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Abstract

In this paper we discuss the concept of compatible behavior in-
terconnections. We distinguish the case where all variables are
available for interconnection (total interconnection) from the
case where only a part of them are (partial interconnection).
The main idea behind the notion of compatibility for total in-
terconnection is causality of (the effect of) the interconnection.
We also show that state variables are closely related with the
concept of compatibility.

The concept of compatibility has been introduced for linear be-
haviors. In this paper, we propose an extension for the existing
concepts. Relations between the proposed concept and the ex-
isting ones are also explained.

1 Introduction

Control of dynamical systems can be viewed as interconnec-
tion between the system and another system (the controller).
This point of view is advocated, for example in the behavioral
approach to control theory[2, 5, 6]. A question that arises nat-
urally when considering interconnection of systems is whether
every system can be interconnected with every other system.
If this question gets a negative answer, then the next logical
question will be how to characterize the compatible intercon-
nections. Of course, it should also be made formal what is
meant when an interconnection is said to be compatible.

In this paper we discuss the concept of compatibility for behav-
ioral interconnections. Such concept was developed, for exam-
ple in [6], when the notions of regular and regular feedback in-
terconnection were introduced for linear behaviors. However,
the extension to more general cases is still lacking.

As mentioned above, the behavioral approach to control theory
sees solving control problems as finding a system (controller)
whose interconnection with the plant results in a desirable sys-
tem. Formulation of control problems in general behaviors has
been done in [5]. There, a construction for the so called canoni-
cal controller is given, together with some sufficient conditions
under which the controller solves the problem. The concept of
compatibility adds another dimension to the problem, since it
is desirable to obtain a controller that can really be intercon-

nected to the plant. Such problem for linear behaviors has been
posed and solved in [1].

The discussion in this paper is organized as follows. In Section
2 some mathematical preliminaries will be given. In Section
3, we discuss the concept of strong and weak compatibility for
total interconnections. Finally in Section 4, we present remarks
on the compatibility of partial interconnection and the direction
for future research.

2 Mathematical preliminaries

In this paper we discuss interconnections of general behaviors.
We start with giving a concise introduction to the matters.

A behavior B is defined as a collection of trajectories pertain-
ing to the evolution of the variables in a set W over a time axis
T . The variables in W take value in a W. Hence, B ⊂ W

T .

Examples of commonly used W are linear spaces (for linear
systems) and finite sets (for discrete event systems). The only
restriction we impose on the time axis T is that it admits a to-
tal ordering < . Given the relation < and the natural identity
relation =, we define another relation ≤ .

(t1 ≤ t2) ⇔ (t1 < t2) ∨ (t1 = t2), t1, t2 ∈ T.

Let the behaviors B1 and B2 be both subsets of W
T . The total

interconnection of B1 and B2 is denoted as B1 ‖ B2. This is
defined as

B1 ‖ B2 :=B1 ∩ B2,

=
{

w ∈ W
T | w ∈ B1 and w ∈ B2

}

.

It is called total interconnection since all the variables in W

are involved in the interconnection. In this paper, we will only
discuss the compatibility of total interconnections.

Another important concept that we are going to use in this pa-
per is that of the dynamic map. Given a behavior B ⊂ W

T ,

a dynamic map φ takes an element of B × T and maps it to
an element of its codomain Φ. We use the following notation
convention throughout this paper.

Notation 2.1 Let φ : B × T → Φ be a dynamic map, and
X and Y be subsets of B and Φ respectively. A time-indexed
dynamic map, notated as φt(·) or φ(·; t), t ∈ T , is defined as

φt(w) := φ(w; t) := φ(w, t), w ∈ B.



Furthermore the following notations also apply in this paper.

φt(X) := {y ∈ Φ | ∃x ∈ X, φt(x) = y},

φ−1
t (Y ) := {x ∈ B | ∃y ∈ Y, φt(x) = y}.

