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Keywords: Robust Observer, Linear System, Unknown Paler the persistent excitation condition) and then the stethd
rameter, Persistent Excitation, Passivity Luenberger observer technique is applied to estimate #te. st

On the other hand, the adaptive observer proposed in [8, 9] is

Abstract designed for the ‘adaptive observer canonical form’ and the
. . ) ersistent excitation is not required as long as the syst&sn h
A primary goal of adaptive observers would be to estimate the, - onical form. (However, if the system is notin the cano

tr;Je statt(ajs of.a plant. |d de.nt|f|crz]a.t|on(§); unknonn p.ar:arr:gtersical form, some parameter-dependent coordinate changksnee
ofsecondaryinterestand is achieved frequently with theipe ., ¢ applied to transform the system into the canonical form

tent excitation (.:O“d'tlon of some regressars. Ne_vertlsetes) S0 that parameter estimation becomes again necessarydo hav
problems are linked to each other in the classical apprczacla,?e estimate of states in the original coordinates.)
to adaptive observers; as a result, we get a good state éstima

once after a good parameter estimate is obtained. This palpeihis paper, we consider a system given by

focuses on the state estimation without parameter idetiific

so that the state is estimated without persistent excitatadi- & = Az + Bu+ GO

tion. Besancon(2000) recently unified this direction oésesh y=Cxz 1)
and illustrated that most of adaptive observers in theditee

share one common canonical form, in which unknown param
ters do not affect unmeasured states. We consider ano#ssr
of linear systems from the canonical form of Besancon(200,
by proposing an adaptive observer (with additional dynajni
that allows unknown parameters to affect those unmeasu
states. A recursive algorithm is presented to design the pro
posed dynamic observer systematically. An example confirm&en we do not have persistently excited regressors like (1)
the design step with a simulation result. the class of systems admitting an adaptive observer is rpiite
stricted. Indeed, Besancon [2] presented a unified franmewor
for many existing adaptive observers that do not requirarpar
eter estimatiofy and showed that almost all adaptive observers
The design of adaptive observehas received considerable atin the literature, that can estimate the statgithout first esti-
tention in the last several years. The first contributiondape Matingd, have been designed for the following particular class
tive observer design was made in [3] for linear time-invariaOf systems:

systems with unknown parameters. Since then, many interest

ing results have been reported in the literature. Based on a y=Ayy+ Apz+ Byu+Gyb

new canonical form for a linear system, a significantly sim- 3= A,y + Az + Bou )
plified observer structure was suggested by Liilders andNare

dra [6, 7]. The construction of adaptive observers withteabi wherey is the output of the system antl; is Hurwitz. In this

ily high rates of convergence was also considered in [4] - S&%rm 0 does not affect the unmeasured state
eral years later, an adaptive observer for nonlinear sysvesis ’

proposed in [1] by extending the result of [7]. However, mod¥/e present in this paper a new adaptive observer for differ-
of adaptive observers in the literature require the comulitif ent classes of systems from (2), in which uncertain parasiete
persistent excitation for the regressor in order to havesthie enter the unmeasured states. While the design requires-no hy
estimate. In case of aforementioned linear adaptive obswrvpothesis of persistent excitation, what is assumed in #yep

the observer includes a parameter identifier so that thely fisthe following:

estimate unknown parameters (which is usually achieved un-

herez is the state ifR”,  the input inR™, y the output in
P andd is a vector of unknown constant parameter®in
inceG is a constant matrix anlconsists of several unknown
arameters, the persistent excitation condition may niotfloo
system.

1 Introduction

1Some authors refer to ‘adaptive observer’ an observer fetsyboth the 2In [2], parameter estimation is a bonus when the regresserseasistently
state and the parameter estimates. In this paper, it jusisre@sobserver which excited. Also, note that only linear systems are dealt witthis paper while
has a parameter update law regardless of its convergence. nonlinear systems are considered in [2].



Assumption 1. Let us define 2 Main Results

For the system (1) that satisfies Assumption 1, we propose a

CC 4 dynamic adaptive observer of the form:
Hk = z
: 0=23,(C%—y)+ Pp\
C Ak : . A .
& = Aé + Bu+ GO + N,(Ci —y) + NyA ()
For the systen(l), there exist an integer (1 < r) such that A=T,(C& —y) + Ty
where# is the estimate of the true state andd € R? and
1. H,—1G =0, and A € R'? are the internal states of additional dynamics (thus,
we know their values). Then, the observer problem is solived i
2. there are some matricek, P, T of appropriate dimen- We design al = [®,, ®;], N = [No, Ny] and¥ = [¥,, ¥y]
sions satisfying matrices so that, by deflnlrfg = 6§ — 0 ande := # — z, the

following error dynamics

P(A-LH,)+ (A-LH)"P <0 (3a)
PG =HT (3b)

