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Abstract

In this paper, we address the problem of reduced-complexity
estimation of general large-scale hidden Markov models
with underlying nearly completely decomposable discrete-time
Markov chains and finite-state outputs. An algorithm is pre-
sented that computes

�������
(where

�
is the related weak cou-

pling parameter) approximations to the aggregate and full-
order filtered estimates with substantial computational savings.
These savings are shown to be quite large when the chains
have blocks with small individual dimensions. Some simula-
tion studies are presented to demonstrate the performance of
the algorithm.

1 Introduction

Reducing computational complexity in optimal estimation and
control of large scale Markov chains has been a topic of sub-
stantial interest [1], [2], [3], [4]. A class of such Markov chains
is also known as “nearly completely decomposable Markov
chains”. These Markov chains are usually large scale, and
show strong interactions within groups and weak interactions
between the groups. These chains are usually characterized
by transition probability matrices which can be expressed as	�
��������� ���

where
�������

is a block diagonal ma-
trix with the individual blocks being stochastic matrices, the
number of blocks being � . These blocks are also termed as
“superstates” (as in [5]). Typically ����� where � is the total
number of states in the chain. The parameter

��� �
is small

and acts as the a weak coupling parameter that makes the chain
“nearly” completely decomposable (the chain is completely de-
composable if

� 
 �
). Applications of such Markov chains

to economic modelling, queueing networks and computer sys-
tems have been reported in early works such as [6] and [7].
Other applications can also be found in manufacturing systems
operating with machines of varying speed [8], communication
networks with variable bit rate video traffic [9] etc. In [1], [2]
and also [10], [11] the authors focus on obtaining reduced-
complexity computation of the stationary distribution of such
Markov chains using various aggregation-decompositionmeth-
ods. The singular perturbation approach to aggregation of
finite-state Markov chains has been studied in [12] and [13]
amongst others. Much of this work concentrated on obtain-

ing reduced-complexity controllers for these Markov chains,
very little attention was paid to the case of partially observed
nearly completely decomposable Markov chains. Only [3] and
more recently [4] address this problem. The research reported
in [3], [4] partially address the case of reduced-complexity state
estimation from imperfect observations, but does not provide
a systematic way of obtaining reduced-order computations of
the filtered estimates, that exploits the near complete decom-
posability of the Markov chain to arrive at substantial guaran-
teed computational savings with rigorous performance bounds.
The trade-off between accuracy and computational complexity
in state estimation of hidden nearly completely decomposable
Markov chains is also not explored in [3], [4].

Computational complexity for filtering of hidden Markov mod-
els (HMM) with underlying nearly completely decomposable
Markov chains was first addressed in our own work [5] and
the following paper [14], where algorithms were presented for���!��"#�

approximations to the aggregate and full-order state esti-
mates requiring

��� � "#� computations per discrete time instant
as opposed to

��� � "#� computations for the optimal estimates.
These results were proven using ergodicity assumptions on the
hidden Markov models (HMM) and for sufficiently small

�
.

However, a restriction was imposed on the state-to-output ob-
servation probability matrices, in that they were assumed to
have a “block” structure. This implied that the output transi-
tions only depended on the superstates but did not distinguish
amongst the states belonging to the same superstate. It was
shown in [5] that how this assumption allowed us to obtain
a nice decoupling transformation that is uniformly bounded
and results in

������"#�
approximations to the aggregate and full-

order filtered estimates and smoothed estimates [14]. It is per-
haps not surprising that this special structure of the state-to-
output transition matrix allows one to obtain

�����$"#�
approxi-

mation whereas generally speaking, one would expect to ob-
tain
�������

approximations. Mathematically, this structure helps
us to solve for the decoupling transformation which satisfies a
nonlinear matrix equation, using iterative approximation tech-
niques (see [5]). These iterative techniques are easily imple-
mented because the nonlinear term in the equation is weighted
only by the weak coupling parameter

�
, due to the special struc-

ture on the state-to-output transition matrix. It is also clear that
under any small perturbation (which is of any polynomial or-
der in

�
) applied to the state-to-output transition matrix with

the special block structure, the methods presented in [5] can be
applied also, but not to any general state-to-output transition
matrix that does not have a block structure or a nearly block



structure.

