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Abstract

The ISS small gain approach to the stabilization of bilat-
erally controlled teleoperators in the presence of time de-
lay in the communication chanel is presented. A control
scheme is proposed that makes the teleoperator system
stable regardless of the delay in the communication chan-
nel. The central idea is to make both the master and the
slave manipulators input-to-state stable with prescribed
ISS gains, so that the stability of the overall system can
be guaranteed by ISS small gain theorem.

1 Introduction

Teleoperation can be defined as the extension of a per-
sons sensing and manipulation capability to a remote lo-
cation [13]. A standard teleoperator system consists of
two manipulators called master and slave, and a com-
munication chanel between them. The master is moved
by the human operator, and the information about mas-
ter’s trajectory is sent throw the communication chanel
to the remotely located slave. The slave is controlled to
follow the motion of the master. In order to make the
human operator feel the contact force of the slave, the
information about the contact force is reflected back to
the motors of the master. In this case the teleoperator
is said to be controlled bilaterally [2]. If time delay is
present in the communication chanel, the force reflection
can make the system unstable [6]. The stabilization prob-
lem for such a system was considered, among other papers,
in [2, 3, 11, 9, 10, 1] (see also [4], and the bibliography
therein). The first solution of this problem was presented
in [2], where the case of linear one-degree-of-freedom mas-
ter/slave manipulators was considered. The solution is
based on passivity properties of master and slave manip-

ulators. The key idea of the approach is to use a feedback
bilinear transformation which transforms a passive sys-
tem into a system with gain less than or equal to one [5].
This transformation is applied for both master and slave
subsystems. As a result, feedback configuration of two
systems with gain less than or equal to one is obtained,
which is stable regardless of time delay in the communi-
cation chanel. In [3] this result was extended to the case
of nonlinear multi-degrees-of-freedom manipulators, and
asymptotic stability of the system was proved. For the
case of linear manipulators an alternative control strategy
which is also based on passivity arguments is presented
in [1]. However, the passivity based approach has several
shortcomings. First, stability of the bilaterally controlled
teleoperator is proved under the assumption that both hu-
man operator and environment can be modeled as passive
systems, an assumption which appears to be restrictive.
Another disadvantage of this approach is the following: in
order to preserve passivity of the slave block, a specially
designed coordinating torque term rather, than environ-
ment contact force, must be send to the master. This
coordinating torque is insensitive to changes in the con-
tact force. Thus, specially designed local force feedback
around the slave needs to be implemented [2]. Even in
the presence of such a feedback, however, the coordinat-
ing torque term cannot provide precise information about
contact force to the human operator, thus leading to a
deterioration of the performance of the teleoperation.

An alternative approach to the stabilization of bilater-
ally controlled teleoperators in the presence of delay in
the communication chanel was presented in [12]. In that
paper, a control law was proposed that makes both the
master and the slave subsystem input-to-state stable with
respect to external forces. Using the properties of input-
to-state stable systems, it is then shown that the overall
system is stable for any delay in the communication chan-
nel. A possible drawback of the results in [12] is that a
restrictive model of the environmental dynamics has been



utilized. Namely, it is assumed that the environmental
force is uniformly bounded with unknown bound. In this
paper, we address the stabilization problem under essen-
tially more general assumptions on environmental dynam-
ics. Specifically, we assume that the environmental dy-
namics satisfy a weak form of finite-gain assumption with
respect to slave variables. Using an appropriate form of
the ISS small-gain theorem [8], we show that the proposed
control law makes the overall system stable regardless of
delay in the communication channel.

The paper is organized as follows. In section 2 the nec-
essary preliminary material is given. In section 3 we con-
sider a control scheme which makes the teleoperator sys-
tem input-to-state stable independently of the communi-
cation delay, and formulate the main result. Proof of the
main result is given in section 4. Due to space reasons, we
do not present computer simulation results, which will be
published in the full version of the paper.

2 Preliminaries

2.1 Euler-Lagrange equations of manipulators

For simplicity we will consider the manipulators with revo-
lute (rotational) joints. Let the configuration of a robotic
manipulator be described by n generalized joint angles
q = (q1, . . . , qn)T ∈ T n, where T n is n-dimensional torus.
Suppose that in these coordinates the dynamics of the
manipulator are described by Euler-Lagrange equations
of the following standard form

H (q) q̈ + C (q, q̇) q̇ + G (q) = τ. (1)

Here τ ∈ Rn is the vector of external forces, H (q) ∈ Rn×n,
C (q, q̇) ∈ Rn×n, and G (q) ∈ Rn are smooth matrix-
valued (vector-valued) functions of their arguments, H (q)
represents the inertia matrix of the manipulator, C (q, q̇) q̇

is the vector of centrifugal and Coriolis forces, and G (q)
is the vector of potential forces.

