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Abstract

This paper derives fundamental results for data validation in
the presence of imprecisely known correlations. Given a con-
straint on the maximum absolute correlation of a given esti-
mate and measurement data, a tight upper bound for the joint
covariance matrix is derived, which finally yields a modified
Mahalanobis distance. The special cases of one–dimensional
and two–dimensional random variables are discussed.
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1 Introduction

Data validation is a crucial task in most filtering applications:
Given an estimate of the unknown state, a noisy measurement,
and a quantification of the uncertainty of the estimate and the
measurement data, data validation has to decide if the mea-
surement data is compatible with the given estimate, and thus
can be used for filtering. Stochastic data validation for linear
systems corrupted by Gaussian noise is typically based on the
Mahalanobis distance [1]. For calculating the Mahalanobis dis-
tance, the cross–covariance of the given estimate and the mea-
surement data has to be known. However, in many applications,
the cross–covariance is not known precisely. Only constraints
on the maximum correlation coefficient are given.

This paper derives a modified Mahalanobis distance that allows
for data validation when only constraints on the maximum cor-
relation coefficient are known. It is based on a tight bound for
the joint covariance of two random vectors with unknown but
constrained cross–correlation derived in [3]. Applications of
this data validation scheme include data association problems
in simultaneous vehicle localization and map building [6].

2 Problem Formulation

We are given two random vectorsx ∈ IRN , y ∈ IRM with
expected values

E{x} = x̂ , E{y} = ŷ

and individual covariances

Cov{x} = Cxx , Cov{y} = Cyy ,

wherex andy are assumed to be correlated. Their cross covari-
ances Cov{x, y} = Cxy and Cov{y, x} = Cyx, however, are
not explicitly known. Correlations betweenx andy are mod-
elled by a total correlation coefficientrxy, which is constrained
according to

|rxy| ≤ rmax . (1)

Of course, this also includes the case of completely unknown
correlation betweenx andy for rmax = 1.

Hence, a constraint for the cross covariances is given by

Cyx C−1
xx Cxy ≤ r2

maxCyy , (2)

where, in general, for two positive definite matricesA andB,
an expression of the formA > B (A ≥ B) is interpreted as
A − B positive definite (positive semi–definite). By defining
the matrix

C = r2
maxCyy −Cyx C−1

xx Cxy ,

(2) is equivalent to

det (C(1 : i, 1 : i)) ≥ 0

for i = 1, . . . ,M according to the Sylvester criterion.

We now assume that an estimate ofx is available and new in-
formation in the form of measurement datay is obtained. We
also assume that the (unknown) true vectorsx̃ andỹ are related
by a measurement equation of the form

Hx x̃ = Hy ỹ , (3)

whereHx andHy are known matrices of appropriate dimen-
sions.

Now, the following question arises: Isy a valid measurement,
i.e., can it be explained by the measurement equation and be
used for estimation purposes or is it an outlier? Of course, this
question can only be answered with a certain probability of, say
99 %, of being true. The task of data validation is complicated
by the fact, that the correlation betweenx andy is not known
precisely.

The problem is now solved in two steps. In the first step,
covariance bounds for two random variables with imprecisely
known correlation are derived. In the second step, these bounds
are used to derive a modified Mahalanobis distance for data
validation in the presence of imprecisely known correlations.
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Figure 1: The admissible values forη(κ) andκ resulting from
Lemma 3.1.

3 Covariance Bounds

In this section, we are concerned with deriving covariance
bounds for the joint covariance of two correlated random vari-
ables with imprecisely known correlation. Hence, our goal is
now to find a family of bounding covariancesB with

B ≥ C(rxy) (4)

for all possible joint covariancesC(rxy) defined by

C(rxy) =
[
Cxx Cxy

Cyx Cyy

]
with rxy according to (1) andCxy, Cyx such that (2) holds.

For deriving the desired covariance bounds we use the fact
that the union of the 1-sigma–bounds of all possible joint co-
variances forms a convex set aligned with the coordinate axes.
Hence, the cross covariances of the bounding covariance ma-
trix have to be zero matrices. For the simplest case of two scalar
random variablesx andy this is visualized in Figure 2.

In addition, for achieving an upper bound, the covariance ma-
tricesCxx andCyy have to be individually scaled. Combining
both conditions yields

B =
[
kxCxx 0

0 kyCyy

]
. (5)

kx, ky have to be selected in such a way that (4) holds.

