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Abstract

This article addresses the visual servoing of a rigid robotic ma-
nipulator under fixed camera configuration. A tool is mounted
on the end-effector of a robot which can be controlled by au-
tomatic visual feedback. The control goal is to drive the tip
of the tool to follow a visually determined three dimensional
target trajectory by using a two-camera vision system without
assuming any pointwise correspondence information. Based
on a novel encoded error, an image-based control law is pro-
posed to achieve precise positioning of the tool in the absence
of measurement noise and pointwise correspondence informa-
tion. With an online falsification algorithm, one can further
achieve automatic trajectory following using an approximately
calibrated two-camera vision system. The control strategy is
successfully validated in simulations on arbitrary line and con-
tour following.

1 Introduction

Robotic manipulators have been widely employed in distinct
environment in industry. Sensor-based design is known to
be effective in providing precision and flexibility. Among a
variety of sensing devices, vision is capable of measuring,
recognizing, and object tracking in open workspace. Recent
progress in computing makes vision a much more popular sen-
sor. Therefore, vision-based control of robots has been an ac-
tive research field and is being integrated into industrial appli-
cations [1, 8, 4, 2, 3].

Issues concerning task encoding in vision-based control sys-
tems have recently been discussed in [5]. It is shown that in the
absence of measurement noise precise positioning sometimes
can possibly be achieved despite camera model imprecision,
just as it is in the case of a conventional set-point control sys-
tem with a loop-integrator and fixed exogenous reference.

In this paper, a tool is mounted on the end-effector of a rigid
robotic manipulator. The control task is to drive the tip of
the robot tool to follow a visually determined target trajectory
using an approximately calibrated two-camera vision system.
Image-based encoding is chosen for defining a novel error in
the two-camera vision-based control system. Based on the en-

coded error, an image-based control law is proposed to guaran-
tee asymptotical convergence provided that camera modeling
error is small.

The aim of this paper is to address issues in design of a robotic
control system for three-dimensional trajectory following em-
ploying two-camera vision under fixed configuration. Observe
that establishing pointwise correspondence on an arbitrary vi-
sually determined target trajectory, which might be a smooth
curve without any sharp features like corners, is a hard prob-
lem. In fact, in order to make pointwise correspondence pos-
sible, one must employ epipolar constraint [6, 9]. But, with-
out pointwise correspondence information, it seems that one
cannot precisely position and follow this trajectory. However,
a novel task encoding approach is proposed in this research
without assuming pointwise correspondence information. Only
knowledge of correspondence in the left and right images for
the target trajectory as a whole is assumed. In Section 2 we
briefly describe the vision/control system of interest and the
control problem we are concerned with. In Section 3, we pro-
pose an effective image-based control law that assures asymp-
totical convergence. Simulation results are given in Section 4.

2 System description

An interesting control task that requires stereo vision is to pre-
cisely drive an observed point to any position in a line or a
smooth contour. One would actually find difficulty when trying
to encode such a task due to the fact that no precise pointwise
correspondence information can be easily observed for such a
line or a smooth contour. That is, one cannot precisely deter-
mine a set-point in either image space or Cartesian space to
form an encoded error for controller design such that the en-
coded error being zero implies the required task being accom-
plished with precision.

In the problem we are concerned with, a tool is mounted on
the end-effector of a robotic manipulator whose tip position
can thus be controlled by performing rotational motion at each
joint. For the purpose of driving the tip of the robotic tool
to follow a target trajectory, two video cameras under fixed
configuration is used as a vision sensor to observe the con-
trolled point, the tip of the robotic tool, and the target tra-
jectory. The problem of interest is to design an image-based
controller using only visual information from the two cameras
to achieve precision control. The system configuration used



to perform autonomous positioning and trajectory following in
three-dimensional space is shown in Figure 1. The problem of

Figure 1: Configuration of the proposed visual servoing system
capable of autonomously positioning and trajectory following
in 3-D space

interest is to control the position of the tip of a robotic tool in
a prescribed workspace X ⊂ R

3 using data observed by two
approximately calibrated video cameras. Specifically, it con-
sists of driving the tool tip to target positions in X determined
by a contour C in the two-camera field of view V ⊂ R

3. The
observed data consists of the tool tip position in X as well as
target trajectory which appear in V . InvariablyX ⊂ V and both
X and V are compact subsets of R

3.

