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Abstract

In this paper we present a controller that solves the problem of
position coordination of two (or more) robotic systems, under
a master-slave scheme, in the case when only position mea-
surements are available. The controller consists of a feedback
control law and two nonlinear observers. It is shown that the
controller yields semi-global ultimate uniformly boundedness
of the closed loop errors and a relation between the bound of
the errors and the gains on the controller is established. Ex-
perimental results show, despite obvious model uncertainties, a
good agreement with the predicted convergence.

1 Introduction

Nowadays the developments on technology and requirements
on efficiency and quality in production processes have origi-
nated more complex and integrated systems. These integrated
systems are a synergy of many different disciplines such as me-
chanics, electronics, control, etc.. The final goal of this synergy
is to improve the performance, and in many cases to give rise
to more flexible and robust systems.

In manufacturing processes, automotive applications and tele-
operated systems there is a high requirement on flexibility and
manoeuvrability of the involved systems. In most of these pro-
cesses the use of mechanical systems, particularly robot ma-
nipulators, is widely spread, and their variety in uses is practi-
cally endless, e.g. ensembling, transporting, painting, welding,
grasping. All the mentioned tasks require large manoeuvrabil-
ity and manipulability from the robots, such that some of the
tasks can not be carried out by a single robot. In those cases
the use of multi robot systems, working under cooperative or
coordinated schemes, has been considered as an option.

The cooperative schemes give flexibility and manoeuvrability

that can not be achieved by an individual system, e.g. multi fin-
ger robot-hands, multi robot systems, multi-actuated platforms,
[8], [10], vibro-machinery [1], tele-operated master-slave sys-
tems [7] and [3]. Typically robot coordination and cooperation
of manipulators form important illustrations of the same goal,
where it is desired that two or more mechanical systems, either
identical or different, are asked to work in synchrony. In robot
coordination the basic problem is to ascertain synchronous mo-
tion of two (or more) robotic systems. This is obviously a con-
trol problem that implies the design of suitable controllers to
achieve the required coordinated motion.

This work addresses the problem of coordination of mechan-
ical systems, particularly robotic systems, under master-slave
schemes. Since the pioneering work of Goertz [2], most of the
master-slave robotic systems – if not all – are based on full
knowledge of the dynamic model and joint variables (position,
velocity and acceleration) of the master and slave robots [5],
[6]. However, in practice, robot manipulators are equipped
with high precision position sensors, such as encoders, but
very often the velocity measurements are obtained by means
of tachometers, which are contaminated by noise.

In this paper we present a coordination controller that solves
the problem of position coordination of two (or more) robot
systems, under a master-slave scheme, in the case when only
position measurements of both master and slave robots are
available. The setup here considered is as follows. Consider
two rigid joint robots, such that the movement of one of the
robots is independent of the other one. This robot is the domi-
nant one and will be referred to as the master robot. The master
robot is driven by a control τm(·), that in the ideal case, ensures
convergence of the master robot joint positions and velocities
qm, q̇m to a given desired trajectory qd, q̇d. Then, the goal is to
design interconnections and a feedback controller for the non
dominant robot, hereafter referred to as slave, such that its po-
sition and velocity qs, q̇s coordinate (synchronize) to those of
the master robot qm, q̇m. However, the input torque τm, the
dynamic model and parameters of the master robot, as well as



the velocity and acceleration variables q̇m, q̈m, are not available
for the design of the slave control law τs(·). Therefore for the
design of the slave interconnections and controller only master
and slave angular positions qm, qs are available by means of
measurements.

Notice that the goal is to ensure coordination between the
slave robot trajectories qs, q̇s and the master robot trajectories
qm, q̇m, and not to the master desired trajectories qd, q̇d which
may not be realized due to model uncertainties or disturbances
in the system, e.g. noise, unknown loads, friction.

Most of the master-slave robot systems are designed to interact
with their environment, and thus force-position controllers are
required [6], [5]. This paper is focused only on the position
coordination problem. Nevertheless in case of a master-slave
system interacting with its environment, passive compliance or
end effector compliance models can be used in order to control
the interaction forces between the slave robot and the environ-
ment.

