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Abstract

Local reachability of two-dimensional (2D) positive systems,
by means of positive scalar inputs, is addressed. The com-
binatorial nature of this property allows for a graph theoretic
approach. Indeed, to every 2D positive system of dimension n
with scalar inputs one can associate a 2D influence graph with
n vertices, one source and two types of arcs interconnecting the
source and the vertices. Some results concerned with equiva-
lent conditions for local reachability as well as upper and lower
bounds on the reachability indices are provided.

1 Introduction

Recent years have seen a growing interest in two-dimensional
(2D) systems that are subject to a positivity constraint on their
dynamical variables. There are actually several different mo-
tivations for this interest, coming from various domains of
science and technology. Positive 2D systems arise, for in-
stance, when discretizing pollution and self-purification pro-
cesses along a river stream, or when providing a discrete model
for the traffic flow in a motorway. More generally, the posi-
tivity assumption is a natural one when describing, by means
of 2D systems, distributed processes whose variables represent
quantities that are intrinsically nonnegative, such as pressures,
concentrations, population levels, etc. The first contributions to
the analysis of 2D positive systems [4, 5, 7, 11] mainly focused
on the free evolution of the state variables, and therefore on the
investigation of the algebraic and combinatorial properties of
positive matrix pairs appearing in the state equations. More re-
cently, T. Kaczorek afforded other topics related to the forced
dynamics of 2D positive systems and, specifically, control, es-
timation and stabilization problems [8, 9].

In this paper we address the positive local reachability prop-
erty. To this end, we assume a combinatorial point of view
and hence consider just the nonzero patterns of the matrices
and vectors involved in the system description. 2D influence
graphs (namely direct graphs which exhibit two types of arcs
and two types of input flows [5, 7]) turn out to be the appropri-
ate tools for formalizing and solving the problem. The results
presented here are preliminary. The general solution of the

problem seems nontrivial, as the facts and counter-examples
here provided will clearly enlighten.

2D positive systems considered in this paper are driven by
scalar inputs and are described by the following state-updating
equation [2, 6]:

x(h + 1, k + 1) = A1x(h, k + 1) + A2x(h + 1, k)
+ B1u(h, k + 1) + B2u(h + 1, k), (1)

where the local states x(·, ·) and the scalar input u(·, ·) take
nonnegative values, A1 and A2 are nonnegative n×n matrices,
B1 and B2 are nonnegative n-dimensional column vectors, and
the initial conditions are assigned by specifying the nonnega-
tive values of the state vectors on the separation set

C0 := {(h, k) : h, k ∈ Z, h + k = 0},

namely by assigning all local states of the initial global state

X0 := {x(h, k) : (h, k) ∈ C0}.

The Hurwitz products of two n × n matrices A1 and A2 are
inductively defined as

A1
i 0A2 = Ai

1, i ≥ 0,

A1
0 jA2 = Aj

2, j ≥ 0,
A1

i jA2 = A1(A1
i−1 jA2) + A2(A1

i j−1A2), i, j > 0,

meanwhile

A1
i jA2 = 0, when either i or j is negative.

A 2D influence graph D(2) is a 6-tuple

D(2) = (s, V,A1,A2,B1,B2),

where s is the source, V = {v1, v2, . . . , vn} is the set of ver-
tices, A1 and A2 are subsets of V × V whose elements are
called A1-arcs and A2-arcs, respectively, meanwhile B1 and
B2 are subsets of s×V whose elements are called B1-arcs and
B2-arcs, respectively.

To every 2D positive system (1) with scalar inputs of size n we
associate a 2D influence graph D(2)(A1, A2, B1, B2) of source
s, with n vertices, v1, v2, . . . , vn. There is an A1-arc (an A2-
arc) from vj to vi if and only if the (i, j)th entry of A1 (of A2)
is nonzero. There is a B1-arc (a B2-arc) from s to vi if and only
if the ith entry of B1 (of B2) is nonzero.