In this paper, we lift this restriction on the state-to-output tran-
sition probability matrix and allow it to be any general transi-
tion probability matrix with all positive elements. We concen-
trate on a discrete-time irreducible nearly completely decom-
posable Markov chain with finite-state outputs. We provide a
systematic way for obtaining reduced-complexity filtered esti-
mates for these HMMs with a prescribed degree of accuracy.
The contribution of this work lies in (1) presenting an algo-
rithm that computes guaranteed

���!���
approximations to the

aggregate and full-order filtered estimates for a general hid-
den Markov model with finite-state outputs, (2) showing that
these approximations can be calculated with substantial com-
putational savings when the chain has superstates that have
small individual dimensions, and (3) demonstrating through
simulation studies the effectiveness of the algorithm. The main
assumptions that are used involve ergodicity assumptions on
the hidden Markov model and that

�
is sufficiently small. We

should also point out that these results have important im-
plications for reduced-complexity estimation for HMMs with
continuous-valued outputs as well. However, extensions of
some of the rigorous analysis to the continuous-valued output
case are still incomplete and part of our ongoing research.

2 Signal Model

A discrete-time nearly completely decomposable Markov
chain

���
in a probability space

�������	��
 �
comprising of �

states is characterized by a transition probability matrix
	���� � ��� �

	 � 
 ��� � � � ���
(1)

where
���

is the identity matrix of order ��� � , and
�

is block
diagonal with

� 


�����
�
����� � � � �
� � " " � � �
� ��� ����� ���� � � � � �
� � � � �"!#!

$&%%%%
'

where
�)(*(+�,� � � -�� � - �/.10

, 2 ( � ( 
 � , � � � is a small pertur-
bation parameter, and

� ��� � ��� �
. It is clear that there are �

blocks in the Markov chain within each of which the dynamics
is fast and every so often, the chain leaves one block to visit
another. Since

�
is small, the rate at which these inter-block

transitions occur is slow. For all
0
,
�#� - � � (*(

is row-stochastic,
and so is

	
. Obviously, the row-sums of

�
and
�

are zero. Just
as in [5], we make the following natural, key assumption:

Assumption 2.1 The matrices
	3�

and
� � - � �"(*( �+.10

are irre-
ducible.

Remark 1 Notice that the above Assumption 2.1 guarantees
the existence of a unique stationary distribution of

	4�
and
� ��- �

�"(*( .50
. There is one difference however, that should be noted:

while the stationary distribution of
	 �

depends on
�
, those of��� - � � (*( �/0 
76 ��89�;:<:;:=� � do not.

The states of the Markov chain are observed through another
stochastic process (observation or measurement process) > � .
For the analytical development of the paper, we assume that> � belongs to a discrete set of finite cardinality. More specif-
ically, > � �@?A6 �B89�<:;:<:=�BCED

and

 � > � 
 0GF � � 
�H � 
I (KJ �40 
L6 ��8M�<:;:<:=��CN� H 
L6 �B89�<:;:<:=� � . Such a signal model

(irrespective of whether the underlying Markov chain is nearly
completely decomposable or not ) is also known as a hidden
Markov model (HMM). Note also that 2 ( I (KJ 
O6 �P. H

, that
is, the observation probability matrix Q 
 � I (KJ � is column-
stochastic. We assume that I (RJ � �S�T.10B� H .

It was shown in [5] that reduced-order computations (
��� � "$� at

each discrete time instant) for the filtered state estimate (for ex-
tension of these results to smoothing, see [14]) can be obtained
with
����� " �

approximation when the state-to-output transition
matrix Q has a special structure, namely, I (KJ 
VUI (XW �Y. HE�Z W �[.10

. Since typically, � � � , these computational savings
are substantial. In this paper, we remove this restriction on Q .

In what follows, we will show that even with no restrictions
on Q , one can obtain

�������
approximations to the filtered esti-

mates with substantial computational reductions when the in-
dividual block sizes � ( �\0 
]6 ��89�;:<:;:^� � are not too large. As
an example, one will obtain substantial reduction in computa-
tional complexity if � 
 8 � �M� � 
 8�_9� � ( 
a` �b.10

instead
of � 
 8 � �M� � 
dc � � ( 
 _ �S�+.50

. A table consisting of exact
numbers of multiplications, additions and divisions per discrete
time instant will be provided later to compare the computa-
tional complexity of exact state estimation and the approximate
state estimation.

