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Abstract
A comparison between Receding Horizon Control (RHC) ap-
proaches is presented for the longitudinal axis control of an
F-16 aircraft. The results suggest that the flexibility provided
by an adaptive RHC scheme based on flight condition depen-
dent linear prediction models is a necessary requirement for
achieving good performance as opposed to a single LTI model
based method. The adaptive scheme offers an attractive alter-
native to a full nonlinear model based RHC approach by trading
off an acceptable degradation in performance to modest com-
putational complexity and real-time implementability.

1 Introduction
Receding horizon control (RHC) methodologies, also known
as model based predictive control methods, have been in the
limelight of significant research efforts, motivated by several
successful industrial applications [6, 1, 12]. The process in-
dustry provided a perfect fit for these algorithms that respected
critical process-constraints to achieve safer and more efficient
operation of industrial plants. These applications were not only
“well-suited” for RHC methods but due to their relatively slow
dynamics (large time constants), the significant computational
effort of repetitive optimization, which is inherently involved
in receding horizon approaches, could be accommodated by
the relatively infrequent updates of the control signal.

In the past few decades it became apparent that predictive con-
trol methods possess qualities that could be utilized in more
complex, nonlinear applications, possibly with much faster dy-
namics [14]. As more and more of these cutting edge systems
(e.g. active suspension [7], gas turbine engine [8], civil aircraft
[15], etc.) emerge as applications, for which RHC methods
could provide a candidate solution, it is left to the system engi-
neer to choose the particular approach from the many flavors of
RHC design or possibly a combination of them, which best fits
the problem at hand. A main consideration of RHC schemes is
real-time implementation, i.e. whether sufficient computational
resources are available to accommodate repetitive solution of
the optimization problem within each sampling time interval.

This paper intends to highlight these issues in the application of
three receding horizon control schemes to the longitudinal axis
control of a nonlinear F-16 aircraft. The selection of the reced-
ing horizon algorithms was motivated by the following aspects
of predictive controller design: process modelling, optimiza-
tion method and complexity, and real-time implementability.
To maintain a common ground for comparison of these meth-
ods, specific details of the optimization problem are kept the
same for each approach. The results presented in Section 5 de-

scribe trade-offs that could be helpful in selecting a particular
method for high-end applications.

2 F-16 modelling
The nonlinear model of the F-16 aircraft used in simulations
and the problem formulation was obtained from [16] and is
available at the web-site [17] as a low fidelity model. The dy-
namics of the continuous time aircraft model is represented as��������	��
�������
���� (1)

The mathematical model uses simplified high-fidelity data
from NASA Langley wind-tunnel tests conducted on a scale
model of an F-16 aircraft [13]. For our investigations, only the
longitudinal motion of the aircraft is considered and the states� ��������� and controls � ����� in the model are defined as� ��� ��� ��
�� 
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where � stands for altitude [ft], � for pitch angle [rad], ! # for
total airspeed [ft/s], % for angle of attack [rad], ' for pitch rate
[rad/s], � #10 for thrust [lb] and � 2 for elevator deflection [deg].
Actuators for the control surface and engine are modelled as
first-order systems, details of which can be found in [11].

2.1 Inner-loop control

The nonlinear F-16 model in (1) was augmented with an inner-
loop controller based on pitch rate feedback. A benefit of
the augmented system is stability of the closed-loop vehicle.
Output predictions of an unstable system can cause numerical
problems in optimization software [12]. This underscores the
practical importance of having a stabilizing controller augment
the unstable plant before RHC methods are applied (this of
course is not a theoretical necessity). Another practical reason
for employing an inner-loop in the receding horizon framework
is that the RHC sampling rate can be reduced since the inner-
loop is handling the high bandwidth disturbance and tracking
requirements with its smaller sampling time implementation.
This allows more computational time for the outer-loop RHC
algorithm (even though the horizon lengths are expected to be
longer). Furthermore, actual aircraft often come equipped with
an inner-loop flight control system (most commonly stability
or control augmentation systems – SAS/CAS). Even in case of
an experimental aircraft, which serves as a controller testbed,
flight control engineers are very reluctant to implement and test
control algorithms without the existing, stabilizing inner-loop
control system, which has been flight certified. Therefore, it
is reasonable to assume that an inner-loop controller will aug-
ment the actual aircraft due to safety, certification or other im-
plementation requirements.