For instance, the positive system described by the following
matrices

(A1, A2, B1, B2) =

([
0 5 0
0 2 0
1 0 0

]
,

[
0 0 0
0 0 4
2 0 0

]
,

[
1
0
0

]
,

[
0
10
0

])

corresponds to the 2D digraph of Fig. 1.1. We have repre-
sented A1-arcs and B1-arcs by means of thick lines, while A2-
arcs and B2-arcs by means of thin lines.
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Fig. 1.1

A path p in D(2)(A1, A2, B1, B2) is a sequence of adjacent arcs
and, in particular, an s-path is a path which originates from the
source s. In order to specify a path (in particular, an s-path) p
one has to specify not only the extreme vertices of each arc but
also the type of arc they are connected by. If we denote by |p|1
the number of A1-arcs and B1-arcs, and by |p|2 the number
of A2-arcs and B2-arcs occurring in p, then [|p|1 |p|2] is the
composition of p and |p| = |p|1 + |p|2 its length.

A path whose extreme vertices coincide is called a cycle. In
particular, if each vertex in a cycle appears exactly once as the
first vertex of an arc, the cycle is called a circuit.

A 2D influence graph is strongly connected is for any two ver-
tices vi and vj there is a path (of arbitrary composition) con-
necting vi to vj . D(2)(A1, A2, B1, B2) is strongly connected if
and only if A1 + A2 is an irreducible matrix [1].

Two positive matrices M and N , with the same dimensions,
are said to have the same nonzero pattern if mij 
= 0 implies
nij 
= 0 and vice versa. A positive vector v is said to be an
ith monomial vector if it can be expressed as αiei, where ei

denotes the ith canonical vector and αi is some positive real co-
efficient. A monomial matrix is a nonsingular (square) matrix
whose columns are monomial vectors.

2 Reachability and positive reachability defini-
tions

For 2D state-space models (1) two distinct definitions of reach-
ability are usually considered [2]: local reachability and global
reachability. Local reachability refers to the possibility of
“reaching” an arbitrary local state x∗ ∈ R

n
, starting from

zero initial conditions, meanwhile global reachability amounts
to the possibility (starting, again, from zero initial conditions)
of obtaining arbitrary sequences of local states x(h, k) on an
assigned separation set

Ct := {(h, k) : h, k ∈ Z, h + k = t},

provided that t ∈ N is large enough.

Definition 2.1 A 2D state-space model (1) is

• locally reachable if, upon assuming X0 = 0, for every
x∗ ∈ R

n
there exists (h, k) ∈ Z×Z with h + k > 0 and

an input sequence u(·, ·) such that x(h, k) = x∗;

• globally reachable if, upon assuming X0 = 0, for every
sequence {x∗

h}h∈Z, there exists t ∈ N and an input se-
quence u(·, ·) such that x(h, t−h) = x∗

h for every h ∈ Z.

Of course, global reachability implies local reachability. For
standard (i.e., not necessarily positive) 2D systems, local reach-
ability analysis easily reduces to the analysis of the column
span of the reachability matrix in k steps [2]

Rk =
[
(A1

i−1 jA2)B1 + (A1
i j−1A2)B2

]
i,j≥0, 0<i+j≤k

as k varies over the set of positive integers. Reachable states in
k steps, i.e. local states that can be reached on the separation
set Ck starting from X0 = 0, constitute a linear subspace Xk ⊆
R

n
, spanned by the columns of Rk. Clearly, the ascending

chain
X1 ⊆ X2 ⊆ X3 ⊆ . . .

eventually reaches stationarity and this necessarily happens, by
the 2D Cayley-Hamilton theorem, in no more than n steps. As
a consequence, if the system is locally reachable, the point
(h, k) such that x(h, k) has the desired value can always be
chosen on the separation set Cn.

On the other hand, a 2D system is globally reachable if and
only if

rank [ In − A1z1 − A2z2 B1z1 + B2z2 ] = n, ∀ z1, z2 ∈ C.

