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Abstract

In this paper, an observer based controller is developed, both
of them working in sliding mode, applied to the square
MIMO non-linear systems control. An application to the
rigid robots with n links and n revolute joints (n-degree of
freedom) is presented. In order to reduce the chattering, a
parameterised smooth switching function is used: the
tangent hyperbolic function both in the observer and
controller. The gain of the switching functions is adaptively
updated, depending on the state estimation error and
tracking error, respectively. Using the adaptive gains, the
transient and tracking response are improved. Closed loop
simulations with a 2-degree of freedom robot manipulator,
in the presence of parameter uncertainties, are presented in
order to show the robustness of the approach.

1 Why adaptive gain smooth variable structure control?

The structured (parameter) and/or unstructured uncertainties
of MIMO nonlinear systems lead to difficulties in parameter
identification. Therefore, the controller and/or the observer
have to be designed in order to assure closed loop
robustness. The robustness to uncertainties and external
disturbances of the closed loop with a variable structure
controller is well known. Maintaining the system on a
sliding surface weakens the influence of the uncertainties in
the closed loop and quickly leads to an equilibrium point. In
[3], an adaptive variable structure controller with
parameterised sigmoid switching function (denoted k-
sigmoid) and adaptive gain (denoted A -modification),
instead of a pure relay with constant gain, is proposed. In
this paper, a parameterised hyperbolic function (denoted k -
tanh) is used as a switching function. By using k -tanh as the
switching function, the chattering can be alleviated. The
chattering is a high frequency oscillation on the control
input, and/or on the state and on the plant output. When

decreasing the parameter k in the switching function, the
gain around zero becomes smaller and the un-modelled
dynamics are less excited at high frequency. Also, the delay
due to the control input calculus and the finite rate of
switching can lead to chattering. Using the A -modification
into the gain of the k-tanh switching function smoothes the
response and increases the robustness to parameter
uncertainties and external disturbances. The adaptive gain is
time varying, with the norm of the corresponding sliding
surface as an input. The sliding surface can be the estimation
error of measurable states for the observer and the tracking
error for the controller.

We develop a variable structure observer-controller based on
the works [7, 9]. Extension of sliding control to MIMO non-
linear systems has been studied in [4, 10]. Application to
robot manipulators has been presented in [2, 8]. Extension to
MIMO non-linear affine systems can be found in [5].

With the k -tanh switching function and the A -modification
in the observer-controller gains, the closed-loop system
behaves as an approximate sliding mode, in the
neighbourhood of the corresponding sliding surface.

2 Adaptive gain smooth sliding observer for square
MIMO nonlinear systems

The considered square MIMO non-linear system is:

X; =Xp; x; € R°
%5 = hlxp, p) ' [Fxg, %)+ glxp, x5 )u] (0
y=x; x,eR" ueR",

where only the vector x; is available for measurement, u

and y are control input and measured output, respectively.
The functions f g and h may be partially unknown, with

some parameter uncertainties. If one assumes the partial

knowledge of the model parameters, then one can deﬁnefl,



f and g as the estimates of the functions h, f and g.
Moreover, the system is assumed feedback linearizable,
(g(xq,x5)#0and g(x;,x,)#0 forall x).

This is the most general model of the robotic manipulator.
The physical robot may have gears and clutches, inside the
joint, through the torque, supplied by the DC motor, is
transmitted in order to move the arm.

Considering S, =X%X;—x; =0 as the observer sliding

surface and the k-tanh as switching function, the sliding
observer can be written as

);il = _Fl ()21 - X1)+ @1 (t)tanh(kOSO)+ )2
Xy =-T5(%) - %)+ O, (t) tanh(k S, ) 2
i sy, 7)1, 3y, %)

where

Iy =diagly;; - via |, Tp =diaglys; - v2a] @)

with  vy;;>0,i=12and j=L,n.k, >0 is a design

parameter. The gains of the switching function
@, =diag[0;; -0, ], ©, = diag[6,; -6 ] “

are time varying and defined by (the A -modification
included)

G)l(t):_7"1®1(t)_pldiag|]§(ll_Xll|"'|721n_xln|] (5)
®2(t)=—7~2®2(t)—92diagﬂfm—X11|"'|§<1n—xln|] (6)

Ay =diag[hy; Aoy,
with 7\,11,

where A, =diag[A{; Ay, |,

py =diag[py --pia ], Py =diag[py;panl.
A2 P1 Pai» 1=1,---,n positive constants.

Remark 1. The dynamics (5) and (6) of the switching gains
force the matrices ®; and ®, to negative values. They are

almost zero if the estimation error X; —x; is almost zero.

The negative values of the matrices ®; and ®,, given by
the dynamics (5) and (6), lead to the changed sign in the
observer equation (2). They become almost zero whilst the

observer evolutes in the neighbourhood of the sliding
surface.