In this paper, a pitch rate tracking linear 6�7 -controller was
chosen to provide a similar level of performance throughout a



sufficiently large flight envelope [4]. It is important to note,
that the choice of the stabilizing inner-loop controller could be
arbitrary. It is assumed to be developed and implemented inde-
pendently of the outer-loop RHC schemes that are being inves-
tigated. This means that except for the full nonlinear RHC ap-
proach, a “grey-box” inner-loop philosophy is adopted, namely
only a certain number of linearized models are assumed to be
known of the inner-loop at certain flight conditions. This phi-
losophy is sometimes motivated by the restrictions on the avail-
ability of nonlinear models that represent proprietary or other-
wise sensitive material. In our opinion however, with the pro-
posed adaptive RHC algorithm described in the next section,
this approach serves as a viable alternative to the full nonlinear
model-based technique as it is demonstrated in Sections 4 and
5 for the specific examples. Practical advantages of using lin-
earized models as opposed to nonlinear ones are pointed out by
other authors as well [3].

The nonlinear model in (1) is augmented with the inner-loop687 -controller to be used as a prediction model for the non-
linear RHC. This inner-loop model also represents the “actual”
aircraft for the implementation of linear RHC schemes. The
nonlinear model was linearized and discretized at several trim
flight conditions as discussed in Section 4. The set of linearized
models is used for interpolation in the adaptive RHC scheme
of Section 3.2. Each linearized inner-loop model has the com-
manded thrust and pitch rate as inputs, and altitude, velocity,
vertical acceleration 
�9;:<� , actual thrust, thrust rate and eleva-
tor deflection and rate as outputs to be able to enforce actua-
tor constraints, maneuvering limits and tracking performance.
The output signals are assigned to these three objective groups
denoted by = , : and > , respectively. The commanded input
signals are denoted by ? .> ��� ��
�! # (�*@
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= �DCE� #10 
<F"GIHKJF # 
4� 2 
 F"GMLF #ON * 
 ? ��� � #10OPRQ F 
�' PRQ F ( *
Using the above notation, the linearized discrete-time inner-
loop models have the form�S
UTWVBXY�Z�\[]�S
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3 RHC problem formulation
A brief summary of the three receding horizon control ap-
proaches compared in this paper follows.

3.1 Linear RHC

The optimization problem setup follows the formulation of
[12]. The term ‘linear’ here refers to the prediction model used
in the cost formulation. In most linear predictive controllers,
the performance is specified by the following quadratic cost
function to be minimized, which will also be adopted here:h 
^T �Z�jiSkl m nSo�p_q> 
UTrVts�u�T ��v >xw 2My 
UT.Vgs�uxT � p �z VV i|{"} olm n�~3� G i {�� pb� ? 
^TWVgs�uxT � p �� Vt��� (3)

where q> 
UTrVgs�u�T � is the s -step ahead prediction of the out-
puts based on data up to time T . ��� denotes the output pre-
diction horizon. These predictions of the outputs are func-
tions of future control increments � ? 
RTrVts�u�T � for sD�

� 
4� � P/
���� � P3
/�3�/�b
 � PZv�X . The integer number of samples � P
is called the control horizon, the control signal is allowed to
change only at integer multiples of � � P samples and is set to
be constant for all s�� � P . This means that the future control
signal is a stairstep function with steps occuring at � � P inter-
vals. The reference signal >�w 2My represents the desired outputs,�

and � are suitably chosen weighting matrices. The slack
variable � and its weight � is used for softening constraints.

