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Abstract wherez andy are assumed to be correlated. Their cross covari-

) ) ~_ ances Co@fg} = C,y and Co\y, z} = C,,, however, are
This paper derives fundamental results for data validation Ty explicitly known. Correlations betweenandy are mod-

the presence of |mpre0|sely known correlqtlons. legn a Coé]Ted by a total correlation coefficien,, which is constrained
straint on the maximum absolute correlation of a given eSH'ccording to

mate and measurement data, a tight upper bound for the joint Iray| < 7 )
covariance matrix is derived, which finally yields a modified ) ) e
Mahalanobis distance. The special cases of one—dimensidahfourse, this also includes the case of completely unknown

and two—dimensional random variables are discussed. correlation betweem andy for ry,a, = 1.
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lanobis Distance; Imprecisely Known Correlations; Covariance 1 9

Bounds P Y Cyz C$$ Cwy < Tmaa:ny ’ (2)

where, in general, for two positive definite matricksandB,
1 Introduction an expression of the forld > B (A > B) is interpreted as
A — B positive definite (positive semi—definite). By defining
Data validation is a crucial task in most filtering applicationshe matrix
Given an estimate of the unknown state, a noisy measurement,
and a quantification of the uncertainty of the estimate and the
measurement data, data validation has to decide if the Mes-
surement data is compatible with the given estimate, and thus
can be used for filtering. Stochastic data validation for linear det (C(1:4,1:4)) >0
systems corrupted by Gaussian noise is typically based on the. . o
Mahalanobis distance [1]. For calculating the Mahalanobis dfg—r i=1,..., M according to the Sylvester criterion.
tance, the cross—covariance of the given estimate and the ma/a-now assume that an estimatexos available and new in-
surement data has to be known. However, in many applicatioftgmation in the form of measurement datas obtained. We
the cross—covariance is not known precisely. Only constraimifiso assume that the (unknown) true veci)emdg; are related
on the maximum correlation coefficient are given. by a measurement equation of the form B

C= r?nawcyy - Cy»L C_l Cly s

xrx

is equivalent to

This paper derives a modified Mahalanobis distance that allows H,Z=H,j , (3)

for data validation when only constraints on the maximum cor- -

relation coefficient are known. It is based on a tight bound fé¢hereH, andH, are known matrices of appropriate dimen-

the joint covariance of two random vectors with unknown bgions.

constrained cross—correlation derived in [3]. Applications @fo\, the following question arises: {sa valid measurement,

Fhls'data validation §cheme |.ncIL'Jde data assou'atllon problelr_gs, can it be explained by the measurement equation and be

in simultaneous vehicle localization and map building [6].  ;seq for estimation purposes or is it an outlier? Of course, this
question can only be answered with a certain probability of, say

2 Problem Formulation 99 %, of being true. The task of data validation is complicated
) N Mo by the fact, that the correlation betweerandy is not known
We are given two random vectogs € IR™, y € IR™ with precisely. =
expected values
E{z} =12 , E{y} =7 The problem is now solved in two steps. In the first step,
covariance bounds for two random variables with imprecisely
and individual covariances known correlation are derived. In the second step, these bounds

are used to derive a modified Mahalanobis distance for data
Cov{z} = Cyz , CoV{y} =C,, , validation in the presence of imprecisely known correlations.
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Figure 1: The admissible values fgf~) and resulting from (nw 1) C Is positive definite and does not need to be tested.

Lemma 3.1. The determinants are given by

det(D(1: N +14,1: N +1i))
3 Covariance Bounds

= det ((L — 1> Cm) det ((7 — 1> Cyy(1:4,1:19)
In this section, we are concerned with deriving covariance n—k n+te

.. . . —1
bounds for the joint covariance of two correlated random vari- ( 1 1) Cyo(l:4,1: N)Co Cay(1: N, 1 : Z.)) .

ables with imprecisely known correlation. Hence, our goal is n—kK
now to find a family of bounding covarianc&with With (2) we obtain
B> C(r, 4 !
Z Olray) ) det(K 1 —1)< ! —1)—7"51403,1,(1:1,1:1'))20
for all possible joint covarianceS(r,,) defined by n—k Ntk
Clry) = Cpo Cuy fori=1,..., M, which is equivalent to
e Cym ny

(1) (1) 2o
n—K n+k

. . . and yields (7). The constraint onin (8) then follows by claiming a

For deriving the desired covariance bounds we use the fact y .( ) . . Oﬂ ® y g
h . . . non—negative right-hand-side in (7). a

that the union of the 1-sigma—bounds of all possible joint co-
variances forms a convex set aligned with the coordinate axes.
Hence, the cross covariances of the bounding covariance rhae parameter set foy andx from the Theorem is redundant
trix have to be zero matrices. For the simplest case of two scdfathe sense that it specifies scaled variants of a bounding co-
random variables andy this is visualized in Figure 2. variance with the same form and orientation. Hence, it is suffi-

cient to restrict attention to the smallest of these scaled variants.