The tool tip together with the target trajectory in X are seen

in the image space Y �
= R

2 ⊕ R
2 through a fixed but impre-

cisely known, continuously differentiable, readout function or
perspective projection [7] camera model G : V → Y which
describes the two-camera vision system. Thus the position of
the tool tip in the image space is a measured output y related to
r by the formula

y = G(r) (1)

where r is a state vector whose components are the Cartesian
coordinates of the tool tip in X . Similarly, the target position in
the image space is an output y∗ related to the target or desired
set-point r∗ by the formula

y∗ = G(r∗).

In this robot positioning problem, the robot is assumed to admit
a simple kinematic model of the form

ṙ = u

where r is a state vector whose components are the Cartesian
coordinates of the robot in X , and u is a control vector taking
values in R

3.

Generally for a stereo vision system one would expect G to be
at least an injective function. We will assume that this is so.
Clearly then, driving r to r∗ is equivalent to driving y to y∗ if
y and y∗ can both been observed. In this case, existing result

has demonstrated effective control approaches [4]. However,
in case the pointwise correspondence information for the tar-
get line or contour cannot be obtained, which further implies
that one would not be able to determine y ∗, existing control ap-
proaches would fail. Therefore, what this paper is concerned
with is how one might define an effective encoded error and
control laws to achieve precise positioning

r −→ some r∗ ∈ C
when the camera model G is not known precisely.

Moreover, one would like to see if it is possible to continue
following the contour C after precisely reaching a point in C.

2.1 Camera model

The symbols employed in camera model are listed in Table 1.
In the sequel, prime denotes transpose.

W The robot coordinate system. A
frame attached to the non-moving
base of the robot.

c1, c2 The position of the optical centers of
camera 1 and 2 relative to W respec-
tively. c1, c2 ∈ R

3.
f1, f2 The focal length of camera 1 and 2

respectively.
[i1, j1,k1]

′

[i2, j2,k2]
′

The rotation matrices of camera 1
and 2 respectively. {i1, j1,k1} and
{i2, j2,k2} are sets of orthogonal
unit vectors in R

3.
r The position in W of the vector be-

tween the location of the tool tip and
c1.

u The robot control input. u ∈ R
3.

y1, y2 The tool tip positions in the two
cameras’ image planes respectively.
y1, y2 ∈ R

2.

Table 1: Table of symbols for cameras

Camera coordinate directions are established as follows: for
camera n(n = 1, 2), in points to the right and jn points down-

ward in camera n’s image plane, and kn
�
= in × jn points

outward along the camera optical axis.

Using perspective projection [7] camera model, the nonlinear
function G in (1) which maps from V to Y can be defined as
follows.

G(r)
�
=




f1
i′1r
k′

1r

f1
j′1r
k′

1r

f2
i′2(r+l)
k′

2(r+l)

f2
j′2(r+l)
k′

2(r+l)




, l
�
= c1 − c2



2.2 Controlled process

Differentiating (1) with respect to time, we have

ẏ = J(r)u (2)

where the Jacobian of the nonlinear map G is defined as

J(r)
�
=

∂G(r)
∂r

=




f1
k′

1r

(
i′1 − i′1r

k′
1rk

′
1

)
f1
k′

1r

(
j′1 − j′1r

k′
1rk

′
1

)
f2

k′
2(r+l)

(
i′2 − i′2(r+l)

k′
2(r+l)k

′
2

)
f2

k′
2(r+l)

(
j′2 − j′2(r+l)

k′
2(r+l)k

′
2

)




.

In the sequel, a novel encoded error is defined. Based on such
an error, an image-based controller is proposed that will drive
r to some r∗ ∈ C asymptotically using only visual information
from a two-camera vision system.

3 Positioning of the robot tool

The control task considered in this paper is to precisely posi-
tion the tip of the robot tool in a prescribed workspaceW using
visual information observed from a two-camera vision system
that is approximately calibrated. That is, one wants to drive
the tool tip r to a visually determined target position r∗ in a
trajectory C ∈ W . Moreover, r is to be controlled to follow
the trajectory C. The challenging problem considered in the re-
search is that no pointwise correspondence information is given
about the trajectory C. Due to the fact that r and r∗ can never
be precisely measured, one must consider using their projec-
tions in another space where they can be directly measured. A
typical choice is the two-camera image space. Moreover, the
original task should be re-encoded in such a space to guarantee
accomplishment of the control task.