It is well-known, that the dynamic model (1) has the fol-
lowing properties [17].

Property 1. The inertia matrix H (q) is symmetric and
positive definite.

Property 2. The (i, j)-entry of the matrix C (q, q̇) has the
following structure

Cij(q, q̇) =
n∑

i=1

Γijk(q)q̇k,

where Γijk(q) are so called Christoffel symbols,

Γijk(q) =
1
2

(
∂Hij(q)

∂qk
+

∂Hik(q)
∂qj

− ∂Hkj(q)
∂qi

)
. (2)

Figure 1: Structure of the teleoperator system

A direct consequence of property 2 is the following prop-
erty.

Property 3. The matrix Ḣ(q) − 2C (q, q̇) is skew-
symmetric.

2.2 Teleoperation with time delay

The structure of the bilateral teleoperation system is pre-
sented in figure 1. The following notations will be used.
Let qm ∈ T n, q̇m ∈ Rn be position and velocity of the
master, qs ∈ T n, q̇s ∈ Rn position and velocity of the
slave, Fh is a force applied by the human operator to con-
trol the motion of the master, and Fe ∈ Rn is the contact
force due to environment applied to the slave. Through-
out the paper we impose the following assumption on the
dynamics of environment.

Assumption 1. The contact force Fe can be represented
as follows

Fe(t) = F s
e (t) + F ∗

e (t), (3)

where F s
e satisfies the following ”finite-gain” condition

with respect to the slave variables

|F s
e (t)| ≤ γe (|q̇s(t)| + |qs(t)|) (4)

for some γe > 0 and for almost all t ≥ 0, and F ∗
e (t) is an

arbitrary measurable essentially bounded function. The
term F ∗

e represents disturbances as well as the external
environmental forces which do not depend on the teleop-
erator dynamics.

Further, by q̂m ∈ T n, ˆ̇qm ∈ Rn we denote position and



velocity of the master transmitted to the slave via the
communication chanel with some delay τ1 ≥ 0, so that

q̂m(t) = qm(t − τ1), (5)
ˆ̇qm(t) = q̇m(t − τ1), (6)

and F̂e ∈ Rn represents the contact force transmitted back
to the master with some delay τ2 ≥ 0,

F̂e(t) = Fe(t − τ2). (7)

The dynamics of the bilaterally controlled teleoperator
system are described as follows

Hm (qm) q̈m + Cm (qm, q̇m) q̇m + Gm (qm)
= Fh + F̂e + um,

(8)

Hs (qs) q̈s + C (qs, q̇s) q̇s + G (qs) = Fe + us, (9)

where um, us ∈ Rn are the control inputs of the master
and the slave respectively.

2.3 Input-to-state stability

Recently, the notion of input-to-state stability has been
studied extensively in the nonlinear control literature
(see [14], and the bibliography therein). Since the tele-
operator system contains delay blocks, it is natural to de-
scribe such a system by functional-differential equations,
so in this case the standard definition of ISS is not di-
rectly applicable. In this paper, we will utilize the follow-
ing extension of the ISS notion which was proposed by
Teel in [18]. Consider a functional-differential equation of
the form

ẋ(t) = F (xd(t), wd(t)) , (10)

where xd(t)(·) is a function [0, td] → Rn for some td ≥ 0,
defined as xd(t)(s) = x(t− s). Similarly, wd(t)(s) = w(t−
s).

Following [18], denote

|xd(t)| = max
t−td≤s≤t

|x(s)|, ‖xd‖t0 = sup
s≥t0

|xd(s)|,

and analogously for |wd(t)|.