P>0. (3¢)

§ = 3,Ce + B\
é = Ae + GO + N,Ce + N\ (6)
A=T,Ce+ T\
Remark 1. Itis presupposed in this assumption that 1. In

fact, if the conditions (3a)—(3c) hold with= 0, the system (1)
is the very case considered in [2], and the standard teckhiqu

guarantees tha{(t) — 0 andA(t) — 0 ast — oo, in the sense
that there exist positive definite matricBsand() satisfying

can be applied to obtain an adaptive observer. The condition T _

H,_1G = 0 says that relative degree from the unknown pa- d 0 0 1T Te
rameterd to the outputy is greater tham (and with (3b) and a € Ple = [)\] Q [)\] :
(3c¢) it can be seen thdl,.G # 0). Therefore, each charac- A A

terizes its own class of systems.

(Indeed, LaSalle-Yoshizawa theorem, e.g. [5, p.24], psdke
convergence. Note that the dimension(pfis lower thanP
because we are not interested in the convergenés of

As an example for Assumption 1, consider a system

=x, T1 = X2, . .
Y ! _1 _ 2 0 4 In the subsequent part of the paper, we will show the design of
332 =2+ 920, (4) the matricesp, N and¥ by a recursive algorithm. Therefore,
2= Az the main contribution of the paper is summarized as

whereA, is Hurwitz. Clearly, it is not in the adaptive observefl heorem 1. For the systen(1) satisfying Assumption 1, there

form proposed in [2], but can be shown to satisfy Assumptid¥ists a dynamic adaptive obsery®), which guarantees that

1 with» = 1. An interesting way to show this is to apply thet(t) — z(t) ast — oo.

technique of [2], assuming that the outgus$ H,z = [z, 2]

so thatz, is also measurable. Then, the system (4) becomesyiRe idea of the construction of (5) is to assume, in the begin-

the adaptive observer form of (2), and thus it admits the 8iing, thatH,e = (H,# — H,x) is available for measurement

ror Lyapunov function suggested in [2], which has the posiithough it is not true sincél,z is not all measurable. Then,

tive definite matrixP = diag{/2x2, P>} whereP; is such that tne standard technique yields an adaptive observer with-an e

P, A, + ATP, < 0. Finally, it is easy to show that the matrixror Lyapunov matrix pai® and@ of appropriate sizes. Now

P satisfies Assumption 1. 0 we change our virtual assumption so tit_,e is available
for measurement buf'A"e is not. (The designed observer in

In the next section, we present a dynamic adaptive obsecur/ert{:e previous step is how not implementable since it depends o

(1) only under Assumption 1, followed by the recursive alg
rithm to design the gains of the proposed observer in a s
tematic manner. Section 3 illustrates a design example avit
simulation result. Conclusions are found in Section 4.

e signalC' A"e.) Then, we extract the signé@lA”e from the
gserver structure and design additional dynamics wittckvhi
he use ofC' A"¢ is eliminated. In the next step, we proceed by

assuming thafd, _,e is measurable buf’ A" e is not. The
recursion goes to the end if we get a dynamic observer that
requires only the measurement8§e = Ce but not others.

3This technique also appears as the initial step of the pezbatursion in ) ) o
this paper. The recursion begins by the following initial step.



2.1 Initial Step

By introducingv (and the zero inpu) the systens;, is now
decomposed into the term includid@4*e and the rest. This

Assuming thatff,.e is measurable, we choose our initial errof,eans that we regand = C A*e andw = 0 as inputs to the

systemsS,. as follows (compare this with (6)):

§=-TTH,e = DioH,_ie + D1p(CAe)
¢=GO+ Ae+ LH,e =GO+ Ae + DogH,_1e

+ng(CAT€)

Sy :

whereT" and L are given in Assumption 1 andI'”"
[D14,D1p) and L = [D4,, Dop). Clearly, this error system is
obtained from the observer

0= —T7(H,i — H,z) -
& =GO+ Az + Bu + L(H,% — H,z).

Error convergence easily follows since, with= [§7,e7]7,
the functionV (y) = 277 Py = 1676 + LT Pe satisfies that

V =0T(-TTH,e) + e€TPGH + T P(A — LH,)e = —" Qe

whereQ = —sym{P(A — LH,)}, in whichsym{ A} denotes
1(A + AT), is positive definite by Assumption 1.