3.1 Task encoding

An intuitive choice is to define the encoded error in the image
space as

e = y − y∗

where y and y∗ are the image coordinates of r and r∗ in Y
respectively. However, due to the fact that the corresponding
information about the desired set-point cannot be obtained, y ∗

cannot be determined. One must encode this task in a way
that would guarantee the accomplishment of the original task
without assuming any pointwise correspondence information.

For the control task that requires precisely positioning the tool
tip in the contour C, the following encoded error is proposed
which does not need any pointwise corresponding information
about the desired set-point.

e4×1(t) ≡ y(t) − yd(t) =
[

y1(t) − yd1(t)
y2(t) − yd2(t)

]
(3)

where

ydi(t) ≡ arg
{

min
ydi

∈Gi(C)
‖yi(t) − ydi‖

}
, i = 1, 2. (4)

Since the desired control task is accomplished if and only if
the tool tip touches with the target trajectory C in both image
planes which further implies that the final values of yd1 and
yd2 correspond to a physical point in C, one can be sure that
this simple image-based encoding approach will ensure precise
positioning of tool tip using two-camera vision. Moreover, one
should keep in mind that this image-based encoding is invariant
on camera models. That is, the knowledge of camera calibra-
tion parameters is not required.

3.2 Falsification of admissible set-points

In addition to precisely positioning the tip of robot tool in an
observed target trajectory C without given pointwise correspon-
dence information, a more complicated task with potential ap-
plications is to further drive the tool tip to follow the trajectory.
Since the pointwise correspondence information is again not
given, this tracking problem is seemingly a challenging one.
A falsifier is proposed to eliminate set-points that have been
reached thereby generating over time a descending chain of
subsets of admissible set-points.

Geometrically, the positioning task demands that the visual dis-
tance in both image planes be zero. Algebraically, this require-
ment takes the form

Hi(yi(t), ydi) = 0, i = 1, 2

where
Hi(yi(t), ydi)

�
= ‖yi(t) − ydi‖.

As a consequence of the algebraic constraint, one can see that
Hi(yi(t), ydi) = 0, i = 1, 2 for the set-point (yd1 , yd2) given
(y1(t), y2(t)) just in case the tip of robot tool coincides with
a point in the trajectory C in image space. In principle this
set-point should therefore be excluded in order to continue fol-
lowing the trajectory C. Of course any noise in the system
could foil such a drastic falsification policy, so what we shall
consider instead is something a little less severe. The idea is
to discard set-point pairs for which H1(y1(t), yd1) < ε and
H2(y2(t), yd2) < ε where ε is some small, prespecified num-
ber. This idea is heuristic and can be justified via simulation.

We now describe in more detail the falsifier. For each pair y1(t)
and y2(t), let F(t) ⊆ R

2 × R
2 denote the falsified set.

F(t)
�
=

{
(yd1 , yd2)|H1(y1(t), yd1) < ε and

H2(y2(t), yd2) < ε, ydi ∈ Gi(C), i = 1, 2
}

The descending chain of subsets mentioned before, can now be
defined recursively by the formulas.

M(0)
�
= M1(0) ×M2(0) = G1(C) × G2(C) (5)



and

M(tj+1)
�
= M(tj) −F(tj) ∩M(tj) (6)

where M(tj) −F(tj) ∩M(tj) is the complement of F(tj) ∩
M(tj) in M(tj). As defined, the M(tj) clearly form the de-
scending chain.

G1(C) × G2(C) = M(0) ⊃ M(t1) ⊃ M(t2) ⊃
· · · ⊃ M(ti) ⊃ · · ·

In order to reduce computation, one can actually perform (6) by
reducing candidate set-points according to the following for-
mula.