Again, when the system is globally reachable, every global
state can be reached in no more than n steps.

The definitions of positive local reachability and positive
global reachability are immediately obtained from Definition
2.1, once we constrain both the input sequence and the state
vectors we aim at reaching to be nonnegative. In this contri-
bution we focus on positive local reachability for 2D positive
systems with scalar inputs. A comparison with the analogous
problem in the 1D setting could erroneously lead to underes-
timate the problem difficulty. As we shall see, most of the in-
tuitions one may have about the problem solution are immedi-
ately disproved by very simple examples.

Once we constrain the input sequence to be nonnegative, the
reachability subspaces Xk, k ∈ N, are replaced by the reach-
ability cones X+

k , k ∈ N. In fact, the set X+
k of all local

states that can be reached on the separation set Ck, by means
of nonnegative inputs and starting from initial zero conditions
(X0 = 0), obviously coincides with the set of all nonnegative
combinations of the columns of Rk, namely

X+
k = Cone Rk.



As in the case of 1D positive systems (see [10]), the chain of
reachability cones does not necessarily reach stationarity and,
indeed, certain positive states can be reached only asymptoti-
cally. Moreover, positive local reachability is trivially equiv-
alent to the possibility of reaching (starting from zero initial
conditions) every vector of the canonical basis in R

n
by means

of nonnegative inputs, which in turn amounts to saying that
there exists some k ∈ N such that the reachability matrix in k
steps, Rk, includes an n × n monomial submatrix [1]. This is,
of course, a structural property of the system, by this meaning
that it only depends on the nonzero patterns of the 4 system ma-
trices and not on the specific values of their nonzero elements.
However, differently from the 1D positive case, the reacha-
bility index IR of a (locally reachable) 2D positive system,
namely the minimum index k such that

X+
k = Cone Rk = R

n
+,

is not bounded by n.

Example 1 Consider the positive system described by the fol-
lowing matrices

(A1, A2, B1, B2) =
([

1 0
1 0

]
,

[
0 0
0 3

]
,

[
1
0

]
,

[
0
0

])
,

which corresponds to the 2D graph of Fig. 2.1.
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Fig. 2.1 D(2)(A1, A2, B1, B2) corresponding to Example 1

It is easy to verify that the system is positively locally reachable
and the reachability index is 3 > 2 = n. Indeed,

R1 = [B1 B2 ] =
[

1 0
0 0

]
R2 = [B1 B2 A1B1 A2B1 + A1B2 A2B2 ]

=
[

1 0 1 0 0
0 0 1 0 0

]
R2 = [B1 B2 A1B1 A2B1 + A1B2 A2B2 A2

1B1

(A1
1 1A2)B1 + A2

1B2 A2
2B1 + (A1

1 1A2)B2

A2
2B2] =

[
1 0 1 0 0 1 0 0 0
0 0 1 0 0 1 1 0 0

]
.

Example 2 Consider the 2D positive system which corre-
sponds to the 2D graph of Fig. 2.2.
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Fig. 2.2 D(2)(A1, A2, B1, B2) corresponding to Example 2

In this case, the reachability index proves to be 13 while the
system dimension is n = 7. The above structure can be gen-
eralized. In fact, if the 2D influence graph of a 2D positive
system has the previous structure, by this meaning that it con-
sists of two loops including n1 vertices and n1 + 1 vertices,
respectively, connected by arcs of type 1 and 2 as indicated in
Fig. 2.3, then the reachability index turns out to be of the same
order as n1 · (n1 + 1), namely of the same order as n2/4, since
n = n1 + (n1 + 1).
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Fig. 2.3 D(2)(A1, A2, B1, B2) generalizing Example 2

Example 2 has proved that for a locally reachable 2D positive
system the reachability index may reach the value n2/4. It
seems reasonable to conjecture that n2/4 represents an upper
bound for the reachability index of every 2D positive system.
Even though several examples we have analyzed seem to con-
firm this conjecture, up to now a formal proof of this result is
not available. A necessary condition for positive reachability is
the following one.

