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Abstract

A primary goal of adaptive observers would be to estimate the
true states of a plant. Identification of unknown parametersis
of secondary interest and is achieved frequently with the persis-
tent excitation condition of some regressors. Nevertheless, two
problems are linked to each other in the classical approaches
to adaptive observers; as a result, we get a good state estimate
once after a good parameter estimate is obtained. This paper
focuses on the state estimation without parameter identification
so that the state is estimated without persistent excitation condi-
tion. Besancon(2000) recently unified this direction of research
and illustrated that most of adaptive observers in the literature
share one common canonical form, in which unknown parame-
ters do not affect unmeasured states. We consider another class
of linear systems from the canonical form of Besancon(2000)
by proposing an adaptive observer (with additional dynamics)
that allows unknown parameters to affect those unmeasured
states. A recursive algorithm is presented to design the pro-
posed dynamic observer systematically. An example confirms
the design step with a simulation result.

1 Introduction

The design of adaptive observers1 has received considerable at-
tention in the last several years. The first contribution to adap-
tive observer design was made in [3] for linear time-invariant
systems with unknown parameters. Since then, many interest-
ing results have been reported in the literature. Based on a
new canonical form for a linear system, a significantly sim-
plified observer structure was suggested by Lüders and Naren-
dra [6,7]. The construction of adaptive observers with arbitrar-
ily high rates of convergence was also considered in [4]. Sev-
eral years later, an adaptive observer for nonlinear systems was
proposed in [1] by extending the result of [7]. However, most
of adaptive observers in the literature require the condition of
persistent excitation for the regressor in order to have thestate
estimate. In case of aforementioned linear adaptive observers,
the observer includes a parameter identifier so that they first
estimate unknown parameters (which is usually achieved un-

1Some authors refer to ‘adaptive observer’ an observer that yields both the
state and the parameter estimates. In this paper, it just means an observer which
has a parameter update law regardless of its convergence.

der the persistent excitation condition) and then the standard
Luenberger observer technique is applied to estimate the state.

On the other hand, the adaptive observer proposed in [8, 9] is
designed for the ‘adaptive observer canonical form’ and the
persistent excitation is not required as long as the system has
the canonical form. (However, if the system is not in the canon-
ical form, some parameter-dependent coordinate change needs
to be applied to transform the system into the canonical form,
so that parameter estimation becomes again necessary to have
the estimate of states in the original coordinates.)

In this paper, we consider a system given by�� � 	� 
 �� 
 �� � � � (1)

where� is the state in�� , � the input in�� , � the output in�� , and� is a vector of unknown constant parameters in�� .
Since is a constant matrix and� consists of several unknown
parameters, the persistent excitation condition may not hold for
the system.

When we do not have persistently excited regressors like (1),
the class of systems admitting an adaptive observer is quitere-
stricted. Indeed, Besancon [2] presented a unified framework
for many existing adaptive observers that do not require param-
eter estimation2, and showed that almost all adaptive observers
in the literature, that can estimate the state� without first esti-
mating�, have been designed for the following particular class
of systems: �� � 	��� 
 	��� 
 ��� 
 � ��� � 	��� 
 	��� 
 ��� (2)

where� is the output of the system and	�� is Hurwitz. In this
form, � does not affect the unmeasured state� .

We present in this paper a new adaptive observer for differ-
ent classes of systems from (2), in which uncertain parameters
enter the unmeasured states. While the design requires no hy-
pothesis of persistent excitation, what is assumed in this paper
is the following:

2In [2], parameter estimation is a bonus when the regressors are persistently
excited. Also, note that only linear systems are dealt with in this paper while
nonlinear systems are considered in [2].



Assumption 1. Let us define
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!"""# $
For the system(1), there exist an integer% (& ' %) such that

1.
�()* � +, and

2. there are some matrices,, - , . of appropriate dimen-
sions satisfying

- /	 0 ,�( 1 
 /	 0 ,�( 12 - 3 + (3a)-  � � 2( . (3b)- 4 + $ (3c)

Remark 1. It is presupposed in this assumption that% 5 &. In
fact, if the conditions (3a)–(3c) hold with% � +, the system (1)
is the very case considered in [2], and the standard technique3

can be applied to obtain an adaptive observer. The condition�()* � + says that relative degree from the unknown pa-
rameter� to the output� is greater than% (and with (3b) and
(3c) it can be seen that

�( 6� +). Therefore, each% charac-
terizes its own class of systems.