The state similarity operator generated by the time-indexed dy-
namic map φt on B is defined to be

φ̄t : 2B → 2B,

φ̄t(·) = φ−1
t (φt(·)).

For any subset X ⊂ B, φ̄t(X) gives the largest subset of B

whose image under φt is φt(X).

Two dynamic maps on B, φ and γ are said to be orthogonal, or
φ ⊥ γ, if for all t ∈ T ,

(φ̄t ◦ γ̄t)(w) = B, ∀w ∈ B, (1a)

(γ̄t ◦ φ̄t)(w) = B, ∀w ∈ B. (1b)

Intuitively, orthogonality between two dynamic maps implies
impossibility to make any inferences on the value of one map
given the value of the other.

It is also possible to define orthogonality between maps defined
on two non-disjoint behaviors. Let φi be a dynamic map on Bi,

i = 1, 2. Assume that B1 ∩B2 6= ∅. We say that φ1 and φ2 are
orthogonal if for all t ∈ T ,

φ̄2

(

φ̄1t(w) ∩ B2

)

= B2, ∀w ∈ B1, (2a)

φ̄2

(

φ̄1t(w) ∩ B1

)

= B1, ∀w ∈ B2. (2b)

Again, the intuitive interpretation behind this idea is that when
the two maps are orthogonal, it is impossible to make any in-
ferences on the value of one map given the value of the other.

A dynamic map φ is said to constitute a state map of the be-
havior B if and only if it possesses the patching property as
follows.

(Patching) For any w1, w2 ∈ B and τ ∈ T , the following
implication holds.

(φ(w1, τ) = φ(w2, τ)) ⇒ (w1 ∧τ w2) ∈ B.

The symbol ∧• signifies the patching/concatenation operation,
where

(w1 ∧τ w2)(t) :=

{

w1(t), t < τ

w2(t), t ≥ τ.

For a behavior B ⊂ W
T and t ∈ T , we can define the di-

rectability relation DB(t) ⊂ B × B such that (w1, w2) ∈
B × B is included in DB(t) if and only if w1 ∧t w2 ∈ B.

Definition 2.2 Let B ⊂W
T . A state map φ : B → Φ is said

to be past-induced if for any w1, w2 ∈ B and τ ∈ T ,

(w1(t)|t≤τ = w2(t)|t≤τ ) ⇒ (φ(w1, τ) = φ(w2, τ)).

Similarly, φ is future-induced if

(w1(t)|t≥τ = w2(t)|t≥τ ) ⇒ (φ(w1, τ) = φ(w2, τ)).

The following proposition relates past and future induced state
maps with directability.

Proposition 2.3 Let the behavior B ⊂W
T . Let α and ω be any

past induced and future induced state maps respectively. The
following relation holds for all w1, w2 ∈ B and t ∈ T.

(w1DB(t)w2) ⇔ ᾱt(w1) ∩ ω̄t(w2) 6= ∅. (3)

Proof. (⇒)Let wi− and wi+ denote the past and future of wi,

i = 1, 2. Hence, wi− ∈ B|[−∞,t) and wi+ ∈ B|[t,∞]. Denote
w3 := w1 ∧t w2. The past of w3 is w1− and its future is w2+.

Consequently we have that

w3 ∈ ᾱt(w1), (4a)

w3 ∈ ω̄t(w2). (4b)

Hence ᾱt(w1) ∩ ω̄t(w2) 6= ∅.

(⇐) Assume that ᾱt(w1)∩ ω̄t(w2) 6= ∅. Take an element from
this set and call it w3. We know from (4a) that

w4 := (w1 ∧t w3) ∈ B.

Since the future of w4 is the same as that of w3, necessarily
ωt(w4) = ωt(w3) = ωt(w2). Hence we can construct w5 such
that

w5 := (w4 ∧t w2) ∈ B.

Notice that w5 has the past of w1 and the future of w2. Hence

w5 = (w1 ∧t w2) ∈ B.

Notice that we do not require w1, · · · , w5 to be distinct.