In order to obtain the predictions for the signals of interest,
a model of the process is needed. By using a linear model,
the resulting optimization problem of minimizing

h 
^T_� will
be a quadratic programming (QP) problem, for which fast and
numerically reliable algorithms are available. The linearized
inner-loop model, developed in the previous section, is aug-
mented with extra states to fit the formulation in this RHC
scheme. Two integrators are added to convert the control
changes � ? into actual controls ? , one associated with thrust
command and the other with pitch rate command. A simple
disturbance model is incorporated to the state space descrip-
tion of the inner-loop model in equation (4), which assumes
constant disturbances are acting on outputs. The disturbance
model also serves to mitigate the effect of model mismatch.
The augmented linear inner-loop model has the following form�� �K�$�Oo �� �$� ��� q��
^TrVBXY�q� 
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By using successive substitution, it is straightforward to derive
that the prediction model of inner-loop outputs (signals of in-
terest) over the prediction horizon is given by equation (5).

Denote parts of the state matrices ¬ and ­ in equation (5) that
correspond to the predicted q> 
^T � outputs in q®�
^T � , with a > sub-
script. Consider only those predicted outputs that appear in the
performance indexq> 
^T_�Z� ¬ ¯ q° 
^T_�;V ­W¯ � ? 
^T �b
± 
^T ���²� q> 
RTrVBXAu�T_�³
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 q> 
UT.V �A� u�T_�R( *
using only the corresponding ¬�¯ and ­W¯ matrices in expression
(5). The prediction for these outputs has the form± 
^T �Z�\´ ¯ q° 
UT ��V¤µ ¯ �A¶ 
^T_� (6)

Substituting the predicted output in (6) into the cost function
of (3), we get a quadratic expression in terms of the control
changes �A¶ 
UT � :h 
^T ��� �A¶ 
^T � * 6 �W¶ 
UT �|v �A¶ 
^T � *O· Va¸b¹Y9�º3»�Vg�x� (7)

where 6 � �¼µ *¯ � 2 µ ¯ V � 2 , · � �¼�xµ *¯ � 2�½ 
^T � , ¸/¹Y9�º/»¾�½ * 
UT � � 2�½ 
^T � and ½ 
^T � is defined as a tracking error between
the future target trajectory and the free response of the system,
i.e. ½ 
UT �¿� ± w 2My 
^T �Zvt´ ¯ q° 
^T � . � 2 and � 2 are block diagonal
matrices of appropriate dimensions with

�
and � on the main

diagonal, respectively.
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As in most applications, there are level and rate limits on actu-
ators. These are enforced as hard constraints= ô q= 
^TrVBXAuxT �³
/�3�/�b
 q= 
UT.V �A� u�T_� ô = (8)

since the RHC algorithm has almost direct control over some
of them (thrust level and rate) and the effect of pitch rate de-
mand on elevator deflection and rate is also known with high
accuracy. Another type of constraint is also considered in this
specific application example represented by certain maneuver-
ing limits on the aircraft. These limits might be system-state
dependent or change according to different stages of a mission.
We assume the existence of such limitations on the vertical ac-
celeration 
�9;:<� of the aircraft in Section 5.3. It is vital that
these limits are treated as soft constraints, since disturbances
and model mismatch can easily lead to infeasibility problems
if hard constraints are put on these type of output signals.

Constraint softening is accomplished by introducing an addi-
tional slack variable that allows some level of constraint viola-
tion if no feasible solution exists: v�� ô q:Ð
RTrVBXWu�T �c
/�3�/�/
 q:Ð
^TWV �A� u�T � ô :�Vt�õ
 � ô �

(9)
Using the linear prediction model in (5), all of the constraints
in (8) and (9) can be posed as linear constraints on the opti-
mization variables �A¶ and � . Finally, the QP to be solved at
each time step has the following formö�÷Køù�ú]û�ü �W¶ * 6 �A¶ v �A¶ * · Va¸b¹Y9�º3»;Vt���ý �)þ3� ÿ�� 0�� w F����� y/# � �A¶ ô ÿ
	 0�� w F	���� y/# � V ÿ �� �� ô � (10)