F (tj) ∩M(tj) =
{
(yd1 , yd2)|H1(y1(tj), yd1) < ε and

H2(y2(tj), yd2) < ε, (yd1 , yd2) ∈ M(tj)
}

Moreover, the set of admissible set-points M cannot be re-
duced unless the controlled tip point reaches any of its ele-
ments. This further implies that the set M might converge to
the empty set if the controlled tip point has reached all admis-
sible set-points under appropriate control action. That is, the
contour following task has been accomplished with precision
in the order of ε. Note in addition, that the computation of the
M(ti) can be carried out by a causal algorithm because the
only real-time data needed to evaluate M(t i) at each time ti

are M(ti−1) and y(ti−1). Meanwhile, due to the nonzeroness
of ε, the set of admissible set-points M(t) could be computed
at discrete times to avoid infinite falsifications {in finite time}.

In the light of the admissible set of set-points M(t) at time t
(5) and (6), the encoded error (3) can be further modified as
follows.

e4×1(t) =
[

y1(t) − yd1(t)
y2(t) − yd2(t)

]
(7)

where

ydi(t) = arg
{

min
ydi

∈Mi(t)
‖yi(t) − ydi‖

}
, i = 1, 2.

3.3 Image-based control approach

In the light of the image-based encoded error defined in (7), it
follows from (2) that

ė = J(r)u − ∆(t) (8)

where

∆(t) ≡ d

dt




arg
{

min
yd1∈M1(t)

‖y1 − yd1‖
}

arg
{

min
yd2∈M2(t)

‖y2 − yd2‖
}


 ≤ α < ∞

because of the fact that the trajectory of the controlled point
and the target trajectory to follow are both smooth and thus the
selected set-point, ydi(t), i = 1, 2, must also be smooth.

Based on the process model defined in (8), the following
image-based control law is proposed.

u = −η(y, yd) ·
( [

Q ◦ G−1
]
(y)

)
·

( [
J ◦ G−1

]
(y)

)′
· e (9)

where η(y, yd)
�
= vmax

max
{∥∥(

[Q◦G−1](y)
)
·
(
[J′◦G−1](y)

)
·e

∥∥, vmax
k

}
is a saturation function, k is a constant gain, vmax is the maxi-
mum speed of the robot, Q(·)3×3 is a symmetric positive defi-
nite matrix2, and G−1 : Y → V is a continuously differentiable
left inverse of G. The control law (9) can drive e to zero expo-
nentially.

If G is modelled only approximately by some perspective pro-
jection function Gq : V → Y , with G−1

q a continuously dif-
ferentiable left inverse of Gq , the following feedback law is
proposed.

u = −η̂(y, yd) ·
( [

Q ◦ G−1
q

]
(y)

)
·

( [
Jq ◦ G−1

q

]
(y)

)′
· e (10)

where η̂(y, yd)
�
= vmax

max
{∥∥(

[Q◦G−1
q ](y)

)
·
(
[Jq◦G−1

q ](y)
)
·e

∥∥, vmax
k

}
and Jq(r)

�
= ∂Gq(r)

∂r . The control law (10) can still drive e
to zero exponentially provided that Gq were a good enough
approximate model of G.

3.4 Stability analysis

The stability analysis for the set-point problem can basically be
performed as follows. Let y∗

1 and y∗
2 be the set-points in the two

image planes that cannot be directly observed due to unknown
pointwise correspondence. Defining edi(t) = yi(t) − y∗

i and
ebi(t) = y∗

i − ydi(t), one can see that

e(t) =
[

y1(t) − yd1(t)
y2(t) − yd2(t)

]
=

[
ed1(t) + eb1(t)
ed2(t) + eb2(t)

]

= ed(t) + eb(t) (11)

In the light of (8) and (10), one can obtain the following equa-
tion by differentiating (11).

ėd(t) = ė(t) − ėb(t)
= −η̂JQJ ′

qed − η̂JQJ ′
qeb − ∆(t) − ėb

According to the proposed algorithm for selecting y d one can
see that eb, defined in the image planes, is smooth and finite.
Therefore, there exists a finite positive number β such that

ėd(t) ≤ −ηJQJ ′ed + β

2For example,
[
Q ◦ G−1

]
(y) can be chosen as(( [

J ◦ G−1
]
(y)

)′( [
J ◦ G−1

]
(y)

))−1

.
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Figure 2: From approaching the line to touching and following
the line-[exact calibration]: stereo image trajectories (upper),
3-D trajectories (bottom left), and distance to target trajectory
(bottom right)

In the light of the Visual Constraints in [4], one thus concludes
that

ed(t) → 0 (12)

exponentially fast. This is equivalent to say that y coincides
with y∗ in the image space. Based on the epipolar constraint,
one further assure that the tip of the robot tool has reached a
point in the target trajectory. Hence, by virtue of (4) and (12)
one can see that

eb(t) → 0 and e(t) → 0.