In, addition, for achieving an u.ppgr' bound, the covanan;g Mhe appropriate parameter values are specified in the following
tricesC,, andC,,, have to be individually scaled. CombmmgLemma

both conditions yields

with r,, according to (1) and,,,, C,, such that (2) holds.

B k:Cra 0 5 LeEmmA 3.1 A family of bounding covariancd3(x) depend-
L o kyCyy| ©) ing on a parameter is given by (5) withk,, k, in (6). The

. arameters may vary according to
ks, ky, have to be selected in such a way that (4) holds. P e may vary 9

<0.5 .
THEOREM 3.1 The scale factorg,, k, in (5) are given by il < 0.5 ©)
1 1 is a function ofx given b
kx = y ky = (6) " 9 Y
n—kK n+tr 5
i 1- T%@aa: + K2 (1 - T’I%’LCLI)

with , 1— 2 , n(k) = 1 5 (10)

ke < 172 +n (7) ~ Tmaz

~ T"haz

and

05<n< 14 Tovas ®)  The admissible values for and x resulting from Lemma 3.1

are visualized for different values of,,,. in Figure 1.
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Figure 2: Union of the ellipses corresponding to the joint covariances of two scalar random variabkg with imprecisely
known correlation in Example 4.1: &),,| < 0.01, b) |rg,| < 0.2, €)|rgy| < 0.4, d) |rzy| < 0.6, €)|ray| < 0.8, 1) |rzy| < 0.99.
The unconstrained case correspondsg| < 1.

4 Data Validation wherek is a given gating threshold.

In the case of precisely known correlation, we define the MH-S important to note thaf(x) is a concave function. Hence,
halanobis distance the (unigue) maximum can quickly be found by, for example,

. bisection routines. Analytic solutions for the maximum value
d=(H,2-H,y)" (Cov{H,z — H,y})  (H,z—-H,y) , are also available for certain special cases.

with Data validation in the case of completely unknown correlations

- . is similar to testing the overlap of two ellipsoids, which has

Cov{H,z - H,y} = H,C,;, H, +H,Cy H, been treated in [5, 8]. Efficient analytic solutions based on the
-H,C,,H] -H,C,, H. . ideas in [7] are given in [2].

However, in the case of uncertain correlation betweamdy, ) ) . )
the matrice<C,,, andC,, are not known precisely. Hence, theét-1 Special Case: One—dimensional Random Variables

Mahalanobis distance depends upon the uncertain correla\iﬁg now consider scalar random variablesnd y with vari-
between the given estimateand the measurement ancesC,, andC,,, respectively
- T yy .

An efficient data validation procedure is now derived by replac-

ing the covariance CdiH, z — H, y} by the upper covariance _EX,.M\./IPLE 4.1_ For two scalar random variablesandy with
bounds derived before. Then we have individual variancesC;, = 9 andC,, = 4, some mem-

bers of the family of possible joint covariance matrices for

d> d(r) =(H, 2 — H, y)T (Hw C.. HY different constraints on the maximum absolute correlation co-
- s n(k) — Kk efficient are visualized in Figure 2 by plotting the respective
H C, HT\ ! 1-sigma—bounds.
— "2 ) (H,z-H,y) .
n(k) + & =

The covariance bound(x) for the true joint covariance
Hence, a lower bound() for the true Mahalanobis distande C(ryy) is given by
is obtained. However, it can be shown that this bound actually s 0
attains the true bound for some valueroE (—0.5,0.5). The B(k) = | 1(W—r %" )
proof is outside the scope of this paper. This fact allows the 0 chy
application of the modified Mahalanobis distance to perform

anexactdata validation according to the above assumptions.EXAMPL_E 4.2 _The covariance bounds fo_r th? two scalar ran-
dom variables in Example 4.1 are shown in Figure 3.

A given measurementis accepted, if
With

d(k) <k
me(l—r})%?,o.m () ’ Hyz=Hyy
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Figure 3: Covariance bounds for the joint covariances of two scalar random vatiadoiely with imprecisely known correlation
in Figure 2: a)|ry,| < 0.01, b) |ryy| < 0.2, €) |ryy| < 0.4, d) [rzy] < 0.6, €)|ryy| < 0.8, ) |ryy| < 0.99. The unconstrained
case corresponds i@, | < 1.

the modified Mahalanobis distance is given by which may vary according toryy,712,721,722 €
) 2 (1 oo [—7maz, "maz). Random values for these correlation co-
d(k) = (n*(r) = K*) (Hyw — Hyy) _ efficients are generated which are uniformly distributed in the
(n(k) + k) H2Cpp + (n(k) — k) HZC,yy interval [—7mqe; 'maz]-  Based upon these values, tentative

] ) entries of the cross covariance matric€s, and C,, are
REMARK 4.1 In the case of one—dimensional random variy o jated. These tentative entries are validated by means of
ables, the optimak can be calculated without knowledge of(z). The method is summarized in Figure 4.
the actual measured valugsandy. It just depends upon the
actual values of the variances,, andC, . EXAMPLE 4.3 We consider two two—dimensional zero—mean
random vectorg andy with individual covariances