Like in [5], we term the � blocks as “superstates”. No-
tice that the probability (or conditional probability) of the
Markov chain belonging to a particular superstate is the sum
of probabilities (or conditional probabilities) of the chain be-
longing to its constituent states. We denote the e -th super-
state by

Z W � e 
f6 ��8M�<:;:<:=� � . Without loss of generality,Z � 
g?A6 ��8M�<:;:<:=� � � D��BZ " 
g? � � �h6 � � � � 8M�<:<:;:<� � � � � " D
etc. We also term (like in [5]) the filtered estimate vector withe -th element being

	 � ���i� Z W F j � �
as the aggregate filtered

estimate, e 
k6 �B89�;:<:<:=� � . Here,
j �

is the complete filtration
generated by the l algebra l � >5m � > � �<:<:;:<� > � � .
3 State estimation of hidden Markov models

It is well known that the conditional filtered state estimate for
a hidden Markov model is defined in the following way:

n � �o0 � 
 
 � �p� 
 0+Fqj � �
(2)

where
j �

is the complete filtration generated by the l al-

gebra l � >�m � > � �;:<:;:<� > � � . Defining the row vector n �sr

� n � � 6 � n � �t8 �u:<:<: n � � � � � , one can obtain the following recur-
sion [15]

n �^vw� 
 6x �=vw� n � 	 � Q � > �=vw� �^� n m 
zy m{Q � >�m � (3)



where Q � > �=vw� � 
 � 0���� ? I ( � I ( " :;:<: I ( � D if > �=vw� 
 0
andx �=v � 
 n � 	 � Q � > �=vw� � 6$� is the normalization factor (with
6 �

being the � -length column vector of all
6
-s) and

y m is the row
vector representing the initial distribution of

� m .
Note that the aggregate filtered state estimate is given by� � � H � 
 
 � � � � Z J F{j � � 
��W	��
�� 
 � � � 
 e Fqj � � (4)

Obviously the row vector
� � r
 � � � � 6 � � � ��8 �1:;:<: � � � � � � denotes

the aggregate filtered state estimates and can be represented by� � 
 n ����
(5)

where
����	� � ��� !

is given by

 � 

���
�
6 ��� � � �
� 6$��� � �� � � �
� � � 6#���

$ %%
'

Following the same techniques as in [11] (also used in [5]),
another matrix

 " �	� � ����� ��� !��
is chosen such that the trans-

formation � 
�� ��� "�� is nonsingular. Let � � 
 n �� " .
Let also � � � 
! #" �" "%$ where obviously " � �E� � ! � �

and" " � � � � ��� !�� � �
. We choose

 " as in [5], the resulting " � � " "
can also be found in [5].

Now rewrite (3) as� � �=vw� � �=v � � 
 6x �^vw� � � � � � �  &" �" "%$ 	 � Q � > �=vw� � � ��' "(�

 6x �^vw� � � � � � �  *)� � ��� )� � � ")� �" � )� �" " $ (6)

where )� � ��� 
 )� � � � � )� �� � )� � � " 
 )� �" � � )� �" � )� �" � 
 )Q �� �
� )+ �� � )� �" " 
 )Q �

" � � )+ �
" and they are given by the following

equations:)� � � 
 " � � ��� � � � Q � > �=vw� � �� � )� �� 
 " � � Q � > �=vw� � ��)� �" 
 " � � � � � � � Q � > �=vw� �  " � )� �" 
 " � � Q � > �=vw� �  ")Q �� 
 " " � � � � � � Q � > �=vw� �  � � )+ �� 
 " " � Q � > �=vw� �  �)Q �
" 
 " " � � � � � � Q � > �=vw� �  " � )+ �

" 
 " " � Q � > �=vw� �  " (7)

Clearly, (6) can be carried out in two steps (
.-,

):
Step 1: Calculate the unnormalized quantities

�/.�=v � � � .�=vw� ac-
cording to the following recursion:� � .�^vw� � .�=vw� � 
 � � � � � �  *)� � � � )� � � ")� �" � )� �" " $

(8)

where
� m 
 n m �� � � m 
 n m  " .