3.2 Adaptive RHC

A natural extension of the linear RHC is to base the prediction
at a certain time step on a linear model that best describes the
plant (inner-loop) at the actual flight condition, if flight con-
dition dependent linear models are available for prediction. A
fixed LTI model is used over the entire prediction horizon but it
is updated according to the values of some flight condition de-
pendent scheduling parameters every time the horizon is prop-
agated and the optimization is resolved based on new measure-
ment data. This approach leads to the same QP problem to be
solved as in (10), however the state matrices describing the in-
ternal model change in each implementation cycle according
to their current values: � � , 
 � , ¬ � , ­ � . This flight condition
dependent description of the inner-loop dynamics could be ob-
tained either by freezing the scheduling parameters of a quasi-
LPV model [10], or interpolating over a database of linearized

models. The latter approach is used in all the examples of this
paper to illustrate the general applicability of this approach mo-
tivated by the remarks on restricted model availability in Sec-
tion 2.

We note if an accurate prediction of the parameters that the
linear models depend on is available, this would allow for the
prediction model to vary over the prediction horizon. The opti-
mization problem could still be formulated as a quadratic pro-
gram using different state matrices of the internal model at each
time step. Obtaining a reasonable prediction of the scheduling
parameters is not always easy, there are several alternative ap-
proaches that might be used for this purpose [11].

3.3 Nonlinear RHC

In general, the discrete time version of a nonlinear trajectory
optimization problem can be posed in Bolza form [5] asö ÷Køw � m � h ����� �S
����R( V � } ol m n;~�� � �O
�sM�$
 ? 
�sM�$
4s^( (11a)

using discrete time nonlinear system dynamics, initial condi-
tions and terminal constraints defined as�S
1s�V\X)�Z�	��� �O
�sM�$
 ? 
1sM�$
�sU(<
 �S
 � �Z�\� ~ 
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(11b)
The receding horizon principle is realized by solving the Non-
linear Programming (NP) optimization problem (11) for the se-
quence of control vectors ? 
�sM� for sO� � 
/�3�/�b
�� v X , then imple-
menting the first control values in the sequence and resolving
the problem again at each subsequent time step, when new state
estimate information is available.

The standard form (11) of the nonlinear RHC problem is mod-
ified slightly to match the control space parametrization and
cost function of the QP-based linear approaches as closely as
possible. The discretized version of the nonlinear inner-loop
model described in Section 2 is augmented with integrators on
the input to redefine the decision variables of the optimization
problem to changes in control � ? 
�sM� . A constant disturbance
acting on the respective outputs is also added to the model simi-
larly to the equations in (4). The decision variables � ? 
1sM� of the
reformulated optimization problem were selected to be exactly
those values that the QP-based methods optimize over with the
same sampling time interval. The cost function is calculated
exactly as the quadratic expression in (3).

The modified nonlinear programming problem outlined above
is solved using Sequential Quadratic Programming (SQP) im-
plemented by the NPSOL optimization software package [9].



There are many alternatives to the problem formulation in (11),
e.g. using a continuous time nonlinear model and parametriza-
tions of the control signals (selection of basis functions). How-
ever, it should be emphasized that the choice of control space
formulation and cost function is intended to serve purely as
a basis for comparison between the QP based linear, adaptive
RHC schemes and the nonlinear RHC. In general, solving the
nonlinear RHC problem requires more elaborate development
of a suitable control space and cost function formulation, for
which the work in [2] provides detailed guidelines using B-
spline functions to parameterize the control space and other
important implementation issues of the nonlinear RHC algo-
rithm based on NPSOL that are omitted here for brevity.

Figure 1 illustrates the general receding horizon control setup
common in all three approaches described in this section.

F-16
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Figure 1: General RHC framework of the F-16 control problem

4 Simulation details
A database of linearized inner-loop models was created to be
used by the interpolation routine in the adaptive RHC scheme.
Dynamic pressure 
��'�� and Mach number 
�� � were selected
as flight condition dependent scheduling parameters that deter-
mine which linear model to use for prediction. The nonlin-
ear aircraft dynamics was linearized at steady level flight trim
condition, at 38 different points of the flight envelope. More
details about the flight envelope and the interpolation over the
linearized models can be found in [11].