Definition 1. The system (10) is said to be input-to-
state stable with ISS gain γ ∈ K, if |xd(t0)| < ∞ and
‖wd‖t0 < ∞ imply the solutions of (10) are defined for all
t ∈ [t0 − td, +∞), and the following two properties hold
uniformly in t0 ≥ 0:

i) uniform boundedness: there exists a function δ ∈ K∞
such that

‖xd‖t0 ≤ max {δ (|xd(t0)|) , γ (‖wd‖t0)} ; (11)

ii) uniform convergence: for each ε, η > 0 there exists
T > 0 such that

|xd(t0)| ≤ η ⇒ ‖xd‖t0+T ≤ max {ε, γ (‖wd‖t0)} . (12)

3 Input-to-state stability of the teleoperator

system

In this section we address the problem of stabilization of
the bilateral teleoperator system (3)–(9), (13), (14). Con-
sider the following control law

um = −Hm (qm) q̇m − Cm (qm, q̇m) qm

+Gm (qm) − Km (q̇m + qm) ,
(13)

us = Hs (qs)
(
ˆ̇qm − q̇s

)
+ Cs (qs, q̇s) (q̂m − qs)

+Gs (qs) − Ks (q̇s + (qs − q̂m)) ,
(14)

where Km, Ks ∈ Rn×n are symmetric positive definite
matrices. In the following, for given symmetric matrix K,
the minimal (maximal) eigenvalue of K will be denoted
by λmin (K) (λmax (K)). Our main result is presented in
the following theorem.

Theorem 1. There exist ηm, ηs > 0 such that if
λmin (Km) ≥ ηm, λmin (Ks) ≥ ηs, then for any commu-
nication delays τ1, τ2 ≥ 0 the controlled bilateral teleop-
erator system (3)–(9), (13), (14) is input-to-state stable

with respect to the input
(
F T

h , F ∗
e

T
)T

.

4 Proof of Theorem 1

We start from standard definition of the input-to-state
stability property for systems described by ordinary dif-
ferential equations.

Definition 2. A system of the form

ẋ = F (x, w) , (15)

x ∈ Rn, w ∈ Rm, is said to be input-to-state stable (ISS),
if there exists γ ∈ K such that the following two properties
hold.

i) There exist δ ∈ K∞ such that

sup
t≥t0

|x(t)| ≤ max
{

δ (|x(t0)|) , γ

(
sup
t≥t0

|w(t)|
)}

. (16)

ii) For each η, ε > 0 there exists T = T (η, ε) ≥ 0 such that
|x(t0)| ≤ η implies

sup
t≥t0+T

|x(t)| ≤ max
{

ε, γ

(
sup
t≥t0

|w(t)|
)}

. (17)



Properties i) and ii) are referred as uniform boundedness
and uniform convergence respectively. Thus defined ISS
property admits several equivalent characterizations [15,
16]. In particular, the system (15) is ISS if and only if
there exist a smooth ISS-Lyapunov function V : Rn → R+

with the following properties:

i) there exist α1, α2 ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|)

for all x ∈ Rn;

ii) there exist α3, χ ∈ K such that χ (|w|) ≤ |x| implies

∂V

∂x
F (x, w) ≤ −α3(|x|). (18)

Moreover, if there exists an ISS Lyapunov function satis-
fying the above two properties, then the function α−1

1 ◦
α2 ◦ χ ∈ K is an ISS gain for the system (15).

The idea of our proof is to show that under suitable choice
of matrices Km, Ks, the proposed control law (13), (14)
makes both the master and the slave subsystems input-
to-state stable in the sense of definition 2 with arbitrary
prescribed gains γm, γs > 0. Then, the application of ISS
small gain type arguments [8] completes the proof.

Proposition 1. For any γ∗
m > 0 there exists λ (γ∗

m) >

0 such that if λmin (Km) ≥ λ (γ∗
m), then the closed-loop

master subsystem (8), (13) is ISS with respect to the state(
qT
m, q̇T

m

)T and input Fh + F̂e with ISS gain less than or
equal to γ∗

m.

Proof. Denote em = q̇m + qm. Substituting the control
law (13) into the equation (8), we get that the closed-loop
system (8), (13) is described as follows

Hm (qm) ėm + Cm (qm, q̇m) em + Kmem

= Fh − F̂e,
(19)

q̇m = −qm + em. (20)

Take an ISS-Lyapunov function candidate

Vm(em, qm) =
1
2
(
eT

mHm(qm)em + qT
mqm

)
. (21)

By Property 1, Hm(qm) is positive definite smooth matrix
function on compact configuration space T m, therefore
there exist υ1, υ2 > 0 such that

υ1|x|2 ≤ xT Hm(qm)x ≤ υ2|x|2 for all x ∈ Rn, q ∈ T n.