Corollary 2.4 The following relation also holds

(w1DB(t)w2) ⇔ w2 ∈ (ω̄t ◦ ᾱt) (w1), (5)

⇔ w1 ∈ (ᾱt ◦ ω̄t)(w2). (6)

Following that, we introduce the set valued maps DB,t(·) and
D−1

B,t(·) as

DB,t(·) := (ω̄t ◦ ᾱt) (·), (7)

D−1
B,t(·) := (ᾱt ◦ ω̄t)(·). (8)

We can construct ≈, an equivalence relation within the class
of all state maps of a behavior B, by defining that two state
maps φ and γ are equivalent, or φ ≈ γ if and only if for any
w1, w2 ∈ B and t ∈ T ,

(φ(w1, t) = φ(w2, t)) ⇔ (γ(w1, t) = γ(w2, t)) ,

or equivalently
φ̄t = γ̄t.

With that, we also introduce the partial ordering 4, by defining
γ 4 φ if and only if for any w1, w2 ∈ B and t ∈ T ,

(φ(w1, t) = φ(w2, t)) ⇒ (γ(w1, t) = γ(w2, t)) ,



or equivalently
φ̄t(·) ⊆ γ̄t(·).

A dynamic map φ is said to be a minimal state map, if there
exists no other state map γ 6≈ φ such that γ 4 φ. The con-
cept of minimal state map is closely related to the concept of
irreducible state introduced in [7]. Generally, for any given be-
havior, there is no unique minimal state map (modulo ≈) (see
[4, 7]). We shall characterize the cases where such minimal
state map exists. First, we need the following definitions.

Definition 2.5 [4, 7]Let B ⊂W
T . A canonical past-induced

state map φ− : B → Φ, is characterized by the equivalence
relation R−(t) on B, where for any w1, w2 ∈ B and τ ∈ T ,

(w1R−(t)w2) :⇔ ((w1DB(t)w) ⇔ (w2DB(t)w)) , ∀w ∈ B.

The state map φ− must then satisfy

(φ−(w1, t) = φ−(w2, t)) ⇔ (w1R−(t)w2).

Notice that we do not characterize a single state map but a fam-
ily of state maps related by ≈ . Similarly, a canonical future-
induced state map φ+ : B → Φ, is characterized by the equiv-
alence relation R+(t) on B, where for any w1, w2 ∈ B and
τ ∈ T ,

(w1R−(t)w2) :⇔ ((wDB(t)w1) ⇔ (wDB(t)w2)) , ∀w ∈ B.

The state map φ+ must then satisfy

(φ+(w1, t) = φ+(w2, t)) ⇔ (w1R+(t)w2).

These two canonical state maps are minimal.

Proposition 2.6 A behavior B ⊂ W
T admits a unique min-

imal state map (modulo ≈) if and only if for any t ∈ T the
directability relation DB(t) is an equivalence relation.

Proof. (⇐)Assume that DB(t) is an equivalence relation, for
all t ∈ T . Then, DB(t) induces a partitioning in B, i.e. we can
define a mapping xt : B → X such that for any w1, w2 ∈ B,

(w1DB(t)w2) ⇔ (xt(w1) = xt(w2)).

Define the state map φ such that

φ(w, t) := xt(w),

then φ is a minimal state map and other minimal state maps are
related to φ via ≈ .

(⇒)Assume that B admits a unique minimal state map (mod-
ulo ≈), then the canonical past-induced and future induced
state maps must coincide (modulo ≈). Let us call this canoni-
cal state map φcan. Since φcan is both past and future induced,
we can substitute it for α and ω in Proposition 2.3. Rewriting
(3), we obtain

(w1DB(t)w2) ⇔ (φcan(w1, t) = φcan(w2, t)) .

Hence the directability relation DB(t) is an equivalence rela-
tion.

If the dynamic map φ is a state map of B, then its image Φ is
called a state space of B. Contrary to the common intuition,
the minimality of a state map φ does not imply the minimality
of the size of its state space.

