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Abstract 
      
The design of a minimal order observer 
which can estimate the state feedback 
control signal Kx(t) with arbitrarily 
given observer poles and K∈ Rpxn, has 
been tried for years, with the 
prevailing conclusion that it is an 
unsolved problem.  This paper asserts 
the following four clear-cut claims. 1) 
this design problem has been simplified 
to a set of linear equations K = 
Kzdiag{c1,...,cr}D (ci∈ R1xm, m = rank(C)) 
if the observer is strictly proper, 
where  D  is already determined and 
other parameters completely free, and r 
is the observer order. 2) only this set 
of linear equations can provide the 
unified upper bound of r, min{n, 
v1+...+vp} and min{n-m, (v1-1)+...+(vp-
1)}, for strictly proper and proper 
observers, respectively, where vi (v1 ≥ 
… ≥ vm) is the i-th observability index 
of system (A,B,C,0). 3)  This bound is 
lower than all other existing ones and 
is the lowest possible general upper 
bound. 4) The observer order reduction 
guaranteed by this bound is very 
significant even at the computer age.  
 
I. Introduction 
      
For a given linear time-invariant 
observable plant 
 
     d/dt x(t) = A x(t) + B u(t)   
          y(t) = C x(t)           ( 1 ) 
 
and its state feedback control Kx(t) 
with K∈ Rpxn arbitrarily given, the 
function observer has the general state 
space model 
  
 d/dtz(t) = Fz(t) + Ly(t) + TBu(t)(2.a) 
   K x(t) = Kzz(t) + Kyy(t)       (2.b) 
 
where x, u, y, and z have dimensions n, 
p, m,  and r, respectively. The stable 

poles (or the eigenvalues of F) of  
 
 
observer (2) are also arbitrarily given 
for a guaranteed rate of esitimation of 
Kx(t). 
      
The well known state observer is a 
special case of (2) in the sense that K 
= I.  The observer (2) is strictly 
proper and proper if Ky = 0 or ≠ 0, 
respectively.  These differences are 
reflected by (2.b) only but not (2.a). 
      
Because both x(t) and y(t) = Cx(t) are 
time varying signals, and because both 
K and C are constants, it is obvious 
that in order to generate Kx(t) for a 
constant K, z(t) must converge to Tx(t) 
for a constant T in (2.b).  The 
necessary and sufficient condition for 

z(t) → Tx(t) is [1] 
    
     TA - FT = LC, (F is stable)  ( 3 ) 
 
Equation (3) concerns with the 
parameters of the dynamic part of 
observer (2.a) only but not of (2.b). 
      
After (3) (or z(t) → Tx(t)) is 
satisfied, (2.b) becomes 
       
K = KzT + KyC = [Kz:Ky][T':C']' ≡ KC (4) 
 
Equation (4) concerns with the 
parameters of the static output part of 
observer (2.b) only but not of (2.a).  
More important, because only (2.b) but 
not (2.a) reflects the difference 
between all types of observers, only 
(4) but not (3) can provide order 
difference and order reduction for 
different types of observers. 
      
For example, because the number (p) of 
rows of K is usually much lower than n, 
the number (r) of rows of T needed to 
satisfy (4) can be much lower than n-m 
(or the number of rows of C can be much 
lower than n).  This is the only reason 
that the function observer order r can 
be much lower than n-m. 
     
Because high observer order has been 



 

considered a major drawback that limits 
the practical application of state 
space control theory, the minimal order 
function observer design has been tried 
for years.  This design can be divided 
into state space (of solving (3) and 
(4)) [2-6] and transfer function 
approaches [7-9].  The general upper 
bound of r from the transfer function 
approach is min{n-m, p(v1-1)} [7] where 
v1 is the highest observability index 
of plant (1), while the comparable 
general upper bound has not been 
guaranteed by the designs of [2-6]. For 
example the design of [3] is limited to 
the single-output plants only. In fact, 
the prevailing conclusion is that the 
really general and systematic minimal 
order function observer design 
procedure and the really general 
minimal function observer order have 
not been achieved [7, 9]. 
 
2 The Simplification To A Set Of Linear 
Equations Only 
      
As analyzed in Section 1, only (4), 
which is a set of linear equations 
only, can provide the order reduction 
of function observers.  To compute the 
solution of this equation with the 
minimal number of rows of T (or minimal 
observer order), really systematically, 
it is obvious that each row of T and 
each mode of the dynamic part (F,T,L) 
of observer (2.a) must be completely 
decoupled.  It is also obvious that the 
remaining design freedom of T must be 
really fully usable in this 
computation.  Because (F,T,L) must 
satisfy (3) first (see Section 1), the 
remaining freedom of T is also the 
remaining design freedom of (3) (and of 
the dynamic part of observer (2.a)). 
      
Unfortunately, such a solution (F,T,L) 
of (3) has not been used in the 
existing designs of [2-9].  
Consequently, the existing design must 
compute the solutions of (3) and (4) 
together and has not been able to 
compute the solution of (4) separately 
and therefore systematically.  This is 
the simple and critical reason that the 
existing design of [2-6] cannot be 
really generally systematic and cannot 
guarantee a really general and really 
low upper bound of function observer 
order [10]. 
      