Consequently,

ν1

(
|em|2 + |qm|2

)
≤ V (qm, em) ≤ ν2

(
|em|2 + |qm|2

)

for some ν1, ν2 > 0. Using Property 3, it is easy to see
that the time derivative of Vm along the trajectories of
(19), (20) admits the following upper estimate

d

dt
Vm ≤ −eT

mKmem + |em|
∣∣∣Fh − F̂e

∣∣∣− |qm|2 + |qm| |em| .

Using quadratic Young’s inequality, we get

d
dtVm ≤ −eT

mKmem + λmin(Km)
2 |em|2

+ 1
2λmin(Km)

∣∣∣Fh − F̂e

∣∣∣
2

− |qm|2 + 1
2 |qm|2 + 1

2 |em|2 .

Assuming λmin (Km) > 2, we have

d

dt
Vm ≤ −1

2

(
|em|2 + |qm|2

)
+

1
2λmin (Km)

∣∣∣Fh − F̂e

∣∣∣
2

.

We see that if

|em|2 + |qm|2 ≥ 2
λmin (Km)

∣∣∣Fh − F̂e

∣∣∣
2

,

then
d

dt
Vm ≤ −1

4

(
|em|2 + |qm|2

)
.

Therefore, the closed-loop master subsystem (8), (13) is
ISS, and the corresponding ISS gain from the input Fh−F̂e

to the state
(
qT
m, eT

m

)T is less than or equal for

γ̃m =

√
2υ2

υ1λmin (Km)
.

Further, since
∣∣∣∣
(

qm

q̇m

)∣∣∣∣
2

= |qm|2 + |q̇m|2

≤ 3 |qm|2 + 2 |q̇m + qm|2 ≤ 3
∣∣∣∣
(

qm

em

)∣∣∣∣
2

,

we see that the ISS gain from the input Fh − F̂e to the
state

(
qT
m, q̇T

m

)T
is less than or equal to

γm =

√
6υ2

υ1λmin (Km)
.

Choosing matrix Km such that λmin (Km) > 2 is suffi-
ciently large, we get the result. The proof is complete.
•

Now consider the ”slave-environment” subsystem (3), (4),
(9), (14). Denote q̃ = qs − q̂m, ˙̃q = q̇s − ˆ̇qm (note that
˙̂qm = ˆ̇qm). The following proposition is valid.

Proposition 2. For any γ∗
s > 0 there exists λ (γ∗

s ) > 0 such
that if λmin (Ks) ≥ λ (γ∗

s ), then the closed-loop ”slave-
environment” subsystem (3), (4), (9), (14) is ISS with

respect to to state
(
q̃T , ˙̃q

T
)T

, and input
(
q̂T
m, ˆ̇q

T

m, F ∗
e

T
)

with ISS gain less than or equal to γ∗
s .



Proof of proposition 2 is similar to the proof of proposi-
tion 1. It is omitted here due to space reasons and will be
published in the full version of the paper.

In the next proposition a simple fact is formulated that if
the system is ISS in the sense of definition 2, then the same
system with delays in some of the input channels, being
considered as a system of FDE, is input-to-state stable in
the sense of definition 1.

Proposition 3. Suppose the system

ẋ(t) = F (x(t), u(t), v(t)) (22)

is ISS with respect to input
(
uT , vT

)T in the sense of de-
finition 2 with ISS gain less than or equal to γ > 0. Then
for any τ ≥ 0 the system

ẋ(t) = F (x(t), u(t − τ), v(t))
:= F ∗ (xd(t), ud(t), vd(t))

(23)

is ISS in the sense of definition 1 for any td ≥ τ , and the
corresponding ISS gain is less than or equal to 2γ.

Proof of proposition 3 is omitted due to space reasons.

Now take td ≥ τ1 + τ2. Combining propositions 1 and 3,
and taking into account (3), (4), we have the following
fact.