As an example for Assumption 1, consider a system� � � * 7 �� * � �8 7��8 � � 
 98� 7�� � 	� � (4)

where	� is Hurwitz. Clearly, it is not in the adaptive observer
form proposed in [2], but can be shown to satisfy Assumption
1 with % � &. An interesting way to show this is to apply the
technique of [2], assuming that the output� is

�*� � :� * 7 �8 ;2
so that�8 is also measurable. Then, the system (4) becomes in
the adaptive observer form of (2), and thus it admits the er-
ror Lyapunov function suggested in [2], which has the posi-
tive definite matrix- � <=>? @A8 B8 7 -� C where-� is such that-�	� 
 	2� -� 3 +. Finally, it is easy to show that the matrix- satisfies Assumption 1.

In the next section, we present a dynamic adaptive observer for
(1) only under Assumption 1, followed by the recursive algo-
rithm to design the gains of the proposed observer in a sys-
tematic manner. Section 3 illustrates a design example witha
simulation result. Conclusions are found in Section 4.

3This technique also appears as the initial step of the proposed recursion in
this paper.

2 Main Results

For the system (1) that satisfies Assumption 1, we propose a
dynamic adaptive observer of the form:�D� � E� /� D� 0 � 1 
 E�F�D� � 	 D� 
 �� 
  D� 
 G� /� D� 0 � 1 
 G �F�F � H� /� D� 0 � 1 
 H�F (5)

where
D� is the estimate of the true state�, and

D� I �� andF I �(� are the internal states of additional dynamics (thus,
we know their values). Then, the observer problem is solved if
we design allE � :E� 7 E�;, G � :G � 7 G �; andH � :H� 7 H �;
matrices so that, by definingJ� �� D� 0 � andK �� D� 0 �, the
following error dynamics�J� � E�� K 
 E�F�K � 	K 
  J� 
 G �� K 
 G �F�F � H�� K 
 H�F (6)

guarantees thatK /L1 M + andF /L1 M + asL M N
, in the sense

that there exist positive definite matrices- andO satisfying

PPL
QRS� J�KF

!# 2 - � J�KF
!#TUV � 0 WKFX2 O WKFX $

(Indeed, LaSalle-Yoshizawa theorem, e.g. [5, p.24], proves the
convergence. Note that the dimension ofO is lower than-
because we are not interested in the convergence ofJ� .)

In the subsequent part of the paper, we will show the design of
the matricesE, G andH by a recursive algorithm. Therefore,
the main contribution of the paper is summarized as

Theorem 1. For the system(1) satisfying Assumption 1, there
exists a dynamic adaptive observer(5), which guarantees thatD� /L1 M � /L1 asL M N

.

The idea of the construction of (5) is to assume, in the begin-
ning, that

�(K � /� ( D� 0 � (� 1 is available for measurement
although it is not true since

�(� is not all measurable. Then,
the standard technique yields an adaptive observer with an er-
ror Lyapunov matrix pair- andO of appropriate sizes. Now
we change our virtual assumption so that

�()*K is available
for measurement but�	( K is not. (The designed observer in
the previous step is now not implementable since it depends on
the signal�	( K.) Then, we extract the signal�	( K from the
observer structure and design additional dynamics with which
the use of�	( K is eliminated. In the next step, we proceed by
assuming that

�()8K is measurable but�	()*K is not. The
recursion goes to the end if we get a dynamic observer that
requires only the measurement of

�YK � � K but not others.

The recursion begins by the following initial step.