The paper is organized as follows. Section 2 presents the dy-
namic model of the master and slave robots. The proposed
coordination controller is presented in Section 3. Section 4
presents the theorem which supports the stability of the coordi-
nation system. In Section 5 experimental results are presented
and discussed. Section 6 presents general conclusion and some
further extensions of the proposed controller.

2 Dynamic model of the robot manipulators

Without loss of generality and considering that the friction phe-
nomena can be compensated separately, it is assumed that the
robots are frictionless. Consider a pair of fully actuated rigid
robots, each one with the same number of joints, i.e. q i ∈ R

n,
where i = m, s identifies the master (m) and slave (s) robot;
all the joints are rotational. This does not mean, however, that
they are identical in their parameters (masses, inertias, etc.).

For each of the robots, the kinetic energy is given by
Ti(qi, q̇i) = 1

2 q̇
T
i Mi(qi)q̇i, i = m, s, with Mi(qi) ∈ R

n×n

the symmetric, positive-definite inertia matrix, and the poten-
tial energy is denoted by Ui(qi). Hence, applying the Euler-
Lagrange formalism the dynamic model of the robot is given
by

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi i = m, s (1)

where gi(qi) = ∂
∂qi

Ui(qi) ∈ R
n denotes the gravity forces,

Ci(qi, q̇i)q̇i ∈ R
n represents the Coriolis and centrifugal

forces, and τi is the [n× 1] vector of input torques.

3 Coordination controller

If it is assumed that only angular joint positions qm, qs are
measured, then the slave control τs can only depend position
measurements qm, qs. Thus estimated values for the velocities
q̇m, q̇s and accelerations q̈m, q̈s are required to implement con-
trollers based on velocity and acceleration feedback.

3.1 Feedback control law

Under the assumption that the required estimated velocities and
accelerations are available, and that the nonlinearities and pa-
rameters of the slave robot are known, the controller τ s for the
slave robot is proposed as

τs = Ms(qs)̂̈qm + Cs(qs, ̂̇qs)̂̇qm + gs(qs) −Kd
̂̇e−Kpe (2)

were ̂̇qs, ̂̇e, ̂̇qm, ̂̈qm ∈ R
n represent the estimates of q̇s, ė, q̇m

and q̈m respectively.

The coordination errors e, ė ∈ R
n are defined by

e := qs − qm, ė := q̇s − q̇m, (3)

Ms(qs), Cs(qs, ̂̇qs), gs(qs) are defined as in equation (1), and
Kp,Kd ∈ R

n×n are positive definite gain matrices.

3.2 An observer for the coordination errors (e, ė)

Estimated values for the coordination errors e, ė (3) are denoted
by ê, ̂̇e; these estimated values are obtained by the full state
nonlinear Luenberger observer

d

dt
ê = ̂̇e+ Λ1ẽ (4)

d

dt
̂̇e = −Ms(qs)−1

[
Cs(qs, ̂̇qs)̂̇e+Kd

̂̇e+Kpê
]

+ Λ2ẽ

where the estimation position and velocity coordination errors
ẽ, ˜̇e are defined by

ẽ := e− ê, ˜̇e := ė− ̂̇e, (5)

and Λ1,Λ2 ∈ R
n×n are positive definite gain matrices.

3.3 An observer for the slave joint state (qs, q̇s)

Lets q̂s, ̂̇qs denote estimated values for qs, q̇s, to compute these
estimated values, we propose the full state nonlinear observer

d

dt
q̂s = ̂̇qs + Lp1ẽq (6)

d

dt
̂̇qs = −Ms(qs)−1

[
Cs(qs, ̂̇qs)̂̇e+Kd

̂̇e+Kpe
]

+ Lp2ẽq

where the estimation position and velocity errors ẽq and ˜̇eq are
defined by

ẽq := qs − q̂s ˜̇eq := q̇s − ̂̇qs, (7)

and Lp1, Lp2 ∈ R
n×n are positive definite gain matrices.