Proposition 2.2 If the positive system (1) is positively locally
reachable then the matrix

[A1 A2 B1 B2 ]

includes an n × n monomial submatrix.

PROOF If the system is locally reachable, then there exist n
nonnegative pairs (hi, ki) ∈ Z+ × Z+, i = 1, 2, . . . , n, such
that

(A1
hi−1 kiA2)B1 + (A1

hi ki−1A2)B2

is an ith monomial vector. If hi+ki = 1 then the ith monomial
vector is a column of B1 or of B2. If hi + ki > 1 then the ith
monomial vector is a column of A1 or of A2 (possibly both).

As for 1D positive systems, local reachability property admits
an interesting and useful characterization in terms of the 2D



influence graph associated with the system. Indeed, saying that

(A1
hi−1 kiA2)B1 + (A1

hi ki−1A2)B2

is an ith monomial vector just means that every s-path p of
composition [|p|1 |p|2] = [hi ki] necessarily reaches the vertex
vi alone. If so, we will say that the vertex vi is deterministi-
cally reached by all s-paths of composition [hi ki].

As a consequence, the 2D system (1) is positively locally reach-
able if and only if for every i ∈ {1, 2, . . . , n} the vertex vi is
deterministically reached by all s-paths of a given composition
[hi ki]. Moreover the reachability index IR coincides with

max
i

min
hi,ki

{hi + ki : all s-paths of composition [hi ki]

deterministically reach vi}.

In the sequel, we will confine our attention to 2D positive sys-
tems (1) having one of the two input-to-state matrices which is
zero. We will assume, without loss of generality, B2 = 0 and,
consequently, denote B1 as B, for the sake of simplicity. These
systems are described by the following equation:

x(h+1, k+1) = A1x(h, k+1)+A2x(h+1, k)+Bu(h, k+1), (2)

where A1, A2 are in R
n×n
+ and B is in R

n
+.

3 2D influence graphs devoid of cycles

In this section we consider 2D positive systems (2) whose 2D
influence graph is devoid of cycles. This amounts to saying that
the system (1) is finite memory [3] or, equivalently [4], due to
the positivity assumption, that A1 + A2 is nilpotent.

Proposition 3.1 Given a 2D positive system (1), its 2D in-
fluence graph D(2)(A1, A2, B1, B2) is devoid of cycles if and
only if the system is finite memory.

PROOF We first observe that since the source exhibits no in-
coming arcs, D(2)(A1, A2, B1, B2) is devoid of cycles if and
only if D(2)(A1, A2, 0, 0) is. On the other hand, if γ is a cy-
cle in D(2)(A1, A2, 0, 0) and the vertex vi belongs to γ, then
[(A1 + A2)m·|γ|]ii > 0 for every positive integer m. So,
if (1) is finite memory, namely A1 + A2 is nilpotent, then
(A1 + A2)k = 0 for every k ≥ n. Therefore, no cycle γ
can exist in D(2)(A1, A2, 0, 0). Conversely, if there is a cycle γ
in D(2)(A1, A2, 0, 0) then condition (A1 + A2)k = 0 for every
k ≥ n cannot be satisfied.

Proposition 3.2 If a 2D positive system (2), with 2D influence
graph D(2)(A1, A2, B, 0) devoid of cycles, is positively locally
reachable then

i) B is a canonical vector, and

ii) the reachability index IR satisfies

min

{
k ∈ N :

k∑
i=1

i ≥ n

}
≤ IR ≤ n.