3 Compatibility of total interconnections

3.1 Directability and compatibility

The definition of directability introduced in the previous sec-
tion gives rise to the first definition of compatibility.

Definition 3.1 (compatibility) Let B1 and B2 be subsets of
W

T . The interconnection B1 ‖ B2 is compatible if for any
wi ∈ Bi, i = 1, 2, there exist a w ∈ B1 ‖ B2, and t ∈ T such
that w1DB1

(t)w and w2DB2
(t)w.

Intuitively, this definition means that all possible pasts in B1

and B2 can be accommodated in the future by the interconnec-
tion. In other words, the interconnection should only affect the
future. In fact, causality is the crux of this concept.

Notice that in the definition of compatibility, the time instant
at which the interconnection can be formed depends on the tra-
jectories of each behavior. To require that the interconnection
can be formed at any time is to define a stricter notion of com-
patibility.

Definition 3.2 (uniform compatibility) Let B1 and B2 be
subsets of W

T . The interconnection B1 ‖ B2 is uniformly
compatible if it is compatible for any t ∈ T .

The notion of compatibility given in Definition 3.2 for gen-
eral behaviors is related to the definition of regular feedback
interconnection for linear behaviors1. This definition was in-
troduced in [6]. The characterization of a regular feedback in-
terconnection is as follows.

Definition 3.3 (regular feedback) Let B1 and B2 be linear
behaviors defined by

Bi :=

{

w ∈ L1
loc(R, Rq) | Ri

(

d

dt

)

w = 0

}

, i = 1, 2,

where R1 and R2 are full-row-rank polynomial matrices2 with
g1 and g2 rows respectively and q columns. Define ni as the
McMillan degree of Ri and n as that of (the full row rank ver-

sion of)
[

RT
1 RT

2

]T
. The interconnection B1 ‖ B2 is a

regular feedback interconnection if and only if n = n1 + n2.

1by linear behaviors we refer to those represented by (a system of) constant-
coefficient ODEs.

2The fact that R1 and R2 are full row rank can be assumed without any lost
of generality. Refer to [2] for explanation.



The McMillan degree of a linear system indicates the dimen-
sion of its minimum state space realization. In the following,
the relation between regular feedback and uniform compatibil-
ity will be explained.

Take any two behaviors B1 and B2, both subsets of W
T . Let

αi and ωi be a past-induced state map and future-induced state
map of Bi respectively, i = 1, 2. The interconnection B1 ‖
B2 is uniformly compatible if and only if for any w1 ∈ B1,

w2 ∈ B2, and t ∈ T ,

D−1
B2,t (DB1,t(w1) ∩ B2) = B2, (9a)

D−1
B1,t (DB2,t(w2) ∩ B1) = B1. (9b)

Let us now turn to linear behaviors. It is a well known fact
that linear behaviors admit unique minimal state map (modulo
≈). Hence, in the case of linear behaviors, the canonical past-
induced and future-induced state maps, α and ω, are identical.
Referring to (7) - (8), we conclude that this implies

DB,t(·) = D−1
B,t(·) = ᾱt(·). (10)

Applying this fact to the necessary and sufficient conditions
for uniform compatibility (9), we infer the following. The in-
terconnection B1 ‖ B2 of linear behaviors is uniformly com-
patible if and only if for any w1 ∈ B1, w2 ∈ B2, and t ∈ T ,

ᾱ2t (ᾱ1t(w1) ∩ B2) = B2, (11a)

ᾱ1t (ᾱ2t(w2) ∩ B1) = B1. (11b)

Here, ᾱit(·) := α−1
it (αit(·)) and αi is the (unique) minimal

state map of Bi, i = 1, 2. We see that the condition for uni-
form compatibility of B1 ‖ B2 is that α1 and α2 must be
orthogonal.