THEOREM 3.1 The scale factorskx, ky in (5) are given by

kx =
1

η − κ
, ky =

1
η + κ

(6)

with

κ2 ≤ 1− 2η

1− r2
max

+ η2 (7)

and

0.5 ≤ η ≤ 1
1 + rmax

. (8)

PROOF. For proving (4), the difference matrix

D = B(η, κ)−C(rxy)

=

[
1

η−κ
Cxx 0

0 1
η+κ

Cyy

]
−

[
Cxx Cxy

Cyx Cyy

]

=

(
1

η−κ
− 1

)
Cxx −Cxy

−Cyx

(
1

η+κ
− 1

)
Cyy


is considered. According to Sylvester’s criterion, the matrixD is
positive semi–definite, if the determinants of all submatricesD(1 :

N + i, 1 : N + i) for i = 1, . . . , M are larger than or equal to zero.(
1

η−κ
− 1

)
Cxx is positive definite and does not need to be tested.

The determinants are given by

det(D(1 : N + i, 1 : N + i))

= det

((
1

η − κ
− 1

)
Cxx

)
det

((
1

η + κ
− 1

)
Cyy(1 : i, 1 : i)

−
(

1

η − κ
− 1

)−1

Cyx(1 : i, 1 : N)C−1
xx Cxy(1 : N, 1 : i)

)
.

With (2) we obtain

det

([(
1

η − κ
− 1

) (
1

η + κ
− 1

)
− r2

max

]
Cyy(1 : i, 1 : i)

)
!

≥ 0

for i = 1, . . . , M , which is equivalent to(
1

η − κ
− 1

) (
1

η + κ
− 1

)
− r2

max ≥ 0

and yields (7). The constraint onη in (8) then follows by claiming a

non–negative right–hand–side in (7). �

The parameter set forη andκ from the Theorem is redundant
in the sense that it specifies scaled variants of a bounding co-
variance with the same form and orientation. Hence, it is suffi-
cient to restrict attention to the smallest of these scaled variants.
The appropriate parameter values are specified in the following
Lemma.

LEMMA 3.1 A family of bounding covariancesB(κ) depend-
ing on a parameterκ is given by (5) withkx, ky in (6). The
parameterκ may vary according to

|κ| ≤ 0.5 . (9)

η is a function ofκ given by

η(κ) =
1−

√
r2
max + κ2 (1− r2

max)2

1− r2
max

. (10)

The admissible values forη andκ resulting from Lemma 3.1
are visualized for different values ofrmax in Figure 1.
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Figure 2: Union of the ellipses corresponding to the joint covariances of two scalar random variablesx andy with imprecisely
known correlation in Example 4.1: a)|rxy| < 0.01, b) |rxy| < 0.2, c) |rxy| < 0.4, d) |rxy| < 0.6, e) |rxy| < 0.8, f) |rxy| < 0.99.
The unconstrained case corresponds to|rxy| ≤ 1.

4 Data Validation

In the case of precisely known correlation, we define the Ma-
halanobis distance

d = (Hx x−Hy y)T
(
Cov{Hx x−Hy y}

)−1 (Hx x−Hy y) ,

with

Cov{Hx x−Hy y} = Hx Cxx HT
x + Hy Cyy HT

y

−Hx Cxy HT
y −Hy Cyx HT

x .

However, in the case of uncertain correlation betweenx andy,
the matricesCxy andCyx are not known precisely. Hence, the
Mahalanobis distance depends upon the uncertain correlation
between the given estimatex and the measurementy.

An efficient data validation procedure is now derived by replac-
ing the covariance Cov{Hx x−Hy y} by the upper covariance
bounds derived before. Then we have

d ≥ d(κ) =(Hx x−Hy y)T

(
Hx Cxx HT

x

η(κ)− κ

+
Hy Cyy HT

y

η(κ) + κ

)−1

(Hx x−Hy y) .

Hence, a lower boundd(κ) for the true Mahalanobis distanced

is obtained. However, it can be shown that this bound actually
attains the true bound for some value ofκ ∈ (−0.5, 0.5). The
proof is outside the scope of this paper. This fact allows the
application of the modified Mahalanobis distance to perform
anexactdata validation according to the above assumptions.

A given measurementy is accepted, if

max
κ∈(−0.5,0.5)

d(κ) < k ,

wherek is a given gating threshold.

It is important to note thatd(κ) is a concave function. Hence,
the (unique) maximum can quickly be found by, for example,
bisection routines. Analytic solutions for the maximum value
are also available for certain special cases.

Data validation in the case of completely unknown correlations
is similar to testing the overlap of two ellipsoids, which has
been treated in [5, 8]. Efficient analytic solutions based on the
ideas in [7] are given in [2].

4.1 Special Case: One–dimensional Random Variables

We now consider scalar random variablesx andy with vari-
ancesCxx andCyy, respectively.

EXAMPLE 4.1 For two scalar random variablesx andy with
individual variancesCxx = 9 and Cyy = 4, some mem-
bers of the family of possible joint covariance matrices for
different constraints on the maximum absolute correlation co-
efficient are visualized in Figure 2 by plotting the respective
1–sigma–bounds.

The covariance boundB(κ) for the true joint covariance
C(rxy) is given by

B(κ) =

[
1

η(κ)−κCxx 0
0 1

η(κ)+κCyy

]
.

