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Abstract

Control algorithms for precise motion control require a com-
plete robot dynamic compensation, including also nonlinear
friction phenomena occurring at very low velocities. Several
models, including bothstaticanddynamicfriction, have been
proposed in the last few years, the most used being the LuGre
model and its modifications. Unfortunately, a good estimation
of the dynamic friction parameters is often quite difficult to
be achieved in practice. In this paper, the parameters of the
static part of this friction model are estimated for a double-
arm direct-drive planar manipulator, and the identified model
is used for torque reconstruction during an assigned motion, by
considering the nominal values of the robot inertial parameters.
The results are compared with those obtained by estimating the
manipulator inertial parameters, together with the parameters
of a simplified third order polynomial friction model. Exper-
iments confirm the validity of the available, nominal, inertial
values, and show that, at least in our case, similar results are
obtained by the two friction models.

1 Introduction

Friction torques are among the principal phenomena affecting
the performances of motion control algorithms at low veloci-
ties, as they can lead to significant tracking errors, stick-and-
slip motion and limit cycles [14, 3, 5, 12].

The nonlinear nature of friction torques makes simple PID
controllers questionable, especially when the control algorithm
must cope with both low velocity stiction torques and high ve-
locity coupling torques between links [11, 5, 16, 17, 2, 19].

This paper presents and discusses the results of parameter
identification experiments performed on a direct-drive double
arm planar manipulator, having noticeable nonlinear friction
torques on both joints. The friction is assumed to be described
by the so-called LuGre model, one of the most accepted friction
models available in literature [11, 4, 12, 10].

A DSP-based real-time architecture, implementing simple
joint-independent PD control laws, is used to collect the data

necessary to reconstruct the friction torques and to simulate
the manipulator dynamic behavior for the validation of the de-
veloped friction model. Finally, the results are compared with
those obtained by estimating the manipulator inertial param-
eters, together with the parameters of a simplified third order
polynomial friction model. Experiments confirm the validity of
the available, nominal, inertial values, and show that, at least in
our case, similar results are obtained by the two friction mod-
els.

The outline of the paper is as follows. Section 2 is devoted to
friction modelling and identification, while in Section 3 a brief
description of the manipulator experimental setup is given.
Section 4 describes the dynamic and friction model identifica-
tion procedure, reports the experimental results for validation
and draws the conclusions.

2 Friction modelling

In this section, the main characteristics of the friction phenom-
ena and the various friction models proposed in literature are
briefly reviewed, before discussing the experimental results ob-
tained in the friction identification tests, performed on the con-
sidered robot.

Different models have been proposed in literature, see e.g.
[3, 11, 4, 12, 13, 20, 15, 9] to describe in a more or less ac-
curate way all the friction components. A basic classification
of the friction models is relative to theirstaticor dynamicchar-
acteristics [18].

The classicalstatic models describe friction as a function of
the relative velocity of the bodies in contact, taking into ac-
count some of the various aspects of the friction force, such as
Coulomb friction, viscous friction, stiction, and the so-called
Stribeck effect, which is relative to the low-velocities region, in
which friction decreases as velocity increases. Different non-
linear functions have been proposed to describe such aspects,
taking into account only thecurrentvelocity value (thus defin-
ing static friction models). The simplest choice is given by a
polynomial function of a sufficiently high order.

The model proposed in [4] can be considered as an interme-
diate step towards dynamic models; it introduces temporal de-
pendencies for stiction and the Stribeck effect, but it does not
handle presliding displacement, which is addressed by a proper



dynamicfriction model dealing with the behavior of the micro-
scopical contact points between the surfaces.