Now, the algebraic condition n = n1 + n2 in Definition 3.3 re-
lates to the fact that the dimension of the minimum state space
realization of the interconnected system must be equal to the
sum of those of the individual systems. Although it will not
be proven here, this is equivalent to the fact that α1 and α2

are orthogonal. Indeed, in [6] it is explained that being regular
feedback is equivalent to the fact that the interconnection can
be made at any time.

3.2 Weak directability and compatibility

In the previous subsection we have discussed the concept of
compatibility. In this subsection, we are going to discuss a
more general kind of compatibility. Notice that compatibility
requires that the interconnection can be made without any kind
of preparation. A more general criterion would allow some
preparation stage to take place prior to the interconnection, and
thus accommodating more interconnections.3

3The authors would like to thank Madhu Belur for a valuable discussion on
this issue.

Definition 3.4 (weak directability) Let w1, w2 ∈ B and τ ∈
T . We say that w1 is weakly directable to w2 at time τ if there
exists a trajectory w3 ∈ B and a τ ′ ≤ τ such that

w3(t) =

{

w1(t), t ≤ τ ′,

w2(t) t > τ.

Similar to the case of (strong) directability, we shall use a short-
hand notation for weak directability. The fact that w1 is weakly
directable to w2 at time τ can be written as w1D

∗(B, τ)w2 . It
is interesting to realize that the time indicated in the relation is
such that for any τ ′ ≥ τ,

w1D
∗(B, τ)w2 ⇒ w1D

∗(B, τ ′)w2.

The notion of weak directability is closely related to control-
lability. Indeed, in behavioral systems theory a system is con-
trollable if any trajectory is weakly directable to any other tra-
jectory [2].

The definition of weak directability leads to the definition of
weak compatibility.

Definition 3.5 (weak compatibility) Let B1 and B2 be subsets
of W

T . The interconnection B1 ‖ B2 is weakly compatible
at time t ∈ T if for any wi ∈ Bi, i = 1, 2, there exists a
w ∈ B1 ‖ B2, such that w1D

∗(B1, t)w and w2D
∗(B2, t)w.

This definition can be interpreted as follows. If the intercon-
nection B1 ‖ B2 is weakly compatible, then for any trajecto-
ries in B1 and B2, i.e. w1 and w2, we can always find a pair
of behaviors D1(w1) and D2(w2), which in general depends
on w1 and w2, such that the interconnection Bi ‖ Di(wi),
i = 1, 2, is (strongly) compatible. This is meant as a prepara-
tion stage. When the time is right (in Definition 3.5 this time
instant is denoted as t), Di is removed from Bi and the inter-
connection B1 ‖ B2 can be formed as a (strongly) compatible
interconnection. The behaviors D1(w1) and D2(w2) are called
the directors, since their function is to direct w1 and w2 to an-
other trajectory w that is accommodated in the interconnection.
The director Di can be formed as a subset of Bi containing
the trajectories that bridge wi to w. This definition of weak
compatibility is similar to the concept of mergeable behaviors
introduced in [3].

We can also formulate a time-independent version of weak
compatibility, as we have done for (strong) compatibility.

(uniform weak compatibility) Let B1 and B2 be subsets of
W

T . The interconnection B1 ‖ B2 is uniformly weakly com-
patible if it is weakly compatible for any t ∈ T .

Lemma 3.6 Let B1 and B2 be linear behaviors defined by

Bi :=

{

w ∈ C∞(R, Rq) | Ri

(

d

dt

)

w = 0

}

, i = 1, 2,

where R1 and R2 are full-row-rank polynomial matrices with
g1 and g2 rows respectively and q columns. The interconnec-
tion B1 ‖ B2 is uniformly weakly compatible if and only if

B1 + B2 = B
ctr
1 + B

ctr
2 , (12)



where B
ctr
i is the controllable part of Bi, for i = 1, 2.

We are interested in finding the relation between weak com-
patibility for general behavior interconnections and regularity
for linear behavior interconnections. The concept of regular
interconnections was also introduced in [6] and was used, for
example in [1] for designing regular controllers.