3.4 Estimated values for q̇m, q̈m

As stated, the master robot variables q̇m, q̈m are not available,
therefore estimated values for q̇m, q̈m are used in τs (2). From



(3) and the definition of the estimated variables ê, ̂̇e, q̂s, ̂̇qs, we
can consider that estimated values for qm, q̇m, q̈m are given by

q̂m = q̂s − ê̂̇qm = ̂̇qs − ̂̇e (8)

̂̈qm =
d

dt

(̂̇qs − ̂̇e)
from the definition of the observers (4), (6) it follows that

̂̈qm = −(Ms(qs)−1Kp + Λ2)ẽ+ Lp2ẽq

which gives a clear insight of how ̂̈qm is reconstructed and why
by increasing some appropriate gains, specificallyKp, Lp2, the
closed loop errors decrease in magnitude.

Remark 1 Note that, in (4) and (5) the estimate for ė is given

by ̂̇e, not by
.

ê . This definition introduces an extra correcting

term in
.

ẽ, as it follows from (4), (5) that
.

ẽ= ė−
.

ê= ˜̇e− Λ1ẽ,

The term Λ1ẽ gives faster estimation performance, especially
during transients, but it has some negative effects on noise sen-
sitivity, since it amplifies noise measurements on ẽ.

The same can be said for observer (6) and the estimation posi-
tion and velocity errors (7).

4 Main result

To simplify the stability analysis, we make the following as-
sumptions.

Assumption 1 Λ1,Λ2 and Lp1, Lp2 satisfy

Λ1 = Lp1, Λ2 = Lp2, (9)

and Kp,Kd, Lp1, Lp2 are symmetric (n, n)−matrices.

Assumption 2 q̇m(t) and q̈m(t) are bounded

VM = sup
t

‖q̇m(t)‖ , AM = sup
t

‖q̈m(t)‖ . (10)

Theorem 1 Consider the master and slave robots (1), in
closed loop with (2), (4), and (6). Given scalar parameters
εo, λo, µo, γo,

εo > max{0, εq6}, λo > 0, µo > 0, γo > 0, (11)

and if the minimum eigenvalues of Kd,Kp, Lp1, Lp2 satisfy

Lp2,m > max
{
µ2

o, γ
2
o , Lp2q4, Lp2q5, Lp2q6

}
,

Lp1,m > max {µo, γo, Lp1q5} ,
Kp,m > max {Kpq2,Kpq3} ,

Kd,m > max {Kdq1,Kdq3,Kdq5,Kdq6} ,
(12)

then, the closed loop errors ė, e, ˜̇e, ẽ, ˜̇eq, ẽq are semi-globally
uniformly ultimately bounded. Moreover, this bound can be

made small by a proper choice ofKp,m andLp1,M . The scalars
εq6, Lp2q4, Lp2q5, Lp2q6, Lp1q5, Kpq2, Kpq3, Kdq1, Kdq3,
Kdq5, Kdq6 can be found in [9] and [10]. Also a gain tuning
procedure whit guidelines to satisfy conditions (11) and (12) ig
given in [9] and [10].

Proof: The proof in extend and the conditions on the gains
Kd,Kp, Lp1, Lp2 can be found in [9], [10].

5 Experimental case study

The proposed coordination controller has been implemented in
a two CFT robot manipulators setup. The CFT robot is a Carte-
sian basic elbow configuration robot. It consists of a two links
arm which is placed on a rotating and translational base, and it
has a passively actuated tool connected at the end of the outer
link, see Figure 1. The CFT robot is a pick and place industrial
robot used for assembling. It has 4 degrees of freedom in the
Cartesian space, denoted by xci (i = 1, . . . , 4), and 7 degrees
of freedom in the joint space, denoted by q j (j = 1, . . . , 7),
and is actuated by 4 DC brushless servomotors. Although the
robot has 7 degrees of freedom in the joint space, 3 of them
are kinematically constrained, with the set of constrained joints
given by {q3, q6, q7}. Therefore the robot can be represented
in the joint space by 4 degrees of freedom {q1, q2, q4, q5} ac-
tuated by 4 servomotors. Although the shaft of the motors and
the corresponding links are connected by means of belts, the
servomotor-link pair proved to be stiff enough to be considered
as a rigid joint.