Remark 2. In order to satisfy the attractiveness condition
S S, <0, i=1,...,

oi”oi

that

n, the gain ®; must be chosen such

n,Vte[tO oo) @)

—911 |X21 X2i(t)|,i=1,...,

By an appropriate choice of the matrices A; and p;, the
above condition at t=t,
t>t, 20.

remains satisfied for any

3. Smooth sliding controller with adaptive gain

The sliding surface, corresponding to the n-dimensional
control input, is defined as

Se(®,1)=%,(t)-

where y,(t) represents the trajectory to be tracked. The
v = diagly,.... v, },
Y;,i=1---,n determines the dynamics in the sliding
mode. The controller is defined assuming that the state x; is

v O+l (0-y, () ®

matrix with positive constants

known and that the state x, is provided by the observer. The
sliding surface is attractive if the following condition holds
SeiSei <0, i=1...,n 9)

ci

The time derivative of the sliding surface can be expressed
as

m .

=f<2 Yir +W(X2—Yr)
=h(x,)” [f (x1.%7) +gX1,X2)U(X1,X2)] (10)
y W( Z_Yr)

To fulfil the sliding condition (éc =0), the controller has to
be expressed as follows

i =—f(xy, %)+ (x1,%5 h(x;)

. . (1)
[_WSC +n(t)tanh(kcsc )+ .Yr _W(;(Z _Yr )]

where the gain of the
n = diag[n,
modification included)

switching  function,
M,] is also time varying (the A-

T.’l(t)z_7“011(t)_pcdiagl‘gcl é J (12)

cn

with x‘c:diagp\'cl'“ kcn]’ pczdiag[pcl pcn] and
}\‘Ci’pci >0, izl,l‘l.

As in [5] and [6], the term —wéc is introduced to reduce the

controller to a classical feedback linearization one if the
switching term is set to zero.

Remark 3. The observer error is nonzero if the k-tanh
function is used as a switching function in the observer
equations. The controller sliding surface §C can still be

attractive by choosing sufficiently large initial values for the
switching gains ®@; and ®,. Moreover, the tracking error



does not go to zero on the controller sliding surface, due to
the smooth controller ( k -tanh switching function).

Remark 4. In order to reduce the influence of the velocity
estimation error in the control input, the relative weight of
the states X, in the definition of the sliding surface should
be decreased. This explains the introduction of the
supplementary term —1|!§ . in the control input. The increase
of the parameter Wy is limited by the switching frequency
and possible measurement noise.

4. Smooth sliding observer and controller with adaptive
gains applied to a robot manipulator

Consider the n-degree of freedom robot manipulator model:
H(a)i+Cla.4)q+ Vrq+Gla)=u (13)

where q=[q1 qn]T is the vector of link angles,

H(q)e R™™ is the positive definite inertia matrix,
C(q,q)e R™" is the Coriolis and centripetal force matrix,

Vi e R™" is the positive semi-definite diagonal matrix

with the viscous friction coefficients, u is the vector of
driving torques. Define y as the measurements vector. The
positions of the robot links,q;,1=1,...,n, are the elements

Define  the state q=x;=[x;1 Xl
in]’ the angular position and velocity

of y.
q=X2 =[X21
vector, respectively. The state space representation can
written as:

X =X

: -1

%5 =—H(xy) 7 [C(x1, x5 x5 +4+G(x) )+ Vexy —u] - (14)

y=x
Taking into account the parameter uncertainties and the
presence of observer, H(x;), é(xl,iz), G(xl), Vg, can

be defined as the available estimates of the function matrices
H(x;), Clx1,x5), Glx;), V.

The dynamics of the smooth sliding observer (k -tanh as

switching function), with gains adaptively updated (the A -
modification included) can be expressed as:

);\(1 =—F1 ()A(l —X1)+ @1(t)tanh(kOSO)+>A{2
Xy =T, (%) —x1)+©,(t)tanh(k,S, ) (15)

a6k, + Veky + G-

The smooth switching function allows to consider that the
conditions: X; =0, X; =0 are satisfied during sliding. The
state estimate error equation is

X, =-0,07'%, -
SR ) [0l %0 )R + G, )-u+ Ve e (16)
+H(x; ) [C(xp. x5 x5 +Glxg)—u+Vix,]

By an appropriate choice of the gain ®,, the stability of the
observer and exponential convergence rate can be achieved,

as how is proved in [7]. Let Qe R™" be the positive
definite matrix defined as:

Q=M(x,)0,07" +#(x), %5 )+ Vg (17)
where

. R J R
W(Xl,X2)=§[C(X1,X2) X) (18)

