant is going to be

t [s]

freq [Hz] freq [Hz]

t [s]

Figure 4: Use contour of TF graph to identify dif-

ferent frequency components along time scale.

designed.

Compute the Q-filter bandwidth ΩQk
(t̃).

Consider the windowed least mean square norm
of the tracking error at trial k

Sk(t̃) =

t̃+Tw/2
∑

i=t̃−Tw/2

(ek(i))2, (8)

where Tw is the length of the moving win-
dow, ek(i) is the tracking error during the
k − th trial, at a certain time instant i ∈

[t̃ − Tw/2, t̃ + Tw/2], t̃ ∈ [t0(k), t0(k) + T ].

Consider the difference between the least mean
square norms corresponding to the iterations k
and k-1.

∆Sk(t̃) = Sk(t̃) − Sk−1(t̃). (9)

Update the Q-filter bandwidth ΩQk
(t̃) using it-

erative learning and the windowed error norm
change ∆Sk(t̃).

ΩQk
(t̃) = ΩQk−1

(t̃) + ∆ΩQk
(t̃) (10)

∆ΩQk
(t̃) = −Fk(t̃) · ∆Sk(t̃) · sign(∆ΩQk−1

(t̃))

For the first trial we choose ΩQ1
(t̃) = 10 [Hz].

Compute the relationship between the fil-

ter bandwidth ΩQk
(t̃) and σk(t̃).

We consider the time vector t̃ = (t̃i)i∈1,N , N ∈

N corresponding to the scanning interval. For
any time instant t̃i, i ∈ 1, N we compute the
Q-filter bandwidth ΩQk

(t̃i) [Hz]. We denote by
si = j2πΩQk

(t̃i). The parameter σk = σk(t̃i) is
found when solving the following equation

bandwidth(Qk(s, t̃i, σk(t̃i))) = ΩQk
(t̃i). (11)

For any time instant t̃i, i ∈ 1, N , the relation-
ship (11) between the computed Q-filter band-
width ΩQk

(t̃i) and the parameter σk = σk(t̃i)
is non linear. For computations, different linear
approximations might be considered.

Remark 3. The time-frequency adaptive Q-
filter can be seen as a time-varying low-pass
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filter. The filter might change very fast (the
motion control considered has a sampling rate
of 0.125 [ms]). The fast switching between the
cut-off frequency of different Q-filters which cor-
respond to different time instants is a major is-
sue in switching control and hybrid system area.
For stability results for switched systems, which
can indicate a way to handle with the Q-filter,
we refer to [3]. In case of the considered mo-
tion system, the cut-off frequencies are changing
smoothly enough from one time instant to an-
other. The switching control law does not affect
the stability of the system.

4 Implementation on the

motion test rig

In this section we apply the procedure described
in previous sections to the motion system, see
Fig. 5.

y,Ry

z,Rz

x,Rx

Fz,Tz

Fx,Tx

Fy,Ty

Figure 5: Schematic view of a 3 DOF linear motion

system.

It is an electromechanical servo system with
scan speeds and accelerations of respectively 0.5
m/s and 10 m/s2. The positioning accuracy is
in terms of nanometers and microradians.

The time-frequency ILC is applied for a repre-
sentative scan of velocity 0.5 [m/s], accelera-
tion of 5 [m/ s2], jerk of 1000 [m/s3] over 0.1
[m] in y direction . The scanning trajectory
starts at (x, y) = (0,−0.05) [m2] and ends up
at (x, y) = (0, 0.05) [m2].

In what follows we describe the implementation
procedure and related results. We first imple-
ment the acceleration feed-forward signal u0.
As reference point for the time-frequency anal-
ysis of the (learned) servo errors, we consider
the Wigner distribution of the standstill error
(Fig. 6). In this case, the Wigner distribution
describes the time-frequency behaviour of the
standstill error: it measures how much of the
signal energy at a certain time [s] is concentrated
at a certain frequency [Hz] or, in other words,

the frequency contents is plotted as a function
of time.

Figure 6: Wigner distribution of the standstill

servo error.

The Wigner distribution of the servo er-
ror e0 (when acceleration feed-forward is ap-
plied) shows high-energy low-frequency dynam-
ics (where the acceleration profile changes), and
higher frequency dynamics overall in time (Fig.
7).

Figure 7: Wigner distribution of the servo error

when acceleration feed-forward control is applied.