2.1 Initial Step

Assuming that
�(K is measurable, we choose our initial error

systemZ( as follows (compare this with (6)):

Z( � [\]\̂
�J� � 0.2 � (K � _ *�� ()*K 
 _ *� /� 	( K1�K �  J� 
 	K 
 ,�(K �  J� 
 	K 
 _8�� ()*K
_8� /� 	( K1

where . and , are given in Assumption 1 and0.2 �:_ *� 7 _ *�; and, � :_8� 7 _ 8�;. Clearly, this error system is
obtained from the observer�D� � 0.2 /� ( D� 0 � (�1�D� �  D� 
 	 D� 
 �� 
 , /�( D� 0 � (�1 $ (7)

Error convergence easily follows since, with` � :J�2 7 K2 ;2 ,
the functiona /` 1 � *8 ` 2 - ` � *8 J� 2 J� 
 *8 K2 - K satisfies that�a � J�2 /0.2 � ( K1 
 K2 -  J� 
 K2 - /	 0 ,�( 1K � 0K2 OK
whereO � 0bcd @- /	 0 ,�( 1C, in which bcd @	 C denotes*8 /	 
 	2 1, is positive definite by Assumption 1.

2.2 Recursive Design

Suppose that a systemZ� (e is an index between+ and% and
the recursion begins whene � % and ends withe � +) given
by

Z� �
[\\\\\\\\]\\\\\\\\̂

�J� � _ *8� �K 
 _ *fF� _ *�� �)*K 
 _ *f F 
 _ *� /� 	 � K1�K �  J� 
 	K 
 _88� � K 
 _8fF�  J� 
 	K 
 _8�� �)*K 
 _8fF 
 _8� /� 	 � K1�F � _f8� �K 
 _ffF� _f�� �)*K 
 _ff F 
 _f� /� 	 � K1
where J� I �� , K I �� and F I �� g( )�h . The matrices ,	 and

��
(from 	 and� ) are given in (1), and all_ matrices

have appropriate dimensions (for example,_ *8 � :_ *� 7 _ *�;).
The recursive design begins with the systemZ( , which guar-
antees thatK /L1 M + as L M N

by previous argument, and
proceeds toZ()*, Z()8 , i i i until we haveZY , which leads to
our desired observer (5). Note thatF is null whene � %, but
increases its dimension as the recursion proceeds.

The systemZ� will be concisely denoted by�̀ � j ` 
 _ �k 
 l (8)

where` � :J�2 7 K2 7 F2 ;2 , _ � � :_ 2*� 7 _ 28� 7 _ 2f�;2 and

j � � + _ *�� �)* _ *f 	 
 _8�� �)* _ 8f+ _ f�� �)* _ ff
!# 7

(9)

if k andl are taken ask � � 	� K and l � + $ (10)

By introducingk (and the zero inputl ) the systemZ� is now
decomposed into the term including�	�K and the rest. This
means that we regardk � � 	� K andl � + as inputs to the
error system. However, this pair of inputs is not implementable
since�	�K is not available for measurement (whene 5 &).
Therefore, we will propose an alternative design ofk andl
which depend only on

��)*K and the state of added dynamics
that is known to observer. Before presenting the alternative
design ofk andl , we confirm the following claim holds forZ� at this stage.

Claim 1. There exist positive definite matrices- I� g�m�m� g()�hhn andO I � g�m� g()�hhn such that, witha /` 1 �*8 ` 2 - ` ,�a � ` 2 - /j ` 
 _ � /� 	 �`8 11 � 0 Ẁ 8`fX2 O Ẁ 8` fX (11)

where`8 � K and`f � F.

The inequality (11) implies that, ifk andl are taken as (10),
then the stateK andF of the systemZ� converges to zero. This
claim holds true from the initial step whene � % and will be
justified by Corollary 1 as the recursion proceeds.