2 X,=X,

Clxy, x5 )%5 = Clx, % &g —#i(x1, %5 Ko (19)

The matrix Q determines the robustness of the observer to
the parameter uncertainties. Choosing large eigenvalues for
the matrix Q, the observation error can be globally
ultimately bounded, (Corollary 5.3 from [4]). Defining V,

as a Lyapunov function candidate:

1 o1n -
\L =5x§H(xl)xZ, (20)

one obtains the derivative:

1
2

NT{IA{(XI)GZGI_I% +#ix1, %, Ky + VX, -G } h
—X

Vy =% Hix X, +- X3 H(x) X, =

2y ~ ~ .
—Vpxy —Cxy +HH G +Cxy —u+ Vix, |
Let define the vector b =u(x;,x,,%,) as:

H:_G_VFXZ —(N:XZ

.\ (22)
—I‘II‘I_1 [G+CX2 —U(Xl,ﬁz )+VFX2]
and assume that U is linearly bounded by X,
[l < B+ ], vt (23)

for some B, >0, then the derivative of the Lyapunov
function is bounded by:

Vz < _xminQH§2H2 + HXZHHHH

< (Aaning ~ VIR + Bl < el

(24)



where €<Ajpq—7v. If at t=0, the switching gain ©,
satisfies (7), both gains: ®;and ®, follow the adaptation
laws (3) and (4), respectively, and the vector W is bounded,
then there exists t; =20 such that the observer velocity
estimation error satisfies the inequality:

—€
}\' N - t
[alo)] < 7 o 0)fe e

min H

vi<t, (25)

Moreover, the estimation error converges to the ball B(0,r)
(centred in zero and with radius r):

%, @)|<r. Vexy (26)

where the radius satisfies the inequality:

s N
r 2 max H B (27)
xminl:l 7"minQ —Y-E

The calculus of the control input for n-degree of freedom
robotic manipulator follows. In order to fulfil the
attractiveness condition (9), it is necessary to express the
derivative of the sliding surface (8):

éc = );(2 -¥; +W(§(2 _yr)
=—IA‘I(X1)_1 [é(Xl,)Ez))Ez +\A/F722 +G(X1)—ﬁ] (28)
_yr +W(§(2 _Yr)

Similarly as for the observer, by the using k-tanh as a

switching function and the A -modification into the gain, the
sliding condition is fulfilled if the control input is chosen as:

(29)
+ﬁ[_\,,§,c +n(t)tanh(kcéc )+ Vo —w(&y -y, )]

The controller switching gain n(t) is adaptively updated as

in (12). Using (16), the derivative of the sliding surface (8)
can be expressed as:

S, =n(t)anhlk S, -3, +(0, (007 ()-yk,  G0)

If the gain mn of the switching function satisfies the
inequality:

A

wifsa|-ni0=[lo, i 0-vs J| vzt 0 a1

then the attractiveness condition is verified. Because 0,
and ®, are diagonal matrices, the inequality (31) can be
written as:

A

S

-n;(t)2 Vi=1..,n (32)

Vi

ci

0,i(t) -
U R
[ 911 (t) Vi [Xoi
Remark 5. The initial value of the switching controller gain

has to be defined to guarantee the sliding condition after the
convergence of the observer, when the error in state

estimates is bounded by (26). The term wéc maintains the

sliding variable bounded during the observer transient. This
leads to:

|92i(to
—ni(ty)=

maxﬁ B (33)

) A
_III.
) 1 ;\'minI:I (XminQ _Y)

o

With an appropriate choice of A, and p. with respect to
Ai,Ay p; and p,, the above condition can be satisfied all
the time.

Remark 6. Expressing the control input sliding condition as:

Xy = Vi +W(x) -y ) =%, (34

where the true velocity state is introduced, and taking into
account (26), the following bound of the tracking error can
be obtained:

Mnaxii B
min H (kminQ -

1
|X11 —Y1r1| Sllf_i k

),Vt>t1 (3%5)
Remark 7. The actual value of ¢t

convergence rate of the observer and on the time defined by
the gain matrix y . The observer and the controller, both of

depends on the

them into a smoothed form, can achieve high performance.
For values of the constant k, greater thank ., the smooth

switching function of the observer is closer to a pure relay
than the smooth switching function of the controller.
Therefore, the observer converges faster than the controller
with small state estimate error. The state estimates could be
chattering-free, independently of the value of the gains @,

and ©,. Moreover, by choosing the matrices ®; and O,

adaptively updated as in (5) and (6), the magnitudes of the
switching function go to small values while link position
errors go to small values.