The augmented linear models in equation (4) of the inner-
loop had 17 states and were discretized at 20 Hz [11]. All
three RHC schemes were implemented with a 50 ms sampling
time, 4 second prediction horizon 
 ��� ��� � � and 1.5 second
control horizon with future control changes at every 0.5 sec-
ond 
 � P ���_Xx
�� � P �²X � � . The discrete time nonlinear model
of the inner-loop, used for prediction in the nonlinear RHC
scheme, was discretized with a sampling time of 1 ms. The
values of the weighting matrices

�
and � in the cost formula-

tion were tuned based on the linear RHC scheme.

Three simulation scenarios are presented to illustrate the ben-
efits and drawbacks of the RHC schemes under investigation.
The first example is a disturbance rejection scenario, in which
the objective is to keep steady level flight at trim altitude and
velocity in the presence of vertical wind gusts that occur in the
form of a 50 ft/s step disturbance on velocity at 5 seconds and a
100 ft step disturbance on altitude at 50 seconds into the simu-
lation. (The single LTI model based linear RHC scheme uses a
prediction model that corresponds to a different flight condition
to demonstrate the inherent problems with this approach.)

In contrast to the first example, which intends to investigate
local behaviour of the RHC methods, the second example rep-
resents a large envelope comparison of the three approaches.

The third example aims at pointing out the aggressive maneu-
vering capabilities enabled by the adaptive RHC approach, as
well as system-state dependent constraint enforcement repre-
sented by total airspeed dependent varying vertical acceleration
limits. This simulation demonstrates two scenarios. First, a
relatively aggressive reference altitude and velocity trajectory
is flown without any maneuvering constraints on vertical ac-
celeration. Then soft constraints are enforced during the same
maneuver on vertical acceleration to keep the aircraft within
velocity dependent upper and lower acceleration limits, which
might be motivated by the stall characteristics of the aircraft.

In all of these examples, the general goal of the outer-loop RHC
controllers is to accomplish “higher level” control objectives,
by exploiting a priori reference information. The controllers
have to ensure that the aircraft’s inputs are held within satura-
tion limits in the presence of wind gusts and respect flight en-
velope constraints and system-state dependent maneuver limits
by acting as a system/mission-state dependent variable inner-
loop command prefilter.

5 Results

All RHC simulations were run on a 1.2 GHz Pentium III ma-
chine running RedHat Linux. Using the specific parameters
described in Section 4 and [11] to formulate the optimization
problem, the resulting QP had 8 decision variables (9 with the
slack variable in example 3). The number of linear constraints
were 664 (826 with the soft constraints).

5.1 Example 1
The results of the disturbance rejection scenario are shown in
Figure 2(a) for the three approaches. Comparing the achieved
performance of the three schemes, it is interesting to note that
the nonlinear RHC approach achieves the fastest disturbance
rejection decay time. On the other hand, in case of the velocity
disturbance at 5 seconds, the peak altitude error is larger than
with the other two methods. The nonlinear RHC approach re-
sults in a larger angle of attack disturbance response and the
controller also uses larger and more oscillatory control effort.
This could be attributed to the numerical problems mentioned
earlier in Section 3, which stem from the fact that the con-
trol space and cost formulation were selected for comparison
purposes and not according to other established guidelines [2],
which would alleviate most of the numerical difficulties. Nev-
ertheless, the nonlinear RHC scheme handles the altitude dis-
turbance occurring at 50 seconds with faster settling time and
significantly less use of control authority than the other two
methods, achieving an overall lower cost value throughout the
simulation. The linear RHC leads to steady state error, whereas
the adaptive approach provides acceptable performance even in
comparison with the nonlinear technique.

The linear RHC scheme requires the least amount of computa-
tional time, the underlying QP problem can be solved analyti-
cally, if no constraints are active. This means that calculation of
the next control signal value takes approximately 0.03 second
to complete (with 0.05 second sampling time) on the platform
used for computations. If constraints are active, Matlab’s QP
solver is used, which provided a solution in 0.05 second on av-
erage. These numbers indicate that this approach is readily im-
plementable in real time, even using the Matlab environment.
Implementing the algorithm in C code would speed up execu-
tion by a factor of ten.