Step 2: Normalize
��.�=v � � � .�=vw� by the normalization factorx �=v � 
 2 !J10 � ��.�=vw� � H � . Note also thatn � 
 � � " � � � � " " (9)

As observed in [5], we remind the readers again that for the
above choices of " � � " " � �� �  " , the matrices )� � � � )� �" � )Q ��

and)Q �
" are block diagonal matrices for all

,
, more specifically,)� � � is diagonal, )� �" is block diagonal with the

0
-th block be-

ing a row vector of size � (�2d6
, )Q ��

is block diagonal with
the

0
-th block being a column vector of size � (3276

and )Q �
"

is block diagonal with the
0
-th block being a square matrix of

size
� � (-2 6 � � � � (-2 6 �

. Also, since the matrices )� � � � )� �" � )Q ��
and )Q �

" depend only on > �=vw� which is finitely-valued, one can
essentially pre-compute the matrices )� � � � )� �" � )Q ��

and )Q �
" for

each possible value of > �=vw� and store them in a lookup table.
During the filtering operations, as and when we get a specific
observation, we can obtain the corresponding matrices by table
lookup.

4 46587:9 approximate reduced-order filters

In this section, we are concerned with obtaining reduced-
complexity aggregate and full-order filters with a prescribed
degree of accuracy when

�
is “sufficiently” small. While the

techniques used in this section are similar to that of [5], the re-
sults are substantially different due to the absence of a special
structure on the state-to-output transition probability matrix Q ,
as assumed in [5].

Following the approach in [5], we use a standard decoupling
technique to obtain the transformed variables

� U� �]U� � � that are
given by � U� �zU� � � 
;� � � � � �  � ! < �

� ���=� ! $ (10)

This also implies that� � � � � � 
;� U� � U� � �  �^! 2 < �
� � �=� ! $ (11)

Note that one can relate the unnormalized versions of
U� � � U� � ,

denoted by
U��.� � U� .� respectively, by the same decoupling trans-

formation, (since the normalization factor is the same):� � .� � .� � 
;� U� .� U� .� �  � ! 2 < �
� ����� ! $ (12)

Here
? < � �Y� � ! �>� ��� !�� D

is assumed to be a sequence of uni-
formly bounded time-varying matrices to be solved for. Using
this together with (6), one can obtain the following recursion in
the transformed variables� U� �=v � U� �^vw� � 
 6x �=vw� � U� � U� � �  )� � � � 2 < � )� �" � �)� �" � )� �" � < �=vw� � )� �" " $

(13)
where

< �
was chosen such that the upper right hand element in

RHS of (13) is zero, or

� )� � ��� 2 < � )� �" � � < �^vw� 
 < � )� �" " 2 )� � � " � < m 
 � (14)

Note that one can recursively solve for
< �

from the above equa-
tion provided )� � ��� 2 < � )� �" � is invertible for every

,
. This

involves multiplications of matrices which are not necessarily



sparse at each
,

and requires a large number of computations.
A well known technique [16] is to exploit the fact that

� � �
is

a small positive number and truncate a power series expansion
of
< �

in
�

at some finite power. However, this approximation
is only valid if

< �
is uniformly bounded.

In [5] the uniform boundedness of
? < � D

was shown using the
irreducibility condition stated in Assumption (2.1) and the spe-
cial structure assumed on Q (see [5] for details) and a number
of inequalities which were jointly sufficient to guarantee that

�
is sufficiently small. The proof in [5] crucially depended on the
special structure of Q which implied that the nonlinear term in
(14) was of

�������
( Q �� 
 �

).

Due to the generalized nature of Q in the current work, we do
not have this convenience. We proceed along a different path
to establish the boundedness of

? < � D
for a sufficiently small

�
.

We first make an assumption that guarantees the existence of
a uniformly bounded

< � �!� �
, the solution to (14) when

� 
 �
(
.-,

). Then, we argue that since
< �

, as a solution of (14), is a
continuous function of

�
in a small neighbourhood of

� 
 �
,< �

will also be uniformly bounded for a sufficiently small
�
.

Notice that
< � ��� �

satisfies the following recursion (see also
(7)):< �^vw� �!� � 
 � )� � � 2 < � �!� � )Q �� � � � � < � ��� � )Q �

" 2 )� �" �^� < m ��� � 
 �
(15)

The difference with [5] is that )Q �� �
 �
in the current situation.