The well-knownLuGremodel [12, 18] takes into account both
the steady-state friction curve and the presliding phase by
means of flexible bristles, representing the contact points of
the moving surfaces. According to such a model, the behavior
of the friction torqueτfi on thei-th joint of a manipulator can
be described by the following equations:

żi = q̇i − |q̇i|
gi(q̇i)

σ0izi (1)

τfi = σ0izi + σ1iżi + fi(q̇i) (2)

whereq̇i is the angular velocity of the joint (qi being the joint
position coordinate),zi is a state variable representing the av-
erage bristle deflection for jointi, σ0i andσ1i are model pa-
rameters assumed to be constant, andgi(q̇i) andfi(q̇i) model
the Stribeck effect and the viscous friction, respectively. For
constant velocity, the steady-state friction torque is then given
by:

τfiss = gi(q̇i) sgn(q̇i) + fi(q̇i) (3)

Different parameterizations are possible for functionsgi(q̇i)
andfi(q̇i): the first one is a nonlinear function of velocity, gen-
erally expressed by means of exponential terms, while the sec-
ond one can be given by a simple linear viscous function or by
a higher order polynomial function, when required for a better
fitting with the collected experimental data.

3 The Experimental Setup

The considered robot is a planar two-arms manipulator, manu-
factured by IMI (USA), and sketched in Figure 1. The maxi-
mum extension of the links (`1 +`2) is about 0.7 m, the angular
limits being±2.15 rad for both joints.
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Figure 1: The geometrical scheme of the IMI planar manipula-
tor.

The arms are driven by a couple of brushless NSK Megatorque
direct drives. Two control modes are available, theTorque
Modeand theVelocity Mode: on the basis of the resolver sig-
nals, a current loop is closed to regulate the torque in the first
case, whereas a further velocity loop is added in the second

mode. The basic mode is theTorque Mode, and it will be the
only one used in this work to control the manipulator.

The control architecture, calledOpenDSP, has been developed
by the Mechatronics Laboratory of the Politecnico di Torino
both in its software and hardware parts, and represents the en-
hanced, industrial evolution of an older, educational version,
illustrated in [1].OpenDSPconsists of a DSP board and a pro-
grammable input/output board. The system is linked via en-
hanced parallel port (EPP) protocol to a host PC, and by some
connections to each axes interface. A Matlab environment with
Simulink runs on the host PC and can interact with the DSP
board. The architecture of the complete experimental setup is
sketched in Figure 2.

The OpenDSP system includes a new toolbox for Matlab called
MatDSP, which allows the Matlab-code interaction with the
DSP. In this way it is possible to read or change any variable
processed by the DSP, in synchronous or asynchronous mode,
and the control algorithms written in C can be compiled, down-
loaded and started/paused on DSP.

More details about the OpenDSP architecture and real-time
software, which belongs to the so-calledround-robin with in-
terruptsarchitecture group, can be found in [6, 7].

4 Dynamic and Friction Model Identification

The model of the manipulator under study can be described by
the following second-order nonlinear differential equation in
R2:

M(q)q̈ + C(q, q̇)q̇ + τ f (q, q̇) = τ c (4)

whereq, q̇, andq̈ are the vectors of joint angles, angular ve-
locities and angular accelerations,M(q) is the configuration-
dependent inertia matrix, including both links and motors in-
ertia,C(q, q̇)q̇ is the term containing Coriolis and centrifugal
torques,τ f is the friction torque vector, andτ c is the command
torque vector. The gravitation effects are considered to be neg-
ligible, due to the physical placement of the manipulator arms
moving in the horizontal plane. Each command torque can be
expressed as a function of the command input voltagevm of
the corresponding actuator according to equation

τc = Kvτvm (5)

whereKvτ is the voltage to torque gain.
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Figure 2: The experimental setup.



In a previous paper [8], friction has been characterized taking
into account only two main aspects of that phenomenon, i.e.
Coulomb friction and viscous friction, obtaining only partially
satisfying results. This paper investigates the possibility of ob-
taining a more accurate reconstruction of the real behavior of
the friction torques. Only static friction is considered at this
moment.

Two models are considered to represent the friction torquesτfi

on each joint:

a) the static part of the LuGre model;

b) a third-order polynomial function oḟqi.

Besides, while the available, nominal values of the robot iner-
tial parameters are used in the experiments performed to esti-
mate the parameters of the LuGre model, as described in Sub-
section 4.1, a complete robot dynamic identification is carried
out when the friction polynomial model is considered, as de-
scribed in Subsection 4.2.