2.2 Recursive Design

Suppose that a systeffy, (k is an index betweefl andr and
the recursion begins whén= r and ends withk = 0) given

by

; ~

60 = DiyHe + Dy3A

= Di1,Hy_1€ + D13\ + D1y(C AFe)

= GO + Ae + DosHye + Doz )

=GO + Ae + Dy Hy_1e 4 Doz + Doy (C AFe)
= D3z Hye + D33

= D3,Hp_1e+ D33\ + D3b(CAk€)

Sk:<e

A

\

whered € R?, e € R* and\ € RP("%) . The matrices?,
A andHj, (from A andC) are given in (1), and alD matrices
have appropriate dimensions (for examfles = [D1,, D13))-
The recursive design begins with the syst&m which guar-

antees thaeé(t) — 0 ast — oo by previous argument, and

proceeds teh,._1, S,_2, - -- until we haveSy, which leads to
our desired observer (5). Note thais null whenk = r, but
increases its dimension as the recursion proceeds.

The systent;, will be concisely denoted by

¥ =Fy+ Dy +w (8)
wherey = [67,eT,\T|T, Dy = [DT,, DT, DL1T and
0 DioHp—1 D3
F=|G A+ Dy,Hy 1 Do, 9
0 Ds Hj_1 D33
if v andw are taken as
v=CA"e and w=0 (20)

error system. However, this pair of inputs is not implemblga
sinceC A*e is not available for measurement (when> 1).
Therefore, we will propose an alternative designvadnd w
which depend only oit/;, ;e and the state of added dynamics
that is known to observer. Before presenting the alteraativ
design ofv andw, we confirm the following claim holds for
Sy, at this stage.

Claim 1. There exist positive definite matriceB €
R@+n+p(r=k)* andQ € R(+»(r=k)* sych that, with/ (v) =
1. Tp

27 P,

T
v =2TP(Fy+ DAt = - 7] Q2

2 el ay

wherey, = e andy; = A.

The inequality (11) implies that, il andw are taken as (10),
then the state and of the systens), converges to zero. This
claim holds true from the initial step whén= r and will be
justified by Corollary 1 as the recursion proceeds.

Now we assume thall,_e is available for measurement but
CAFe is not. Then, the following theorem shows that, by at-
taching additional dynamics, we can design an alternataved

w, instead of (10), that does not depend on the unmeasurable
quantityC A*e.

Theorem 2. Suppose that the syst8) satisfies Claim 1 when
v andw are taken ag10). If the following dynamic system is
appended t¢8)

n=—-v— CAk_ngbU — CAk_ngaHk_le - CAk_1D23)\
(12a)

g=n+CA* le, (12b)
then the systeif8) and (12) guarantees that the states\ and
7 converge to zero by redesigning

v=Vi§, w=(FDy+ DyCA*Dy) = Wiy, (13)
in which g is measurable iff;_ie is assumed to be measur-
able. The matrix gaif¥ is chosen so that

-1
2

Q (C(Y)Ak)T]

[-3CA* 0] sym{V, + CA¥Dy}

Qs :

] >0. (14)

Remark 2. Note that the linear matrix inequality (14) always
has a solution; for examplé}, = ¢I with sufficiently large
¢ > 0.

Corollary 1. Under the assumptions of Theorem 2, the aug-
mented syster(B), (12) and (13) can be written as a single
system(15), in whichw," = [W[T,, W[, W/[l,].



g 0 DioHp—1 + (D1 Vi + W) CAF1 D3 DipVi + Wi 6

el _ |G A+ DygHy—1 + (D2 Vi, + Wi 2) CAF—L Dys Doy Vi + Wy 2 e (15)

M o]0 Ds3oHy, 1 + (D3 Vi, + Wy 3) C AR D33 D3y Vi, + Wi 3 A

7'7 0 —CAk_lDzaHk,1 — (I + CAk_lDQb)VkCAk_l —CAk_ngg —(I + CAk_lDzb)Vk n
With the systerfil5), it follows that Also, let

1 1
T e V(&) =58 PE+ 577 (22)
e e
di i p i =— (x| Q|X, be a Lyapunov function candidate for the augmented system
t ; ; n 7 (19) and (21) (i.e., (8) and (12)). Then, the derivativelof
becomes

where .

- V =¢("P (F¢+ DyCA*G) — 7P (FDy + DyCA¥ D) g
p=1T [ 0 I] T>0 (16) +&TPw—gTv+ 5T CARE — GTCAF Doy
Q=TIQ.T.>0 an =-1&.610.&1 -7 Viy

I+Dy[0 CA*1 o] D, + 7 CA*¢ — g" CA* Dy by (11) and (13).
T= [0 CAk—l 0] Il (18)
The last equality can be rewritten using (14) as
in which, T is the lower-right block of" with the size ofn +
p(r—k+1))by(n +p(r— k+1)), i.e., _ &]"  [&
I ngCAk_l 0 Doy, V(Ea g) = - 6_3 Q« 6_3 . (23)
T, = |" T |Dyoar=1 o] |Ds 7 7
[CAF1 0] I

Therefore, it is concluded, by LaSalle-Yoshizawa theotthiat,
&2, &3 andy converge to zero, which in turn implies the states

Finally the recursion procedure is quite obvious. By th&ahi . \ ands converge to zero by (20) and (12b).