Fact A. For any γm > 0 there exists a symmetric pos-
itive definite matrix Km such that the ”environment +
backward communication channel + controlled master”
subsystem (3), (4), (7), (8), (13) has the following prop-
erties:

i) there exists a function δ1 ∈ K∞ such that
∥∥∥∥∥

(
qm

q̇m

)

d

∥∥∥∥∥
t0

≤ δ1

(∣∣∣∣∣

(
qm

q̇m

)

d

(t0)

∣∣∣∣∣

)

+γm

(
γe

∥∥∥∥∥

(
qs

q̇s

)

d

∥∥∥∥∥
t0+τ1

+ ‖(F ∗
e )d‖t0

+ ‖(Fh)d‖t0

)
;

ii) for each ε, η > 0 there exists T > 0 such that
∣∣∣∣∣

(
qm

q̇m

)

d

(t0)

∣∣∣∣∣ ≤ η

implies that
∥∥∥∥∥

(
qm

q̇m

)

d

∥∥∥∥∥
t0+T

≤ ε

+γm

(
γe

∥∥∥∥∥

(
qs

q̇s

)

d

∥∥∥∥∥
t0+τ1

+ ‖(F ∗
e )d‖t0

+ ‖(Fh)d‖t0

)
.

On the other hand, combining propositions 2 and 3, and
taking into account that q̃(t) = qs(t) − qm(t − τ1), ˙̃q(t) =
q̇s(t) − q̇m(t − τ1), one can get the following statement.

Fact B. For any γs > 0 there exists a symmetric positive
definite matrix Ks such that the ”forward communication
channel + controlled slave + environment” subsystem (3),
(4), (5), (6), (9), (14) has the following properties:

i) there exists a function δ2 ∈ K∞ such that
∥∥∥∥∥

(
qs

q̇s

)

d

∥∥∥∥∥
t0+τ1

≤ δ2

(∣∣∣∣∣

(
q̃
˙̃q

)

d

(t0)

∣∣∣∣∣

)

+ (γs + 1)

∥∥∥∥∥

(
qm

q̇m

)

d

∥∥∥∥∥
t0

+ γs ‖F ∗
e d‖t0

;

ii) for each ε, η > 0 there exists T > 0 such that
∣∣∣∣∣

(
q̃
˙̃q

)

d

(t0)

∣∣∣∣∣ ≤ η

implies that
∥∥∥∥∥

(
qs

q̇s

)

d

∥∥∥∥∥
t0+T

≤ ε+(γs + 1)

∥∥∥∥∥

(
qm

q̇m

)

d

∥∥∥∥∥
t0

+γs ‖F ∗
e d‖t0

.

Fact A means that the ”environment + backward com-
munication channel + controlled master” subsystem is
input-to-state stable, while fact B implies that the ”for-
ward communication channel + controlled slave + envi-
ronment” subsystem is input-to-output stable. Since

∣∣∣∣
(

qs

q̇s

)∣∣∣∣ ≤
∣∣∣∣
(

q̃
˙̃q

)∣∣∣∣+
∣∣∣∣∣

(
qm

˙qm

)

d

∣∣∣∣∣ ,

we see that the ”forward communication channel + con-
trolled slave + environment” subsystem has the unbound-
edness observability property [8]. Therefore, using facts A,
B, one can apply the ISS small gain type arguments [8]
to derive the following sufficient conditions for the input-
to-state stability of the telerobotic system (3)–(9), (13),
(14).

Proposition 4. The telerobotic system (3)–(9), (13), (14)
is input-to-state stable, if

γmγe (γs + 1) < 1. (24)

Proof of proposition 4 follows standard line of reasoning
(see, for example [8, 7] where the proofs for more gen-
eral case of nonlinear gain functions are presented), and
is omitted here.

Note that it follows from propositions 1, 2 that the con-
dition (24) can always be satisfied by suitable choice of
matrices Km, Ks. This completes the proof of Theorem 1.



5 Concluding remarks

We have presented a new approach to the stabilization
of bilaterally controlled teleoperation systems with com-
munication delay. The central idea of this approach is to
make both the master and the slave manipulators input-
to-state stable with prescribed ISS gains, and then apply
the ISS small gain theorem to prove the input-to-state sta-
bility of the overall system. The important feature of this
approach is that the stability of the telerobotic system is
guaranteed for any communication delay. To fulfill the
small-gain condition (24), it may be necessary to choose
the master gain Km large enough, which may lead to dete-
rioration of compliance of the system for the human oper-
ator. This fact reflects the trade-off between stability and
compliance. To achieve better compliance, one can take
Km smaller than it is necessary to guarantee the fulfill-
ment of the small gain condition. In this case the stability
of the overall telerobotic system is not guaranteed, how-
ever, the motions of the master and the slave will remain
synchronized (see proposition 2), which may be sufficient
for successful teleoperation.
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