Observing that )� � � is diagonal and nonsingular, one can rewrite
(15) as the following:< �=vw� �!� � 
 � )� � � � � � < � ��� � )Q �

" 2 � )� � � � �u� )� �" (16)� � � )� � � � �u� < � �!� � )Q �� < �=vw� ��� � � � < m �!� � 
 �
Below, we use the ��� I notation associated with a matrix

� �� ��� � � � � 
 � � � � � � " :;:<: � � � � which is defined as

��� I � � � 

����
�
� � �� � "

...� � �

$&%%%
'

where
� � ( denotes the

0
-th column of the matrix

�
. We

also use the � notation to denote the Kronecker product
of two matrices. Using the notations e	�� 
 ��� I � < � ��� � � � ,
 �m 
 2 ��� I�� � � )� m � � � � )� m " � �� , and

� �� � < � �u� ��� �=� < � ��� � � 

��� I � � 2 � )� � � � �u� )� �" � � )� � � � � � < ���u� �!� � )Q �� < � �!� � � �  , (17) can

be rewritten as

e �=vw� 
 e � � � )� � � � �u� � )Q �
" � � � �=v � � < � ��� �=� < �=vw� ��� � �=� e m 
 �

(17)
Clearly, repeating this recursion, one can write

.-,�� 6
,

e �=vw� 
 
 m
��J10 � C J vw� � � � � ��� 0 m � �=v � � � � < � � � ��� �^� < �=vw��� � ��� � �(18)

� m�
� 0 � �u� C �=vw��� � � � e � 
 
 m

where
C �=vw� 
 � )� � � � � � � )Q �

" and � m � 0 �u� C �=vw��� � 
� ! ��� ��� ! �
.

Let us now introduce the following notations. We denote by� : ���
the e � vector norm, and by

� F&: F ���
the corresponding

induced maximum absolute row sum matrix norm.

In what follows, we will be looking for sufficient conditions

such that
< � �!� �^� . ,

belongs to a compact set � r
 ? <��� ��� I � < � � � ��� U< D
. Notice also that using the special struc-

tures of )� � � � )� �" � )Q ��
and the fact that > �^vw� � . ,

can only
take finitely many values, one can easily obtain the follow-
ing over bounds

U� � � UI � such that if
< � �!� � � � , then

.-,
,� � �=vw� � < � ��� �^� < �=vw� �!� � � � ��� U� 
 � U� � �GUI � � �"!$# ( � ( 2 6 � U< "#�
.

Denote % � > �=vw� � 
 � F C �=vw� F ���
. Denote

y'&
as the stationary

distribution of > � such that
y'& � 
 � 
 2 ( 	 � > ��
 
 F �p��
0 � y �o0 � 
 2 ( I � ( y �o0 �

where
y (

is the
0
-th component of the

stationary distribution of
� �

such that
y 	 
 y

. Denote the
expectation taken with respect to the stationary distribution

y(&
as )�*�+ .

We now make the following assumptions which are easy to ver-
ify and are sufficient to guarantee the uniform boundedness of< � ��� �=� . ,

.

Assumption 4.1

) * + � ,.- % � > �=vw� � � 
�2 U/ � �M� . ,
(19)

Remark 2 Note that a similar set of assumptions was made
(Assumption 4.1 & 4.2) in [5] to obtain the uniform bound-
edness of

< �
for a sufficiently small

�
. These two assump-

tions played a crucial role in guaranteeing the uniform bound-
edness of

< �
due to the special structure of the Q matrix where

the observation probabilities only depended on the superstates
and were identical for all the states in the same superstate (for
each observation). Since, in the current work, we do not as-
sume such a special structure on Q , we cannot prove a uni-
form boundedness of

< �
directly, but make Assumption 4.1

that guarantees the uniform boundedness of
< � ��� �

. Later an
additional Assumption 4.2 is made to prove that for sufficiently
small

� � �
, one can show the boundedness of

< �
using conti-

nuity arguments.

Observe that Assumption 4.1 guarantees that 0 a 1 � such that.-,2� 1 � � 6
,

� F � �J10 � C J vw� F � �3�54 #76 � 2 � 1 � � 6 � U/ �
(see [5]

for more details). Using this result, we now state the following
Lemma (a similar proof can be found in [5]):

Lemma 4.1 Suppose Assumption 4.1 holds. Suppose also that
there exists an

U< � �
such that� 
 m �8� 4 #76�9 2 � 1 � �z6 � U/;: � U� UZ � U� 4 #76 982 � 1 � �z6 � U/ :6 2 4 #76 � 2 U/ � � U<

(20)
where

UZ 
 2=<?>� 0 m � m � 0 � �u� � F C < > � � F �8� is a finite number
and recall that

U� 
kU� � � UI � � �"!$# ( � (�2 6 � U< "
. Then there ex-

ists a uniformly bounded solution
< � ��� �^� .-,

to (17) such that< � ��� � � � .