EXAMPLE 4.2 The covariance bounds for the two scalar ran-
dom variables in Example 4.1 are shown in Figure 3.

With
Hx x = Hy y
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Figure 3: Covariance bounds for the joint covariances of two scalar random variablesx andy with imprecisely known correlation
in Figure 2: a)|rxy| < 0.01, b) |rxy| < 0.2, c) |rxy| < 0.4, d) |rxy| < 0.6, e) |rxy| < 0.8, f) |rxy| < 0.99. The unconstrained
case corresponds to|rxy| ≤ 1.

the modified Mahalanobis distance is given by

d(κ) =

(
η2(κ)− κ2

)
(Hx x−Hy y)2

(η(κ) + κ) H2
x Cxx + (η(κ)− κ) H2

y Cyy
.

REMARK 4.1 In the case of one–dimensional random vari-
ables, the optimalκ can be calculated without knowledge of
the actual measured valuesx andy. It just depends upon the
actual values of the variancesCxx andCyy.

4.2 Special Case: Two–dimensional Random Variables

We consider two two–dimensional random vectorsx ∈ IR2,
y ∈ IR2. The individual covariance matricesCxx andCyy

are assumed to be known. The correlation betweenx andy

is not known precisely and characterized by a total correlation
coefficient constrained according to|rxy| ≤ rmax.

A simple method for generating valid joint covariance matrices

Cov

{[
x

y

]}
=

[
Cxx Cxy

Cyx Cyy

]
works as follows. Cxy with Cxy = CT

yx contains four un-
known elements. These elements are generated based on indi-
vidual correlation coefficients defined by

r11 =
Cxy,11√

Cxx,11 Cyy,11

, r12 =
Cxy,12√

Cxx,11 Cyy,22

,

r21 =
Cxy,21√

Cxx,22 Cyy,11

, r22 =
Cxy,22√

Cxx,22 Eyy,22

,

which may vary according to r11, r12, r21, r22 ∈
[−rmax, rmax]. Random values for these correlation co-
efficients are generated which are uniformly distributed in the
interval [−rmax, rmax]. Based upon these values, tentative
entries of the cross covariance matricesCxy and Cyx are
calculated. These tentative entries are validated by means of
(2). The method is summarized in Figure 4.

EXAMPLE 4.3 We consider two two–dimensional zero–mean
random vectorsx andy with individual covariances

Cxx =
[

3 −1
−1 1

]
, Cyy =

[
5 4
4 5

]
,

which are correlated with|rxy| ≤ 0.8.

In addition, the two random vectors are related according to (3)
with

Hx =
[
4 0
0 −1

]
and

Hy =
[
1 0
0 3

]
.

Some members of the family of possible joint covariance ma-
trices for the random vectorz with

z = Hx x−Hy y

are visualized in Figure 5 a) by plotting the respective 1–
sigma–bounds. Some members of the family of outer covari-
ance bounds derived in this paper are shown in Figure 5 b). The



Individual covariance matricesCxx andCyy are given

Num=0

While Numless then desired number of samples

Draw random numbersr11, r12, r21, r22 ∈ [−rmax, rmax]

Calculate the cross covariance matrices

Cxy =

[
r11

√
Cxx,11 Cyy,11 r12

√
Cxx,11 Cyy,22

r21

√
Cxx,22 Cyy,11 r22

√
Cxx,22 Cyy,22

]
Cyx = Cxy

Z
Z

ZY
Cyx C−1

xx Cxy ≤ r2
max Cyy ?

�
�

�
N

Num++

Calculate complete joint covariance matrix

C =

[
Cxy Cxy

Cyx Cyy

]

Figure 4: Structure chart of the naive generation of valid joint covariance matrices for two two–dimensional random vectors with
symmetrically constrained correlation.

intersection of the outer covariance bounds is equivalent to the
union of all possible covariances. This set is shown in Figure 6.

Data validation is now applied to samples generated forx andy

with a gating thresholdk = 1. The result is shown in Figure 7.
Valid samples are shown in Figure 7 a). The invalid samples
that are rejected by data validation are shown in Figure 7 b).

5 Conclusions

A new method for data validation in the presence of impre-
cisely known correlations has been proposed, which contains
the case of completely unknown correlations [4] as a special
case. It is exact, simple to implement, and computationally ef-
ficient. The main computational effort is spent by calculating
the maximum of a scalar concave function.
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Figure 5: Visualizations for Example 4.3 a) (Left) Some members of the family of possible joint covariance matrices ofz for the
constraint|rxy| ≤ 0.8. b) (Right) Some members of the corresponding family of covariance bounds.
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Figure 6: The set corresponding to the union of all possible covariances or equivalently to the intersection of all covariance
bounds in Example 4.3.
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Figure 7: Visualizations for Example 4.3 a) (Left) Valid samples. b) (Right) Invalid samples rejected by data validation.
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