4.1 Parameter identification of the static LuGre friction
model

Only the static part of the LuGre model in (1) and (2) is used
to represent the friction torques by consideringżi = 0, i = 1, 2
(thus obtainingτfi = τfiss ), and the following expressions for
the Stribeck curvegi(q̇i) and the viscous frictionfi(q̇i), for
i = 1, 2:

gi(q̇i) = α0i + α1ie
− q̇i

ωs1,i
sgn(q̇i)+

+α2i(1− e−
q̇i

ωs2,i
sgn(q̇i)) (6)

f(q̇i) = α3iq̇i + α4iq̇
2
i (7)

The choice of expression (6) proposed in [11], instead of the
more usual Stribeck function given in [12, 18], is motivated by
the possibility to achieve a better data fitting in our case, when
used together with the second order viscous friction function
(7).
The estimation of the resulting steady-state friction curve (3) is
performed by tests at different constant joint velocity values. A
PD control law (with 1 ms sampling time and the actuators in
Torque Mode), with high gains to avoid stick-slip phenomena,
has been used in the experimental tests to move each joint at
low velocity values. Acquisition at high velocity has been per-
formed letting the joint rotate freely without the links, until a
dynamic equilibrium situation at constant velocity is achieved.

The friction torque data have been indirectly derived in the
open loop tests by considering:

τ ck = τ fk (8)

whereτ ck andτ fk are thek-th samples of the applied mo-
tor torques and of the joint friction torques, respectively. In
the closed loop tests at low velocities the following relation,

derived from the manipulator dynamic equation (4), has been
considered:

τ f (q̇) + τ err = τ c −M(q)q̈ −C(q, q̇) (9)

whereτ err is a torque vector that contains all neglected mod-
elling errors including dynamic friction phenomenon. The
nominal inertial parameters values (see the next subsection for
more details) have been used to compute matricesM(q) and
C(q, q̇).

The parameter values to be identified in (3), withgi(q̇i) and
fi(q̇i) defined as in (6) and (7), should be seven for each joint
(the fiveα’s together withωs1,i andωs2,i). By the observation
of the acquired data, tentative values between 0.1 and 0.3 rad/s
have been considered for the exponential parametersωs1,i and
ωs2,i, and a least square algorithm has been applied to a lin-
earized expression of (3)-(7) to estimate theα’s parameters for
each joint. By some iterations, the values reported in Table 1
have been obtained.

Joint 1 Joint 1 Joint 2 Joint 2
ω > 0 ω < 0 ω > 0 ω < 0

α0 40.854 −46.473 17.837 3.408
α1 −32.454 53.873 −14.837 −0.408
α2 −31.233 55.738 −14.998 −0.635
α3 −0.760 −0.293 −0.156 −0.104
α4 −0.262 0.177 −0.050 0.036
ωs1 0.19 0.14 0.2 0.3
ωs2 0.17 0.15 0.19 0.1

Table 1: Estimated static parameters of the LuGre friction
model.

Figures 3 and 4 show the resulting steady-state friction torque
together with the experimental data for the first joint (for posi-
tive and negative velocity values, respectively). Similar results
have been obtained for the second joint.

 

Figure 3: Friction torque (Nm) vs. positive velocity (rad/s) on
joint 1.



 

Figure 4: Friction torque (Nm) vs. negative velocity (rad/s) on
joint 1.

4.2 Dynamic Model Identification with Polynomial Fric-
tion Torques

Let the friction torque on thei-th joint be described by the fol-
lowing third-order polynomial function:

τfi = a0isign(q̇i) + a1iq̇i + a2isign(q̇i)q̇2
i + a3iq̇

3
i . (10)

It is then possible to rewrite the manipulator dynamic model
(4) in the following form:

τ = D(q, q̇, q̈)θ, (11)

which is linear with respect to the vectorθ, containing the iden-
tifiable dynamic parameters of the robot, and the friction pa-
rameters that define the friction torques (10), andD(q, q̇, q̈) is
properly defined. In particular,θ is given by:

θ = [Γ1z + m2l
2
1 m2s2x m2s2y Γ2z

a01 a11 a21 a31 a41 a02 a12 a22 a32 a42]T (12)

i.e., the identifiable dynamic parameters are the inertia mo-
ments of the links with respect to thez0-axis (i.e. the axis per-
pendicular to the motion plane) and the first order moments
m2s2x, m2s2y of the second link.