4 Simulations

The proposed robotic task is to drive the tip of a robot tool to
follow a target trajectory visually determined by a two-camera
vision system. The observed target trajectory can be any arbi-
trary line or contour in the three-dimensional space.

The proposed system is evaluated through two typical target
trajectories. One is a straight line and the other a circle both
in the three-dimensional space and can be observed by the two
cameras. Based on the proposed control law, the tool tip is
driven to a point in the target trajectory and continue to follow
this trajectory.

In the unit of millimeter, The two cameras each with a focal
length of 12 are positioned at [300 400 300]′ and [700 400 300]′

with respect to the world frame respectively. Both optical axes
are oriented to point along the y-axis of the world frame. The
trajectories of the target and the tool tip are plotted as dotted
and solid lines respectively. The star indicates the initial posi-
tion of the tool tip. In the following two target trajectories, the
proposed control algorithm is further verified to demonstrate
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Figure 3: From approaching the line to touching and following
the line-[cameras rotated inwards 20 degrees]: stereo image
trajectories (upper), 3-D trajectories (bottom left), and distance
to target trajectory (bottom right)

its robustness and performance. Specifically, the two cameras
are rotated inwards 20 degrees. No deteriorated performance
can be observed when the two cameras are shifted. In all sim-
ulations, the distance to target trajectory converges to zero ex-
ponentially. In fact, due to the saturation function η̂ defined in
(10), the tool tip is driven to the target trajectory at almost con-
stant maximum velocity 50 mm/sec. Moreover, it stays within
1 millimeter while following the trajectory at about the speed
of 15 mm/sec by setting k, vmax, and ε to be 20, 50, and 0.02
respectively. Simulation results are illustrated in Figure 2 to 5.

5 Conclusion

In this paper, we have proposed an effective image-based con-
trol law for driving an observed robotic controlled point to fol-
low a target trajectory in three-dimensional space. The con-
trolled point is first driven to a point, specified in only one
image or not, in the target trajectory and then continue to fol-
low this trajectory. In order to follow the arbitrary trajectory
in 3-D space, a falsifier is proposed that is capable of elim-
inating admissible set-points. Based on a novel encoded er-
ror, an image-based control law is proposed. This control ap-
proach together with the falsification of admissible set-points
achieve trajectory following using two-camera vision without
assuming pointwise corresponding information. This encoding
approach avoids getting into complicated epipolar constraints
that relies on precise calibration of camera parameters. It is
based on a simple and effective rule that can be performed on
the observed images from two-camera vision. Moreover, only
approximately calibrated two-camera vision is needed in our
approach to precisely position the controlled point in real-time.
The target trajectory is visually determined allowing the pro-
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Figure 4: From approaching the circle to touching and follow-
ing the circle-[exact calibration]: stereo image trajectories (up-
per), 3-D trajectories (bottom left), and distance to target tra-
jectory (bottom right)

posed system capable of performing autonomous control tasks.

The proposed control law that is robust with respect to the cam-
era modelling error can asymptotically stabilize the set-point
control system. Furthermore, due to the fact that the encoded
error being zero implies the controlled point having reached a
point in the target trajectory, one can perform automatic tra-
jectory following without assuming pointwise correspondence
information.

The basic results presented here are to be extended in a num-
ber of ways. Although the simulations only validate the con-
trol approach for planar target trajectories in 3-D space, one
can actually perform the same controller to precisely drive the
controlled point to follow a three-dimensional contour again
without assuming pointwise correspondence information. One
can also arbitrarily select a particular set-point in one of the
two image planes and then apply the same encoding approach
in the other image plane to reach the desired set-point. Com-
parison with other control laws that are synthesized based on
Cartesian-based or other encoding is also of interest. It is likely
that these issues will form the basis of a class of adaptive algo-
rithms which do not require the knowledge of camera calibra-
tion parameter values and correspondence information.
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