Definition 3.7 (regularity) Let B1 and B2 be linear behaviors
defined by

Bi :=

{

w ∈ C∞(R, Rq) | Ri

(

d

dt

)

w = 0

}

, i = 1, 2,

where R1 and R2 are full-row-rank polynomial matrices with
g1 and g2 rows respectively and q columns. The intercon-
nection B1 ‖ B2 is regular if and only if the row rank of
[

RT
1 RT

2

]T
is g1 + g2. Equivalently,

[

RT
1 RT

2

]T
must

have full row rank.

In the following we shall discuss the relation between regular-
ity and weak compatibility for linear behaviors.

Theorem 3.8 Let B1 and B2 be linear behaviors defined by

Bi :=

{

w ∈ C∞(R, Rq) | Ri

(

d

dt

)

w = 0

}

, i = 1, 2,

where R1 and R2 are full-row-rank polynomial matrices with
g1 and g2 rows respectively and q columns. The interconnec-
tion B1 ‖ B2 is uniformly weakly compatible if it is regular.
The converse is generally not true.

Proof. Assume that the interconnection is regular. We shall
use Lemma 3.6 to prove that it is also uniformly weakly com-
patible. The behavior B1 ‖ B2 contains all w ∈ C∞(R, Rq)
characterized by

[

R1

R2

](

d

dt

)

w = 0. (13)

We assume that at least one of B1 and B2 is uncontrollable.
Otherwise the interconnection is uniformly weakly compatible
by directly applying Lemma 3.6. Without any lost of general-
ity, assume that B1 is uncontrollable. We can always find two
unimodular matrices U1 and V such that U1R1V is diagonal.

U1R1V =: R̃1 =

[

I 0 0
0 D(ξ) 0

]

,

with I the identity matrix and D(ξ) some diagonal polynomial
matrix. Denote R̃2 := R2V. The interconnected behavior is
given by the following kernel representation.





I 0 0
0 D 0

R̃21 R̃22 R̃23





(

d

dt

)

w̃ = 0, (14)

where

w̃ := V −1

(

d

dt

)

w.

Notice that since the interconnection is regular, R̃23 is full row
rank.

In the following, we shall show that B1 = B
ctr
1 + B

ctr
2 . Take

any trajectory w̃ := (w̃1, w̃2, w̃3) ∈ B1. Here the trajectory is
partitioned according to the columns of the polynomial matrix
in (14). Necessarily, w̃1 = 0 and w̃2 ∈ kerD

(

d
dt

)

. Now, since
R̃23 is full row rank, there exists a ṽ3 such that

R̃22

(

d

dt

)

w̃2 = R̃23

(

d

dt

)

ṽ3,

and ṽ := (0, w̃2, ṽ3) ∈ B
ctr
2 . Also notice that w̃ − ṽ =

(0, 0, w̃3 − ṽ3) ∈ B
ctr
1 . Therefore, we have shown that

B1 = B
ctr
1 + B

ctr
2 . (15)

If B2 is controllable, it is trivially true that

B2 ⊂ B
ctr
1 + B

ctr
2 . (16)

Combining (15) and (16), we get

B1 + B2 ⊂ B
ctr
1 + B

ctr
2 ,

which when combined with the trivial inclusion B1 + B2 ⊃
B

ctr
1 + B

ctr
2 yields

B1 + B2 = B
ctr
1 + B

ctr
2 . (17)

If B2 is uncontrollable, applying the same procedure as we
have done to B1, we yield (see (15))

B2 = B
ctr
1 + B

ctr
2 . (18)

Again, combining (15) and (18) yields (17). Hence by Lemma
3.6, the interconnection is uniformly weakly compatible.

To prove that the converse is not true, consider the follow-

ing counterexample. Take R1 =

[

1 0 0
0 1 0

]

, and R2 =
[

0 1 0
0 0 1

]

. Clearly B1 and B2 are controllable and, by

Lemma 3.6, B1 ‖ B2 is uniformly weakly compatible. How-

ever,
[

RT
1 RT

2

]T
does not have full row rank. Hence

B1 ‖ B2 is not regular.