step, Claim 1 holds fo§,. and Corollary 1 presents the syste
S;—1 by the equation (15). Indeed the ndWy; matrices are To prove Corollary 1, we would simply need to express in the
identified by redefining\”,nT]T as the newh and by extract- original coordinates the augmented system (19) and (2&), th
ing CA” e term. Then Claim 1 again holds f&._;, which  functionV (¢, %) of (22) and@.. of (23). In fact, through (20)
enables to apply Corollary 1 to the systéfn_; and the sys- and (12b), the stateg = [é,e, A] andn are transformed tg
temS,_, is obtained. This recursion will end wit#y , because andj. This can be written concisely by

Theorem 2 will yield an implementable adaptive observer (i.

the systemSy). As a result, the system (15) of Corollary 1 [7] -7 [S]
will be the same as (6), and all matricesN and¥ of (5) are Ui g
derived straightforwardly.

whereT is already given by (18). O
Proof of Theorem 2 and Corollary 1.
First of all, note that 3 Design Example
=9+ C A1 The mechanical system shown in Fig. 1 is composed of a mass-

= (~v-— CA* ' Doy — CA* ' Dy Hyy 16 — CAk71D23)\) spring-damper system and an actuator that generates te for
- e F. We assume that the actuator has dynamics as follows:
+ CAF-! (G0 + Ae + Doy Hy_1e + Dos ) + Dzb’l})
= —v+ CAFe F=—aF +u (24)

19 . . . .

(19) whereq is the time constant andis the control input. Suppose
where the assumption thAt. ;G = 0 (Assumption 1) is used. that not only the forcé&” generated by the actuator, but also an
unknown constant forcé applies to the system. The equation

We now define co
(20) of motion is given by

§=7+ Dyy.
Then MzZ4+cz+kz=F+86 (25)

- = Fy + Dyv +w — Dyv + DyC A*
¢ 7 ’ ’ ’ 72 (21) whereM, ¢, k are the mass, the damping coefficient, and the

_ k k _
= F§— FDyy + DyCA™Ey — DyCA™ Dapy + w. spring constant of the system, respectively. By choosieg th



z I x1
I > 10+ —— estimate of x1
F! H i

M

U gl 1

s+a

il
Wy
k

Actuator 0 O O

Figure 1: Mechanical system example
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state variables = [z1,z2,73]T = [2,%, F]T and assuming
the displacementis measured, we have the state space model:

L L L L L
0 5 10 15 20 25 30

0 1 0 0 0 ime
b= |-% —% ar|*+ |0|u+ |0 | | | S
0 0 —a 1 0 Hy
(26)
=: Ax + Bu + G8

y=[1 0 0]z=:Cz.

When the system parameters are given fifat= 1, k = 0.5,
¢ =0.3,anda = 1.5, itis shown that Assumption 1 holds with e
r =1 and with

Plot of n
T

1 2 20.00 9.67 —11.33 ]
L=|(-05 -03|,Q=] 967 6.00 -333], . |
0 1 —11.33 —3.33  20.00 ;_’ . 1 . . |
10.00 3.00 -—-3.33 3 e
P= _3:;)0;)3 6'37 6(()37 , and T'= [6.67] ’ Figure 2: Simulation results whan= sin(t) is applied to the

system. All the initial conditions of the system are set to 1
while all the initial conditions in the observer are set to 0.
With » = 1, the systemS; in Section 2.2 satisfies Claim 1.
Indeed, the initial step of Section 2.1 guarantees the oldtm

the updated® andQ, that is,diag{1, P} andQ. 4 Conclusion

However, sinc& Ae is not available for measurement, we prok this paper, a recursive algorithm to design the adaptise o
ceed one step further by Theorem 2. Indeed the following-adserver for the linear systems that do not have persistertly e
tive observer is obtained: cited regressors. By Assumption 1, the class of systems that
admits the observer is different from that of [2], and theeixd

r characterizes the class. The larger inalerplies the un-
known parameter has larger relative degree from the oytput

é = Dla(Ci' - y) + D1pv + wr

= A% + GO + D2a(CF — y)f Bu + Dapv + w; when the parameter is regarded as an input. The recursive de-
1 =—v—CDayv — CD2,(C% —y) sign indicates the higher order dynamics is necessary wteen t
indexr increases.
where . . .
From the proposed recursion algorithm, it seems easy to de-
Dia = -3, D1y = —6.6667, velop an automated design package on a PC.

Dy =[-10.501", Doy =[-203 —1]%, Acknowledgement

w1 = (D1aHoD2p + D1pC ADogy)y

wa = [GD1p + (A + D2, C)Dap + D2y CADoy)y
v =10y
g=n+C% —y.

The simulation results are given in Fig. 2, which shows that t

estimates converge to the true states.
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