Figure 1: The CFT-transposer robot

The 4 Cartesian degrees of freedom are rotation, up and down,
forward and backward of the arm, forward and backward of the
whole robot, see Figure 1. The robot is equipped with encoders
attached to the shaft of the motors with a resolution of 2000
PPR, which results in an accuracy of ±0.5 [mm] in all motion
directions. The tool connected at the end of the outer link is a
kinematically constrained planar support. The tool is passively
actuated and designed to remain horizontal at all time. A more
detailed description of the structure of the robot can be found
in [10].

For implementation of the controllers and communication to
the robots, the experimental setup is equipped with a DS1005
dSPACE system, with a processor PPC750, a clock of 480 MHz



and a bus clock of 80 MHz. Throughout the experiments the
sampling frequency of the DS1005 dSPACE system was set to
2 kHz.

5.1 Joint space dynamics

The multi-robot system is formed by two structurally identical
transposer robots, so that they have the same kinematic and dy-
namic model. However, the physical parameters of the robots,
such as masses, inertias, friction coefficients are different for
both robots.

Hereafter the notation qi, for i = m, s refers to the master or
slave robot in the multi-composed system. According to [10]
the dynamic model of the CFT-robot is given by

M(qi)q̈i+C(qi, q̇i)q̇i+g(qi)+f(q̇i) = τi, i = m, s (13)

where f(q̇i) denotes the friction that is modelled as

f(q̇i) = Bv,iq̇i +Bf1,i

(
1 − 2

1 + e2w1,iq̇i

)

+Bf2,i

(
1 − 2

1 + e2w2,iq̇i

)
(14)

with, qi = [ qi,1 qi,2 qi,4 qi,5 ]T the vector of general-
ized coordinates of robot i, M(qi) ∈ R

4×4 the symmetric,
positive definite inertia matrix, g(qi) ∈ R

4 denotes the gravity
forces, C(qi, q̇i)q̇i ∈ R

4 represents the Coriolis and centrifu-
gal forces, f(q̇i) ∈ R

4 are the forces due to friction effects,
and τi = [ τi,1 τi,2 τi,4 τi,5 ]T is the vector of external
torques.

The parameters in the matricesM(qi), C(qi, q̇i) and the gravity
vector g(qi) can be found in [10].

5.2 Experimental results

The desired trajectory for the master robot qd(t) is obtained by
transformation of a desired trajectory given in Cartesian coor-
dinates xcj,d(t), j = 1, . . . , 4, that is given by

xcj,d(t) = a0,j + a1,j sin(2sf,jπωt) + a2,j sin(4sf,jπωt)
+a3,j sin(6sf,jπωt) + a4,j sin(8sf,jπωt) (15)

with the coefficients ai,j , i = 0, . . . , 4, j = 1, . . . , 4 given in
Table 1. The coefficients a0,j have been chosen as the middle
value of the allowed displacements in the robots, while a i,j , i =
1, . . . , 4 were chosen to achieve the combination of maximum
displacement and velocity allowed by the robots. This is done
to generate a trajectory in amplitude that can be executed by
the multi-robot system. The coefficients sf,j , j = 1, . . . , 4
have been chosen as to change the frequency of the desired
trajectories, their values are sf,1 = sf,2 = sf,3 = 1 and sf,4 =
0.25.