Now that we have identified a reasonable condition under
which the uniform boundedness of

< � �!� �
holds, we argue that< �

, as a solution of (14), is a continuous function of
�

in a small
neighbourhood of

� 
 �
, and therefore it will also be uniformly

bounded for a sufficiently small
�
. This can be shown easily if

the following assumption holds:

Assumption 4.2
� � I � � 6

and there exists a positive real
number

<��
such that � � I � <�� ��� � � <��

(21)

where there exist positive real numbers
� � � � � � I � such

that
� F � )� � � 2 < � �!� � )Q �� � �u� F � � � � ,

� F < � ��� � )+ �
" �< � �!� � )+ �� < �=v � �!� � 2 )� �" 2 )� �� < �=v � ��� �<F � � � � and

� F )Q �
" �)Q �� < �^vw� �!� �<F � � I � where

� F&: F �
denotes a suitable matrix

norm.

Note that Assumption 4.2 guarantees the uniform boundedness
of � ���� � F � 0 m such that

� F � ���� � F � 0 m F � � <��
. This allows us to use< � �!� �

as an
���!���

approximation to
< � � .-,

.

In addition, just as in [5] we make the following assump-
tion which has been justified in [5] and is seen to be satisfied
through simulation studies.

Assumption 4.3 The evolution � �=vw��
 � � � )� �" � < �^vw� � )� �" " �
where � �P�	� � �=� !

has an exponentially stable solution.

Note that Assumption 4.3 guarantees that
U� �
	 �

asymptoti-
cally (using (13)). The rate of this decay is determined by the
eigenvalues of )� �" � < �=vw� � )� �" " and how close they are to the
origin. This also implies that there is a finite integer

, m such
that for

, � , m ,
F U� � F is ������� .

Using the above results, (12) and an unnormalized version of
(13)), one can now write

�������
approximations (for a suffi-

ciently large
,

) to the unnormalized estimates
�/.� � � .� as)� .�=vw� 
 )� .� � )� � � 2 < � ��� � Q �� �)� .�=vw� 
 2 )� .�=vw� < � �!� � (22)

We also assume that
�

is small enough such that the normaliza-
tion procedure (division by )x �=v � in (13)) does not affect the
order of approximation of the unnormalized quantity, that is,�
��� 


�
� � � ������� for some

, �6, �
, where )x � 
 )��.� 6 ! .

The above discussion may be summarized in the form of the
following Theorem, establishing our main result on reduced-
order approximations to the filtered estimates

� � � � � :

Theorem 1 Suppose Assumptions 2.1, 4.1, 4.2, and 4.3 hold.
Also, suppose there exists an

U< � �
such that the inequality

(20) holds. Then there exists a large enough but finite
, " such

that for
, ��, " , an

�������
approximation for

� �=vw�
denoted by)� �=vw� (and the unnormalized version by )��.�^vw� ) can be obtained

recursively by the following two steps:)� .�=vw� 
 )� � � )� � � 2 < � ��� � )Q �� � � )� � � �u� 
 � � � �u�)� �=vw� 
 6� )� .�=vw� 6 ! � )� .�=vw� (23)

Similarly, an
�������

approximation for � � (for
, � , " ) is given

by )� � 
;2 )� � < � ��� � )� � � �u� 
 � � � �u� (24)

Similarly, an
�������

approximation to n � (the full-order normal-
ized filtered estimate) is given by)n � 
 )� � " � � )� � " " (25)

We now provide a table comparing the numbers of additions,
multiplications and divisions per discrete time instant in com-
puting the exact aggregate filtered estimates (

� �
) and the corre-

sponding
�������

approximation ( )� � , as given by Theorem 1).

No: of computations Exact
�������

Addition � " 2 6 8 � " � 2 !( 0 � � "( 2 � 2 6
Multiplication � " 2 !( 0 � � "( � � � 2 �

Division � 8 �
Table 1: Table of number of computations per time instant for
exact and approximate

���!���
aggregate filtering

It is clear that there will be substantial savings in computations
when the Markov chain has a reasonable number of superstates
of small individual dimensions. For example, for � 
 8 � �
with � 
kc �M� � ( 
 _M� .10

, we have the number of additions,
multiplications and divisions for the exact aggregate filtering as��������� � c � � � �

and
c �

respectively. The corresponding numbers
for approximate aggregate filtering are

������� � ` ��� �
and

` �
re-

spectively. Similar computational savings can be demonstrated
for full-order filtering as well.