Remark 8. During sliding, the error S, =X;—xj.is

approximately zero. The derivate is not exactly zero, but it is
a high frequency signal, of average approximately zero, with
an amplitude depending on ®; . If the gain ®; goes to zero,

the derivative of the velocity estimation error goes to zero or
becomes very small. That means a reduced observation error
even in the presence of parameter uncertainties. Also, the
behaviour of the controller is similar to that with the full
state measurement if the switching is based on a smooth
variable. The smooth controller means a reduced or free
chattering for the control input and/or the output.



5. Simulation results

In order to test the proposed smooth variable structure
observer-controller, the robotic manipulator model from [1],
is considered. It is 2-degree of freedom vertical robot with

two rigid revolute joints and two rigid links and a mass m,

as the load. The vectors of position and velocities are:
y=lyi vol"=xi =[xy xp] (36)
x5 =[x21 xp]", (37)
The robot parameters are the following:

()= 9.77+2.02cos(y,) 1.26+1.01cos(y,)
Y= 126+1.01cos(y,) 112
(38)
1+cos(y2) 1
{—Xzz
X21
Cly,x2)=sin(y, K (39)
+{—Xzz —X21+X22}mP
X21 0

8.lsin(y1 )+1.13 sin(yl +y2)
Gly)= 1.13si
13sin(y; +y,)

{2+ 2cos(y,) 1+cos(y, )}
+ my,

—X21 —Xzz}l 01

(40)
N {sin(y1)+ sin(y +Y2)}
. mp
Sln(Yl +Y2)

Vi (x,)=diag[10 10] (41)

The initial conditions are:

y1(0)=m;xZ(O)=mﬁl(0)= mnzz(o)= D} “2)

0,(0) = diag[-10 -10}©,(0) = diag[-100 —200]

(43)
n(0)= diag[-5 -10]
The following observer-controller constants are chosen:
A =k, =k, =diag[l 1], (44)
Iy =diag[l0 10],T, = diag[5000 5000], (45)

p1=py =p =diag[l 1} y=diag[20 20]  (46)

The mass m, is assumed to be unknown. For the

p
simulation, a mass of 3kg is supposed for the controller and
observer design, while the real one used in the model is Skg.
Small parameter uncertainties (2%) are considered. The
trajectory to be tracked is

v, =[-05+03sin(t-0.3)  0.7sin(2t+03)]"  (47)

The control input is constrained by:
luy <150, juy <75].

In order to compare the convergence rates of the observer
and of the controller, two closed loop simulations are
presented. For the first one (figure 1 and figure 2), the
smooth switching function of the controller is closer to a
pure relay than that of the observer. Hence, the sliding
observer converges slower than the sliding controller. A
small chattering for the control input and oscillations on the
sliding surfaces can be observed.

link positions and references real and estimated velocities

== link1
i — refl
oSy - link2 2
: — ref2

— realvl
-- estwl
— realv2
== a5t

as| 2

] 5 10 0 5 10
t[sec) t[sec]
driving torques tracking errors

200 1
;
100 |3 el 05 o b

=200 -1
i} 5 10 1] i 10

t[zec) t[sec]

Figure 1. Closed loop robot response, smooth sliding
observer,k, =300, smooth sliding controller,

ko =500.

For the second one (figure 3 and figure 4), the observer
converges faster than the controller. Therefore, the control
input is based on a small estimation error and then, is
chattering free. Obviously, for both simulations, the smooth
switching function k-tanh is used. For a larger parameter k,
the gain around zero is greater and the observer or/and the
controller converge faster. However, smooth switching
function leads to the system evolution in a neighbourhood
sliding surface. The initial conditions are chosen in order to
satisfy the inequalities (32) and (33). The closed-loop
system behaves well to parameter uncertainties. The gains
adaptively updated, depending of the corresponding sliding
surface, make small the influence of the variable structure
part into the state estimate error or tracking error.
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Figure 2. Closed loop robot response, observer sliding
surface for k, =300, controller sliding surface for

k. =500.
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Figure 3. Closed loop robot response, smooth sliding
observer, k, =10, smooth sliding controller, k. =1.

6. Conclusions

A smooth variable structure observer-controller, with
modulation functions gains adaptively updated, was
designed and checked by simulation in closed-loop. The
general MIMO model for a n-degree of freedom robotic
manipulator was used in the sliding observer-controller
design. An application to a 2-degree of freedom robotic
manipulator control is presented. The output tracking and
robustness are increased in the presence of parameter
uncertainties. The parameterised tangent hyperbolic, used as
a switching function, assures a reduced or free chattering.
An appropriate choice of the parameters in the observer and
in the controller switching functions allows a faster
convergence of the observer than that of the controller. The
time varying gains of the switching functions lead to small

state estimate and tracking error with an improved transitory
response.
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Figure 2. Closed loop robot response, observer sliding
surface for k., =10, controller sliding surface for

ke =1.
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