Using time-frequency analysis (Fig. 3), one iden-
tifies the high and low frequency components of
the control signal u0 + w0 (see Fig. 2) as well as
their energy levels so that one could determine
if there is deterministic (low or high frequency)
system dynamics at a particular time instant or
just measurement noise.
As shown in Section 3, the time-varying cut-off
frequency of the Q-filter is designed. The sig-
nal u0 + w0 is filtered (see (5)) with the time-
varying Q-filter resulting in the first learned
feed-forward u1. Implementing the feed-forward
signal u1 on the system, we obtain the first
learned tracking error e1. In order to com-
pute the feed-forward signal u2, the same L-

6



and Q-filter as in the previous trial, the past
feed-forward signal u1 and the past servo error
e1 are employed in the update law (5).
The same process can be iterated resulting in
better tracking errors. The servo error depicted
in Fig. 8 is obtained only after two iterations.
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Figure 8: Servo errors in the y direction, adaptive

ILC and standard ILC.

Remark 4. The algorithm explained in Sec-
tion 3 is adaptive not only over the time in-
terval within a considered trial, but over itera-
tions also. In this paper we show the time do-
main performance results when implement the
same time-frequency adaptive filter for all tri-
als. Therefore, the bandwidth of the Q-filter
changes in time within one trial, but does not
adapt it’s profile from one iteration to another
one. Adaptive tuning of the Q-filter bandwidth
profile over iterations will be shown in a future
paper.
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Figure 9: Wigner distribution of the servo error

when adaptive ILC is applied.

When applying adaptive ILC, a comparable
time domain performance with standard ILC
performance is achieved (see Fig. 8). All repet-

itive deterministic components of the tracking
errors are eliminated. The non-repetitive and
the stochastic effects (up to about 250 [Hz]) pre-
sented in the servo errors are not amplified when
applying ILC. The performance of the adaptive
ILC from deterministic/stochastic point of view
is very good: the Wigner distributions of the
learned errors (Fig. 9) are comparable with the
Wigner distribution of the standstill error (Fig.
6).

5 Scan-length independent

feed-forward signal

The motion system considered exhibits high-
energy repetitive deterministic system dynamics
in the beginning and at the end of the scanning
interval (Fig. 3 and 7). This system property
was a sufficient reason to explore the possibility
to design one learned feed-forward signal suit-
able for different scan lengths.

The Q-filter bandwidth varies from about 500
[Hz] in the beginning and at the end of scan-
ning interval to 50 [Hz] arround the middle of
the constant speed interval. This means that
around the points t1 = 0.1 [s] and t2 = 0.2 [s],
the Q-filter is active and the determinstic repet-
itive dynamics is suppressed up to 500 [Hz]. In
the vicinity of the middle point of the constant
speed interval, the ILC is almost not active.
Remark 5. The Q-filter cut-off frequencies over-
all in time are given by the choice of the ce in
the adaptive alghorithm (see Section 3). Chos-
ing a lower ce means that we learn up to higher
frequencies around the points t0, t1, but the
ce-level plane encloses more noise, which means
that the noise would be amplified by the learn-
ing process. Increasing the value ce implies that
in the beginning and at the end of scanning in-
terval the learning process is active up to lower
frequencies than in the first case, but the noise
will not be amplified. The time domain perfor-
mance of the adaptive ILC with fine-tuning of
the algorithm introduced in Section 2 (especially
tuning of the parameter ce) will be considered
in another paper.

When applying the adaptive ILC, we obtain the
learning feed-forward signal depicted in Fig. 10.
In comparison to the standard ILC feed-forward
signal, it displays dynamics only in the begin-
ning and at the end of the scanning interval. Be-
tween these intervals the adaptive learned feed-
forward signal has zero values.
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Figure 10: Feed-forward signals in the y direction,

adaptive ILC and standard ILC.
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Figure 11: The design of the adaptive learned feed-

forward signal for different scan-length.

Therefore, when the scan-length changes we do
not have to perform learning again: we prolong
the old learned feed-forward signal inserting ze-
ros such that the exposure length of the new
feed-forward signal corresponds to the required
scan-length (Fig.11). Implementing the length-
ened learning feed-forward signal for a corre-
sponding (longer) scanning interval, good time-
domain performance is achieved.

6 Conclusions

When implement time-frequency adaptive ILC,
we conclude the following:

• Good tracking error along the entire scan-
ning pattern is achieved.

• For a given scanning trajectory, one ac-
counts for position-dependent dynamics.
Understanding and controlling position-
dependent dynamics while tracking move-
ments on different (x, y) positions (Fig. 5)
is still an issue.

• Design ONE learned feed-forwards signal
suitable for different setpoints (see Fig.1).

• Does not amplify stochastic and non-
repetitive effects.
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