4.2 Special Case: Two—dimensional Random Variables C { 3 —1} C {5 4}
zr = ) vy = ’

We consider two two—dimensional random vectors IR?, -1 1 45
2 . . . . .

y € R”. The individual covariance matrlcﬁm. andCyy  \which are correlated withr,,| < 0.8.

are assumed to be known. The correlation betweemdy N .

is not known precisely and characterized by a total correlati#haddition, the two random vectors are related according to (3)

coefficient constrained according[tg.,| < 7.z with 10

m-ly

A simple method for generating valid joint covariance matrices 0 —1

C C and
eo{ ]} =[e &) 1o
C,. C _
Yy Y vy H, {0 3}
works as follows. C,, with C,, = CZz contains four un-

known elements. These elements are generated based on
vidual correlation coefficients defined by

fame members of the family of possible joint covariance ma-
trices for the random vectarwith

7"11:% 7‘12:% ézHIi_Hyy
wgll it wé’ll vy.22 are visualized in Figure 5 a) by plotting the respective 1-
29,21 =22 sigma—bounds. Some members of the family of outer covari-

™ =7 T22 = )
VCaz22 Cyy 11 V Caz,22 Eyy 20 ance bounds derived in this paper are shown in Figure 5 b). The



Individual covariance matriceS ., andC,, are given

Num=0

While Numless then desired number of samples

Draw random numbers; 1, 712,721,722 € [—Tmaz, 'max

Calculate the cross covariance matrices

11 V/Caz,11 Cyy,11 712/ Caz,11 Cyy 22

C
Ty — —~ o~ "~ —~
721 /Caa,22 Cyy,11 722 /Caa,22 Cyy 22

Cyz = Czy

—1 2
Cyz CTT Czy < Tmaz ny ?

Y B N

Num-++

Calculate complete joint covariance matrix

Cay czy}

C =
|:C:yz ny

Figure 4: Structure chart of the naive generation of valid joint covariance matrices for two two—dimensional random vectors with
symmetrically constrained correlation.
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with a gating thresholé = 1. The result is shown in Figure 7. ©f the IEEE Conference on Multisensor Fusion and Inte-
valid samples are shown in Figure 7 a). The invalid samples 9ration for Intelligent Systems (MFI 20013001, pp. 85~
that are rejected by data validation are shown in Figure 7 b). 90.

[4] U. D. Hanebeck and K. Briechle, “New Results for
Stochastic Prediction and Filtering with Unknown Cor-
relations”, Proceedings of the IEEE Conference on Mul-
tisensor Fusion and Integration for Intelligent Systems

A new method for data validation in the presence of impre- (MFI 2001), 2001, pp. 147-152.

cisely known correlations has been proposed, which conta,

: cth T. H. Kerr, “Real-Time Failure Detection: A Static Non—
the case of completely unknown correlations [4] as a specia Li Optimization Problem That Yields a Two Elliosoid
case. Itis exact, simple to implement, and computationally ef- inear Yptimization Froblem That Yields a Two LHlpsol

ficient. The main computational effort is spent by calculating Qverlap Test"Journal on Optimization Theory Applica-
the maximum of a scalar concave function. tions, Vol. 2, 1977, pp. 509-536.

5 Conclusions

[6] J. Neira and J. D. Tais, “Data Association in Stochastic
Mapping Using the Joint Compatibility TestEEE Trans-
actions on Robotics and Automatijovol. 17, No. 6, 2001,

[1] Y. Bar—Shalom and T. E. Fortmaniyacking and Data pp. 890-897.

Association Academic Press, 1988.

References

[7] 3. W. Perram and M. S. Wertheim, “Statistical Mechan-
[2] U. D. Hanebeck,Lokalisierung eines mobilen Roboters ics of Hard Ellipsoids. I. Overlap Algorithm and the Con-
mittels effizienter Auswertung von Sensordaten und men- tact Function” Journal of Computational Physic¥ol. 58,

genbasierter Zustandssatzung PhD thesis, Lehrstuhiif 1985, pp. 409-416.

Slt?uertjngs— und Rege.lungst.echnik, Tech.nische Unin-gr]— A. Zolghadri,
sitat Miinchen, Fortschrittsberichte VDI, Reihe 8: Mel3—,
Steuerungs— und Regelungstechnik, Nr. 643, VDI Verlag,
Dusseldorf, 1997.

B. Bergeon, and M. Monsion, “A Two—
Ellipsoid Overlap Test for On—line Failure Detectio®y-
tomatica Vol. 29, No. 6, 1993, pp. 1517-1522.



30

201

10f

-10}

—20}

30 . . . . . 30 . .
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

Figure 5: Visualizations for Example 4.3 a) (Left) Some members of the family of possible joint covariance matzitestbé
constraintr,, | < 0.8. b) (Right) Some members of the corresponding family of covariance bounds.
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Figure 6: The set corresponding to the union of all possible covariances or equivalently to the intersection of all covariance
bounds in Example 4.3.
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Figure 7: Visualizations for Example 4.3 a) (Left) Valid samples. b) (Right) Invalid samples rejected by data validation.
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