According to the method developed in [8], parameter identifi-
cation has been performed by collecting data on an “optimal”
trajectory (i.e. a trajectory that optimally excites the robot dy-
namics described by model (11)) of the following type:

qi(t) =
na∑

j=1

αj,i sin(ωj,it), (13)

for thei-th joint. In particular, the considered reference trajec-
tory (reported in Figure 5) is a four-harmonics function, having
duration timeT = 15 s, α11 = −0.4355, α21 = −0.4032,
α31 = −0.5, α41 = −0.371, α12 = 0.371, α22 = 0.2097,
α32 = 0.4677, α42 = 0.3387, ω11 = 0.7213, ω21 = 0.8656,
ω31 = 1.082, ω41 = 1.8754, ω12 = 1.8754, ω22 = 2.0918,
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Figure 5: Joint reference trajectory for identification

ω32 = 0.8656, ω42 = 1.3705 (where theωi,j terms are ex-
pressed in rad/s).

The same PD control law, used in the tests described in the
previous subsection, has been applied to repeat the trajectory
ten times, in order to investigate the repeatability of the system
and the measurement noise. Joint position and torque data have
been collected, whereas velocities and accelerations have been
computed via software (with the insertion of a proper filtering
action).

The Least-Squares algorithm described in [8] has been used for
the off-line parameter estimation, collecting more than 2500
equally spaced samples for each trajectory repetition. The final
obtained estimates are collected in:

θ̂ = [3.6457 0.9836 − 0.0012 0.2857 6.8406 2.6236
−1.1580 0.4680 2.3512 0.3069 − 0.3374 0.1252]T (14)

The comparison with the values obtained from the manufac-
turer data for the first four parameters, given by:

θnom,1 = 3.689 kg ·m2, θnom,2 = 0.97 kg ·m,
θnom,3 = 0 kg ·m, θnom,4 = 0.275 kg ·m2,

(15)

confirm the validity of the results relative to the inertial param-
eter estimates. The estimated parameters have been used to
reconstruct the torques by the robot dynamic model (11) with
θ̂ instead ofθ, and to compare them with the measured ones,
as shown by Figure 6, with reference to the first part of one of
the trajectory repetitions; torque errors are also reported in the
same figure. The relative estimation errors, defined as the ratio
between the rms estimation error and the rms value of the mea-
sured torques, result to beεr,1 = 31.8 %, andεr,2 = 31.7%
for the two joints. It must be noted that local peaks of torque
error correspond to changes of the velocity sign, i.e., when the
used friction model is probably not adequate to well describe
the present phenomena.
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Figure 6: Torque reconstruction for the four-harmonics trajec-
tory.

4.3 Torque Reconstruction: Comparisons and Conclu-
sions

The results obtained by using the two different friction mod-
els have been compared by letting the manipulator execute a
cartesian circular trajectory. The measured torques have been
compared with the ones reconstructed by using the robot dy-
namic model, considering (i) the nominal values of the inertial
parameters together with the friction static LuGre model identi-
fied in Subsection 4.1, and (ii ) the parameter vector̂θ estimated
in Subsection 4.2. Figures 7 and 8 show the obtained results.
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Figure 7: Torque reconstruction for the circular trajectory with
the LuGre friction model.

The relative estimation errors areεr,1 = 35.8%, εr,2 = 45.9%
with the LuGre model, andεr,1 = 33.1%, εr,2 = 39.9% with
the polynomial friction model. As the figures show, the quality
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Figure 8: Torque reconstruction for the circular trajectory with
the polynomial friction model.

of the torque reconstruction is comparable in the two cases:
taking into account also the error peaks when velocity changes
sign, the reconstruction performed in the second case seems to
be a little better.

It seems then that the use of the more accurate static LuGre
model gives no particular advantage in our case, if the dynamic
friction component is not taken into account. Current work is
devoted to the identification of this component, even if practical
difficulties arise, since more accurate position measurements
are required, and to the application of the identified friction
models to control purposes.
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