Although weak compatibility is weaker than regularity, in a cer-
tain aspect they are equivalent. Control problems in behavioral
approach can be formulated as follows. Given a plant P and
a specification S, both are behaviors. The problem is to find a
controller C such that P ‖ C = S. Moreover, it is also desirable
that the interconnection is regular or weakly compatible. This
kind of problem was discussed and treated in [1].

One important question related to the control problem is to
characterize all specifications that can be achieved, given a
plant P . In this sense, regularity and weak compatibility are
equivalent.



Theorem 3.9 Let P and S be linear behaviors characterized
by

P :=

{

w ∈ C∞(R, Rq) | P

(

d

dt

)

w = 0

}

,

S :=

{

w ∈ C∞(R, Rq) | S

(

d

dt

)

w = 0

}

,

with P (ξ) ∈ R
gp×q [ξ] and S(ξ) ∈ R

gs×q[ξ]. There exists a
behavior C,

C :=

{

w ∈ C∞(R, Rq) | C

(

d

dt

)

w = 0

}

,

C(ξ) ∈ R
gc×q[ξ], such that P ‖ C = S and the interconnection

is weakly compatible if and only if there also exists a C ′ such
that P ‖ C′ = S and the interconnection is regular.

Proof. (⇐) This is trivial since P ‖ C ′ is also weakly compati-
ble.

(⇒) If P ‖ C = S and the interconnection is weakly compat-
ible then necessarily for all p ∈ P , there exists an s ∈ S such
that pD∗(P)s. Equivalently, this means for every p ∈ P , there
exist an s ∈ S and a pctr ∈ Pctr such that

p = s + pctr.

Pctr is the controllable part of P . Therefore we can have the
following relations.

S ⊂ P , (19a)

S + Pctr = P . (19b)

In [1], (19) is proven to be necessary and sufficient conditions
for the existence of a C ′ such that P ‖ C′ = S and the intercon-
nection is regular.

4 Remarks

In this paper we discussed the concept of compatibility of gen-
eral behavior interconnections. The kind of interconnections
considered in this paper is total interconnection, where it is as-
sumed that all variables are used in the interconnection. The
proposed concept is then compared with the existing concept
for linear behaviors, namely regular and regular feedback inter-
connections. It is shown that for linear behaviors, compatibility
and regular feedback are equivalent, while weak compatibility
is weaker than regularity.

As already mentioned before, we do not treat the case of partial
interconnection. Nevertheless, we would like to give some re-
marks on this issue. Compatibility of partial interconnections
involves more aspect than that of total interconnections. As we
have seen in Section 3, compatibility of total interconnection is
built on the principle of causality of the interconnections. That
is, the interconnection should not affect the behaviors prior to
its formation. For partial interconnection there is another key

ingredient for the concept of compatibility, namely partitioning
of information.

Interconnection of two behaviors can be seen as an exchange
of information between them. This exchange of information
takes place by means of the variables involved in the intercon-
nection. Partial interconnection means restriction on the ac-
cess to the information. Generally speaking, we can think of
two kinds of information splitting. The first kind is splitting
based on observation. In this case, the variables of a behav-
ior is classified into those that are observable/measurable from
the environment and those that are not. An example of this
kind of splitting is the linear control problem where the state
is not measurable and therefore feedback must be done using
the output variables. The second kind of splitting is based on
manipulation. In this case, the variables of a behavior is clas-
sified into those that can be affected by the environment and
those that are not. An example of this kind of splitting is the
control problem involving disturbance/noise. In this case, it is
only sensible to assume that a realizable controller should not
affect the disturbance, while the disturbance can be assumed to
be measurable4.

We consider putting these ideas into a formal framework and
characterizing the compatibility of partial interconnections as
possible directions for future research. In addition, it would
also be very interesting to use the concepts developed here in
the design process of realizable general controller, as a success
would yield a general control theory applicable to a wide range
of system classes.
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