Now we assume that
��)*K is available for measurement but�	�K is not. Then, the following theorem shows that, by at-

taching additional dynamics, we can design an alternativek andl , instead of (10), that does not depend on the unmeasurable
quantity�	� K.
Theorem 2. Suppose that the system(8)satisfies Claim 1 whenk andl are taken as(10). If the following dynamic system is
appended to(8)�o � 0k 0 � 	�)*_ 8�k 0 � 	�)*_8�� �)*K 0 � 	�)*_8fF

(12a)p� � o 
 � 	�)*K 7 (12b)

then the system(8) and(12)guarantees that the statesK, F ando converge to zero by redesigningk � a� p� 7 l � qj _ � 
 _ �� 	�_ 8�r p� � � s � p� 7 (13)

in which
p� is measurable if

��)*K is assumed to be measur-
able. The matrix gaina� is chosen so that

O� �� � O W0 *8 /� 	� 12+ Xt0 *8 � 	� +u bcd @a� 
 � 	�_ 8� C
!# 4 + $ (14)

Remark 2. Note that the linear matrix inequality (14) always
has a solution; for example,a� � vA with sufficiently largev 4 +.
Corollary 1. Under the assumptions of Theorem 2, the aug-
mented system(8), (12) and (13) can be written as a single
system(15), in which

s 2� � :s 2� w* 7 s 2� w8 7 s 2� wf ;.



��� 
�J��K�F�o
!""# � ��� 

+ _ *�� �)* 
 /_ *�a� 
 s � w* 1� 	�)* _ *f _ *�a� 
 s � w* 	 
 _8�� �)* 
 /_ 8�a� 
 s � w8 1� 	 �)* _ 8f _ 8�a� 
 s � w8+ _ f�� �)* 
 /_ f�a� 
 s � wf 1� 	�)* _ ff _ f�a� 
 s � wf+ 0� 	�)*_ 8�� �)* 0 /A 
 � 	�)*_ 8� 1a� � 	 �)* 0� 	�)*_ 8f 0 /A 
 � 	�)*_ 8�1a�
!""#

��� J
�KFo
!""# (15)

With the system(15), it follows that

PPL
QRRRS
��� J
�KFo
!""#
2 p-

��� J
�KFo
!""#TUUUV � 0 � KFo

!# 2 pO � KFo
!# 7

where p- � x 2 W- ++ A X x 4 + (16)pO � x 2� O �x � 4 + (17)x � WA 
 _ � t+ � 	�)* +u _ �t+ � 	�)* +u A X 7 (18)

in which,x � is the lower-right block ofx with the size of/y 
z /% 0 e 
 &11 by /y 
 z /% 0 e 
 &11, i.e.,

x � � � A 
 W_ 8�� 	 �)* +_ f�� 	 �)* +X W_ 8�_ f�Xt� 	 �)* +u A
!# $

Finally the recursion procedure is quite obvious. By the initial
step, Claim 1 holds forZ( and Corollary 1 presents the systemZ()* by the equation (15). Indeed the new_ {| matrices are
identified by redefining:F2 7 o 2 ;2 as the newF and by extract-
ing �	()*K term. Then Claim 1 again holds forZ()*, which
enables to apply Corollary 1 to the systemZ()* and the sys-
temZ()8 is obtained. This recursion will end withZ*, because
Theorem 2 will yield an implementable adaptive observer (i.e.,
the systemZY). As a result, the system (15) of Corollary 1
will be the same as (6), and all matricesE, G andH of (5) are
derived straightforwardly.

Proof of Theorem 2 and Corollary 1.

First of all, note that�p� � �o 
 � 	�)* �K� /0k 0 � 	�)*_8�k 0 � 	�)*_ 8�� �)*K 0 � 	�)*_ 8fF1
 � 	�)* / J� 
 	K 
 _8�� �)*K 
 _8fF 
 _8�k 1� 0k 
 � 	� K
(19)

where the assumption that
�()* � + (Assumption 1) is used.

We now define } � ` 
 _ � p� $ (20)

Then�} � j ` 
 _ �k 
 l 0 _�k 
 _ �� 	 �`8� j } 0 j _ � p� 
 _ �� 	� }8 0 _ �� 	 �_ 8� p� 
 l $ (21)

Also, let a /} 7 p� 1 � &~ } 2 - } 
 &~ p� 2 p� (22)

be a Lyapunov function candidate for the augmented system
(19) and (21) (i.e., (8) and (12)). Then, the derivative ofa
becomes�a � } 2 - qj } 
 _ �� 	�}8 r 0 } 2 - qj _ � 
 _ �� 	�_8� r p�
 } 2 - l 0 p�2 k 
 p� 2 � 	� }8 0 p�2 � 	�_8� p�� 0 :} 28 7 } 2f ;O :} 28 7 } 2f ;2 0 p� 2 a� p�
 p�2 � 	�}8 0 p� 2 � 	�_ 8� p� by (11) and (13).