The fundamental frequency of the master robot’s desired tra-
jectory xcj,d(t), given by (15), is set as ω = 0.4 Hz. The joint
space desired trajectory qd(t) is obtained by transformation of

ai,j i = 0 i = 1 i = 2 i = 3 i = 4
j = 1 [m] -0.1343 -0.05 -0.015 -0.005 -0.01
j = 2 [m] 0.2766 0.05 0.03 -0.03 0.02
j = 3 [rad] 2.4 0.15 0.05 -0.03 0.02
j = 4 [m] -0.265 0.2 0.1 -0.05 0.05

Table 1: Coefficients of the desired trajectory xcj,d(t), j =
1, . . . , 4.

the desired Cartesian trajectories xcj,d(t), j = 1, . . . , 4 using
the inverse kinematics [10].

The master robot is driven by PID controllers with control gains
listed as in Table 2. After a series of experiments to decrease
the coordination position error e = qs − qm, the gains on the
slave robot controller (2) were set as listed in Table 3.

KP KD KI

joint q1 11000 50 2000
joint q2 10000 50 1000
joint q4 40000 600 1000
joint q5 40000 600 1000

Table 2: Control gains in the master robot PID controllers.

Kp Kd Lp1 Lp2

joint q1 10000 1200 500 100000
joint q2 8000 100 500 100000
joint q4 8000 100 500 100000
joint q5 8000 100 500 100000

Table 3: Control gains in the slave robot.

The initial joint position on the master robot were set as in Ta-
ble 4.

The initial joint position of the slave robot and the initial con-
ditions in the observers (4), (6) were chosen as in Table 5. The
master and slave robot start from a steady state, therefore the
joint velocity q̇(0), the estimated joint velocity ̂̇q(0), and the es-
timated coordination error ̂̇e(0) are all equal to zero. The initial
condition for the estimated coordination error ê(0) in observer
(4) was set equal to zero.

Figure 2 shows the master qm,1 (dashed) and slave qs,1 (solid)
joint position trajectories for the joint j = 1. The coordination
error e = qs − qm for joint j = 1 after the transient period has
finished is shown in Figure 3.

From Figures 2 and 3 it is evident that joint position coordina-
tion between the master and slave robot is achieved in the joint
j = 1, such that bounded coordination errors are obtained. Fur-
ther experiments showed that the coordination errors can be
decreased by increasing the gains Kp, which agrees with the
result stated in Theorem 1.

Similar results are obtained for the remaining 3 joints of the
robots j = 2, 4, 5. The results for joints j = 2, 4, 5 are shown
in Figures 4 - 9.



q1(0) [m] q2(0) [rad] q4(0) [rad] q5(0) [rad]
-0.095 -0.4 -0.9615 2.1473

Table 4: Initial conditions for master robot.

q1(0) [m] q2(0) [rad] q4(0) [rad] q5(0) [rad]
-0.079 0.0 -1.0355 2.1165
q̂1(0) [m] q̂2(0) [rad] q̂4(0) [rad] q̂5(0) [rad]

-0.07 0.1 -1.0 2.0

Table 5: Initial conditions for master and slave robot.

Remark 2 The master-slave synchronization control goal is to
synchronize joint coordinates. So, Cartesian space synchro-
nization depends on the kinematics of the robots, particularly
on the Jacobian of the robots. This means that the joint coor-
dination errors will change accordingly to the Jacobian of the
kinematic relation between Cartesian and joint spaces, see [4].

Remark 3 The conditions mentioned in Theorem 1 are very
conservative. However, even without knowledge of the required
physical bounds, the closed loop system can be made uniformly
ultimately bounded. This may be achieved by selecting the con-
trol gains large enough. However, such high gain implementa-
tions may amplify unavoidable noise.

6 Conclusions and further extensions

A position coordination controller for multi-robot systems
working in master-slave schemes has been presented. The pro-
posed controller is independent of the master robot dynamics
and its physical parameters, and only requires position mea-
surements. The coordination controller yields semi-global ul-
timate boundedness of the closed loop errors. The bound of
the errors can be decreased by a proper tuning on the controller
gains.

Further extensions of the proposed coordination controller are
the case of flexible joint and mixed rigid-flexible joint robots.
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