The optimization problem complexity is exactly the same in
the adaptive RHC scheme as in the linear one, i.e. the QP can
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(a) Example 1 results.
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Figure 2: Simulation examples 1 and 2 (reference: dotted , linear RHC: dash-dot, adaptive RHC: solid, nonlinear RHC: dash)

be solved in approximately real-time, even if constraints are
active. However, a significant computational overhead comes
from the need for interpolation over the linearized inner-loop
models. The amount of time this prediction model lookup re-
quires depends heavily on the implementation of the interpola-
tion routine and the size of the linear model database. The Mat-
lab interpolation algorithm (griddata) performs this task in
approximately 1 second. Considering the amount of speed-up
gained from C implementation and other possible avenues of
decreasing computation time (using different interpolation rou-
tines, less number of linear models, variable time interval for-
mulation [15] or a number of other options), real-time imple-
mentation of this scheme is also deemed achievable.

Solving the nonlinear programming problem involved in the
nonlinear RHC scheme places a significantly larger computa-
tional burden on the implementation platform, with average
CPU times of 40 seconds for each 0.05 second sample inter-
val. Clearly, this method is not applicable to fast and complex
systems with the current state-of-the-art computational tools.

5.2 Example 2

In this large envelope example, depicted in Figure 2(b), the lin-
ear and adaptive RHC schemes behave similarly by following
the reference altitude with slowly increasing velocity error and
lower saturated thrust control value. However, a large velocity
error appears in the climb phase of the maneuver using the lin-
ear RHC. The adaptive approach clearly outperforms the single

linear model RHC. Errors introduced by the single model RHC
scheme become more significant as larger excursions are made
in the flight envelope. The main underlying reason for this is
the absence of a trim map in the single model approach, how-
ever mismatch in plant dynamics is also a strong contributor to
these errors, especially in the low dynamic pressure and Mach
region of the flight envelope. The nonlinear RHC method, in-
terestingly enough, trades off altitude errors for better velocity
tracking and uses larger control values.

5.3 Example 3

The third example shown in Figure 3, was performed only
using the adaptive RHC approach and demonstrates that ag-
gressive maneuvers, as well as system-state dependent maneu-
vering limits can be enforced by the flexibility offered in this
methodology. (The flight path angle peaks near 25 degrees dur-
ing the maneuver and angle of attack approaches 15 degrees in
the unconstrained case, and 8 degrees in the constrained case.)
It is interesting to note, that in the case of soft constraints on
vertical acceleration, the aircraft violates the lower limit to a
small extent between 15 and 20 seconds, which indicates that
the actual maneuver would have led to infeasibility if hard con-
straints were imposed on vertical acceleration. This is due to
the � -norm (maximum violation) penalty on constraint viola-
tions (as shown in (3) and (9)) and has been verified by run-
ning the algorithm with hard constraints. This ‘exact penalty’
method means that constraint violations will not occur unless
no feasible solution exists to the original ‘hard’ problem. If a
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Figure 3: Simulation results of example scenario 3 (reference: dotted, adaptive RHC w/o constraints: dash-dot, adaptive RHC
with soft constraints: solid)

feasible solution exists, the same solution will be obtained as
with the ‘hard’ formulation. The simulation also demonstrates
how the controller enforces smaller upper limits, as the total
airspeed is reduced.

6 Conclusions

As simulation results demonstrate for the F-16 longitudinal
axis control example, computationally efficient receding hori-
zon schemes can be developed for highly nonlinear, complex
systems based on linear prediction models to keep the opti-
mization problem manageable. Using flight condition depen-
dent linearized models or a quasi-LPV system for prediction,
the modest complexity of the predictive control problem can
still be retained (QP) with improved accuracy and extended op-
eration limits. Even though additional computational overhead
is introduced by interpolating over linearized models, our expe-
rience suggests that real-time implementation is plausible. The
proposed adaptive RHC scheme has the required flexibility that
these type of applications, such as aerospace systems often re-
quire. In this aspect, it provides significantly more than single
LTI model based linear RHC schemes, with performance com-
parable to a full nonlinear RHC solution. On-line constraint
modification allows straightforward incorporation of system-
state dependent, and time-varying constraints.
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