The last equality can be rewritten using (14) as

�a /} 7 p� 1 � 0 � }8}fp�
!# 2 O � � }8}fp�

!# $ (23)

Therefore, it is concluded, by LaSalle-Yoshizawa theorem,that}8 , }f and
p� converge to zero, which in turn implies the statesK, F ando converge to zero by (20) and (12b).

To prove Corollary 1, we would simply need to express in the
original coordinates the augmented system (19) and (21), the
function a /} 7 p� 1 of (22) andO� of (23). In fact, through (20)
and (12b), the states̀ � :J� 7 K 7 F; ando are transformed to

}
and

p�. This can be written concisely by

Ẁo X � x W}p�X
wherex is already given by (18).

3 Design Example

The mechanical system shown in Fig. 1 is composed of a mass-
spring-damper system and an actuator that generates the forcej . We assume that the actuator has dynamics as follows:�j � 0�j 
 � (24)

where� is the time constant and� is the control input. Suppose
that not only the forcej generated by the actuator, but also an
unknown constant force� applies to the system. The equation
of motion is given by� �� 
 � �� 
 e� � j 
 � (25)

where
�

, �, e are the mass, the damping coefficient, and the
spring constant of the system, respectively. By choosing the



Figure 1: Mechanical system example

state variables� � :� * 7 � 8 7 � f ;2 � :� 7 �� 7 j ;2 and assuming
the displacement� is measured, we have the state space model:

�� � � + & +0 �� 0 �� *�+ + 0�
!# � 
 � ++&

!# � 
 � +*�+
!# �

� � 	� 
 �� 
 �� � t& + +u � � � � � $
(26)

When the system parameters are given that
� � &, e � + $�,� � + $�, and� � &$�, it is shown that Assumption 1 holds with% � & and with

, � � & ~0+ $� 0+ $�+ &
!# 7 O � � ~+ $++ � $�� 0&&$��� $�� � $++ 0� $��0&&$�� 0� $�� ~+ $++

!# 7
- � � &+ $++ � $++ 0� $��� $++ � $�� +0� $�� + � $��

!# 7
and . � W �� $��X $

With % � &, the systemZ* in Section 2.2 satisfies Claim 1.
Indeed, the initial step of Section 2.1 guarantees the claimwith
the updated- andO , that is,<=>? @&7 - C andO .

However, since�	K is not available for measurement, we pro-
ceed one step further by Theorem 2. Indeed the following adap-
tive observer is obtained:�D� � _ *� /� D� 0 � 1 
 _ *�k 
 � *�D� � 	 D� 
  D� 
 _8� /� D� 0 � 1 
 � � 
 _8�k 
 �8�o � 0k 0 �_8�k 0 �_8� /� D� 0 � 1
where_ *� � 0� 7 _ *� � 0� $���� 7_ 8� � :0& + $� +;2 7 _ 8� � :0~ + $� 0 &;2 7� * � /_ *��Y_ 8� 
 _ *�� 	_8� 1 p�� 8 � :_ *� 
 /	 
 _8�� 1_ 8� 
 _ 8�� 	_8�; p�k � &+ p�p� � o 
 � D� 0 � $
The simulation results are given in Fig. 2, which shows that the
estimates converge to the true states.
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Figure 2: Simulation results when� � b=� /L1 is applied to the
system. All the initial conditions of the system are set to 1
while all the initial conditions in the observer are set to 0.

4 Conclusion

In this paper, a recursive algorithm to design the adaptive ob-
server for the linear systems that do not have persistently ex-
cited regressors. By Assumption 1, the class of systems that
admits the observer is different from that of [2], and the index% characterizes the class. The larger index% implies the un-
known parameter has larger relative degree from the output�
when the parameter is regarded as an input. The recursive de-
sign indicates the higher order dynamics is necessary when the
index% increases.

From the proposed recursion algorithm, it seems easy to de-
velop an automated design package on a PC.
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