PROOF i) Since A1 + A2 is (positive and) nilpotent, it entails
no loss of generality [4] assuming that A1 + A2 (and hence A1

and A2, separately) is in upper triangular form with zero diag-
onal (in fact, we can always reduce ourselves to this situation
by resorting to some suitable permutation of the state compo-
nents). So, if A1 and A2 have the following structure

 0 + +
. . . +

0




and the system is positively locally reachable, then, by Propo-
sition 2.2, in [A1 A2 B 0 ] there must appear also the nth
canonical vector en. This necessarily implies B = en.

ii) Since (A1 + A2)n = 0, all Hurwitz products A1
i jA2 are

zero whenever i + j ≥ n. So, X+
n+1 = X+

n , and, in general,
X+

k = X+
n ,∀ k ≥ n. If B = en, it is easily seen that after

one step the only outgoing arc from the source reaches vertex
vn. On the other hand, due to the fact that only two types of
arcs are available, paths of length 2 with a common initial arc
(from the source to vertex vn) and distinct compositions may
reach deterministically at most two vertices. Again, paths of
length 3 with a common initial arc and distinct compositions
may deterministically reach at most three vertices, and so on.
This means that the minimum number of steps required to de-
terministically reach each vertex is the smallest positive integer
k such that 1 + 2 + 3 + . . . + k ≥ n.

Examples of 2D positive systems (2) of order n, with A1 + A2

nilpotent and minimum reachability index IR, can be easily
constructed for every n ∈ N. To that purpose, once we assume
B = e1, and hence connect the source to v1, we construct a 2D
influence digraph with the structure of a binary tree, having at
each level k no more than k vertices for all k ∈ N. The outgo-
ing arcs from each vertex have to be suitably chosen in order
to guarantee that all s-paths of the same length (i.e., reaching
vertices of the same level) have distinct compositions.
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Fig. 3.1 D(2)(A1, A2, B1, B2) with minimum IR

The worst case, IR = n, can be obtained by simply connecting
the source and all vertices along a single path.

4 2D influence graphs consisting of either one
or two (disjoint) circuits

In this section we consider, first, systems (2) with 2D influence
graphs consisting of a single circuit, by this meaning that all



vertices v1, v2, . . . , vn belong to a circuit (and each pair of ad-
jacent vertices is connected by one single arc). This assumption
amounts to saying that A1 + A2 is a permutation matrix, while
A1 ∗ A2 = 0, where ∗ denotes the Hadamard product. So, by
resorting to some suitable permutation of the state components
we can always obtain

A1 + A2 =




0 + 0 0
0 0 + 0

. . .
. . .
. . . +

+ 0 0


 , (3)

where + represents a strictly positive entry and each nonzero
entry + appears only in one of the two matrices A1 and A2.
Notice that vertex vi+1 accesses vertex vi, for i = 1, 2, . . . , n−
1, while vertex v1 accesses vn.

We first remark that differently from the 1D case, the positive
local reachability of such a system (A1, A2, B, 0) does not re-
quire B to be a monomial vector.

Example 3 Consider the positive system described by the fol-
lowing matrices

(A1, A2, B1, B2) = ([ e2 e3 0 0 ] , [ 0 0 e4 e1 ] ,
[ e1 + e3 ] , 0),

and corresponding to the 2D graph of Fig. 4.1.
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Fig. 4.1 D(2)(A1, A2, B1, B2) a single cycle

This system is locally reachable, with reachability index 3 =
n
2 + 1.

The situation depicted in the previous example easily general-
izes to the case of n = 2n1 vertices with two outgoing arcs
from the source, n1 consecutive arcs of type 1 and n1 consecu-
tive arcs of type 2. If the structure is the same as in the previous
figure, then the system is locally reachable and IR = n

2 + 1.

As a further remark, when D(2)(A1, A2, B, 0) consists of a
single circuit, every monomial vector B makes (A1, A2, B, 0)
positively locally reachable with reachability index IR = n.
When B is the sum of k distinct monomial vectors and the sys-
tem is locally reachable, the reachability index may take quite
smaller values. If k = 2, then a lower bound for the reacha-
bility index is n

2 + 1. This is a consequence of the following
proposition.