5 Simulation studies

In this section, we present some simulation studies to demon-
strate the performance of our reduced-complexity filter. The
performance measures used are average approximation error
in aggregate filtering and full-order filtering. The average ag-
gregate filtering error is given by ) � FXF � � 2 )� � FXF " � which (from
ergodicity assumptions) is estimated by the average approxi-
mation error

,�� ����� � �� 2 � � 0 � F*F � � 2 )� � F*F " . Similarly, the av-
erage full-order approximation error is given by ) � FXF n � 2 )n � FXF " �
which in turn is estimated by

,��.����� � �� 2 � � 0 � FXF n � 2 )n � F*F " .
For our simulations, the choice for � is

6 � �M� � � �
. We also av-

erage our results over
6 �

simulations.

We perform our simulations with an 8-state ( � 
 ` � � 
 �
)

nearly completely decomposable Markov chain as in [5]. The
discrete observation (or measurement) set contains 3 possi-
ble outputs where the state-to-observation probability matrix
is given by

Q 

�
� �S: 8 �M: 6 _ �S: _ �S: � �M:K8 �M: ` �M:�� _ �M:K8�_
�M:K8 � �S:�� �S: 8�_ �S: c _ �S: c � �M: 6 � �M: 6 _ �M: � `
�M:K_ c �M: 6 _ �S: 8�_ �S: 8�_ �S: ��� �M: � c �M: 6 �M: ���

$
'

Clearly, the choice for
 � �  " � " � and " " here is the same as

in [5] and is not repeated here.



Remark 3 Note that in this example, Q does not have any spe-
cial structure as in [5]. The only restriction on Q is that all
elements are positive. Therefore, the results of this paper are
applicable to a very general class of state to observation proba-
bility matrices.

It was shown in [5] that the various aggregation methods that
exist in the literature such as Courtois’ method and Khalil’s
method ([11]) can be extended to obtain ad hoc approximate
aggregate filters which often result in inexplicably large ap-
proximation errors specially in the case of a Q matrix which
cannot be readily aggregated unlike a block-structured Q as in
[5]. Therefore, here we do not show any comparisons with
other aggregation methods for our approximate aggregate fil-
ter. Note also that the full-order approximate filtering scheme
is unique to our approach and cannot be obtained by extending
any of the aggregation methods.

Table 2 below shows the average approximation error for both
the approximate aggregate filter and the full-order approximate
filter as obtained by our approach for various values of

�
rang-

ing from
�M: � � 6

to
�M: 6

. The
���!���

nature of the approximation

Average approximation error�
Aggregate filter Full-order filter�M: � � 6 � :�� _ 6 � 6 � � � 89:�� c�` � � 6 � � �

�M: � ��_ _9: � c _ ` � 6 � � � � :�� � _�_ � 6 � � �
�M: � � ` � :K_�8 � � 6 � � � 6 :K_ � 8 � 6 � ���
�M: � 6 6 :K_ 6 � 8 � 6 � ��� 89:K8 � cA` � 6 � ���
�M: � � 89:K_ � � 6 � 6 � ��� 6 : ��_ ` � � 6 � ���
�M: ��_ c : � ` � ` � 6 � ��� 89:K_�_�� 6 � 6 � ���
�M: � ` 6 : 6 � c _ � 6 � ��� � :K_ � ` � � 6 � ���
�M: 6 6 :�� � 8�_�8 � 6 � ��� 6 : �A8�_�� c � 6 � ���

Table 2: Table of average approximation error in aggregate and
full-order filtering

errors is illustrated in the table above.

Various numerical issues that can arise here in implementing
our algorithm regarding stability of

< � ��� �
or how large can

�
be etc. will not be specifically addressed in this work as the
corresponding discussions are very similar to those in [5]. One
note should be added that if, for a particular

,
,
< � ��� �

cannot be
computed due to the matrix

� )� � � 2 < � ��� � )Q �� �
being singular,

one should discard that observation and re-initialize the algo-
rithm. We know due to the exponential forgetting property of
HMM filters (see [17]) that such interruptions will not have a
significant effect in the asymptotic performance of the algo-
rithm.
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