Proposition 4.1 Let (A1, A2, B, 0) be a 2D positive system
such that D(2)(A1, A2, B, 0) consists of a single circuit and
assume w.l.o.g. that A1 + A2 is expressed as in (3) with A1 ∗
A2 = 0. If the system is positively locally reachable and B has
k nonzero entries, of indices say 1 ≤ i1 < i2 < . . . < ik ≤ n,
then

IR ≥ max{i2 − i1, i3 − i2, . . . , ik − ik−1, n − ik + i1} + 1.

PROOF Suppose, for the sake of simplicity, that
max{i2− i1, i3− i2, . . . , ik − ik−1, n− ik + i1} = i2− i1. By
the ordering assumptions introduced on the system vertices and
on the labels i1, i2, . . . , ik, it is clear that the minimum h1 +k1

such that all s-paths of composition [h1 k1] deterministically
reach vi1 (keeping in mind that at the first step we get B and
hence not a monomial vector) coincides with the length of
the s-path that, starting from the source, reaches vertex vi2

at the first step and later enters vertex vi1 without passing
through the other vertices vi�

for � 
= 1, 2. Such an s-path has
length i2 − i1 + 1. Condition IR = maxi minhi,ki

{hi + ki :
all s-paths of composition [hi ki] deterministically reach vi,}
≥ i2 − i1 + 1 completes the proof.

Clearly, when k = 2, the minimum value of

max{i2 − i1, i3 − i2, . . . , ik − ik−1, n − ik + i1}
= max{(i2 − i1), n − (i2 − i1)}

is just n/2 and this proves that the minimum value of the reach-
ability index is n

2 + 1.

We consider, now, the case of a 2D influence graph consisting
of two disjoint circuits. We have the following result.

Proposition 4.2 Let (A1, A2, B, 0) be a 2D positive system
such that D(2)(A1, A2, 0, 0) consists of two disjoint circuits γ
and γ′ of length n and n′, respectively. If the system is pos-
itively locally reachable and B has only two nonzero entries,
one for each cycle, then

IR ≤ l.c.m{n, n′} + max{n, n′}.
PROOF Assume that the vertices in γ are (ordinately)

v1, v2, . . . , vn while the vertices in γ′ are (ordinately)
v′1, v

′
2, . . . , v

′
n′ . Suppose, also, that the two nonzero entries in

B correspond to the vertices v1 and v′1. The situation is de-
picted in Figure 4.2.
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Fig. 4.2 D(2)(A1, A2, B, 0) in Proposition 4.2

Due to the previous assumptions, any vertex vj ∈ γ (v′j ∈ γ′) is



periodically visited after j, j+n, j+2n, . . . steps (j, j+n′, j+
2n′, . . . steps, respectively). Moreover, for every k ∈ N there
exist exactly two s-paths of length k in D(2)(A1, A2, B, 0), and
they reach vertices vk mod n in γ and v′k mod n′ in γ′, respec-
tively. Such vertices are reached deterministically if and only
if the two s-paths have distinct compositions.

Let N be the l.c.m. of n and n′ and suppose that none of the
paths of length j, j + n, . . . , j + N deterministically reaches
vj . Since after j + N steps we reach, at the same time and
with the same composition, the two vertices vj and v′j just like
after j steps, the subsequent evolution will periodically repeat
the same nonzero pattern, thus preventing the possibility of de-
terministically reaching vj .

As this reasoning applies to all vertices of γ and γ′ (in particu-
lar to vn and v′n′ ), the given bound immediately follows.

Example 4 Consider the 2D positive system described by the
following 2D influence graph.
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Fig. 4.3 D(2)(A1, A2, B, 0) corresponding to Example 4

In this case we have two circuits: one of length n = 3 and the
other of length n′ = 4 and N = l.c.m.{n, n′} = n ·n′. Simple
(but tedious) calculations show that the 2D system is positively
locally reachable with reachability index IR = n·n′+n′ = 16.
The last vertex to be deterministically reached (after exactly 16
steps) is v′4.
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