Such a solution is used in [11] to 
design the minimal order function 

observers. This solution is based on 
the Jordan form of matrix F and C = [ 0 
:C1] (|C1|≠0).  This form of C can 
always be derived by similarity 
transformation.  Then for distinct and 
real eigenvalues of F, the i-th row ti 
of T can be expressed as 
 
          ti = ci Di, ∀  i          ( 5 ) 
 
where ci∈ R1xm is completely free and 
Di∈ Rmxn is formed by the basis vectors 
of ti and can be fully determined from 
the equation 
 
      Di(A - λiI)In-m = 0, ∀  i    ( 6 ) 
                 0    
 
where λi is the i-th eigenvalue of F. 
      
It is obvious that the left n-m columns 
of (3) can be satisfied by (5) and (6), 
and this result can be easily 
generalized to the general eigenvalue 
case of F [10].  The right and 
remaining m columns of (3) can always 
be satisfied by [10] 
 
       L = (TA - FT)0 C1-1        ( 7 ) 
                    Im 
 
Substitute (5) into (4), we have for Ky 
= 0 (strictly proper observer case): 
 
       K = Kz c1     D1       ( 8.a ) 
              |  O   ||:  | 
                  cr Dr 
 
When Ky ≠ 0 and matrix C is used in (4) 
(proper observer case), only the left 
n-m columns of (4) need to be satisfied 
(similar to the solution of (3)): 
 
       K = Kz c1      D1        ( 8.b ) 
              |  O  ||: | 
                 cr Dr 
 
where K and Di ∀  i are the left n-m 
columns of the corresponding matrices. 
 The right and remaining m columns of 
(4) can always be satisfied by 
 
       Ky = (K - KzT)0 C1-1 
                     Im 
 
Inspection of (8) shows that it 
uniquely and truly unifies the strictly 



 

proper and proper observer cases, and 
is truly a set of linear equations with 
unknown parameters Kz (which fully 
represents the freedom of (2.b)) and 
ci's (which fully represent the 
remaining freedom of (2.a) or (3)) on 
the same side of the equation.  
 
It is obvious that the simplification 
to (8) is uniquely enabled by the 
solution (5-7) of (3). 
  
3 The Unified, General, and Lowest 
Possible Observer Order Bound 
      
As analyzed in Sections 1 and 2, only 
from (4) or (8) and only when (8) is 
computed independently, can the 
observer order reduction be determined 
really systematically and generally. 
      
The algorithm of [11] uniquely and 
fully used the free parameters ci to 
satisfy (8).  As analyzed in [12], this 
algorithm guarantees that the observer 
order r satisfies 
 
1 ≤ r ≤ min{n, v1+...+vp}, if Kz=0 (9.a) 
 
and 0 ≤ r ≤ min{n-m, (v1-1)+...+(vp-1)},  
 
                       if Kz ≠ 0  (9.b) 
 
where the vi's are the plant 
observability indexes in descending 
order (v1+...+vm = n).  This is lower 
than the existing general upper bound 
min{n, pv1} and min{n-m, p(v1-1)} [7] 
because the vi's are in descending 
order. 
      
We will show in the following and based 
on (8) alone, that (9) is also the 
completely unified and the lowest 
possible bounds of observer order r.  
As analyzed in Section 1, r is the 
lowest possible number of rows of T 
needed to satisfy (4). 
       
From (8), 1 and 0 of (9) are indeed the 
lowest possible lower bound of r 
because K cannot be 0 while K can in 
(8.a) and (8.b), respectively.  These 
two lower bounds are achievable 
whenever K is a linear combination of 
the rows of D1 and of C in (8.a) and 
(4), respectively. 
      
From (8), the observer order can reach 
n or n-m regardless of the values of Di 
matrixes (or of T) because K can be I 

(state observer case). However, when 
the number of rows of K, p, is less 
than n, r may be lower than n or n-m 
and can be as low as its lower bound (1 
or 0) as shown in Section 1 and in the 
previous paragraph.  More important, 
when p is less than m, then r is 
guaranteed to be bounded by v1+...+vp or 
(v1-1)+...+(vp-1) which is always lower 
than n or n-m, respectively. Thus the 
function observer and its special state 
observer case, and the upper and lower 
bounds of r, are completely unified by 
(9). 
      
From (8), the single-output plant case 
and the multi-output plant case are 
also completely unified.  For single-
output plant, which has m = 1 and v1 = 
n, the two terms of the upper bounds of 
(9.a) and (9.b) become a unified n and 
n-1, respectively.  As m is increased 
compared to p, or as the plant output 
observation information is increased 
and the number of state feedbacks to be 
estimated is decreased, the second term 
of the upper bound of (9.a) and (9.b), 
v1+...+vp and (v1-1)+...+(vp-1) 
respectively, become gradually lower 
than the respective first term n 
(=v1+...+vm) and n-m (=(v1-1)+...+(vm-
1)).  Hence not only the single and 
multiple output plant cases, but also 
the two terms of the upper bound of (9) 
are completely unified.   
 
It should be noticed that the existing 
general observer order upper bound pv1 
and p(v1-1) cannot fit into this 
unification.   
      
The complete unification of the 
function observer and state observer 
cases (for K arbitrary and K = I) and 
of the single-output and multi-output 
plant cases (for m = 1 and m > 1), as 
simply described in the previous two 
paragraphs, also clearly demonstrate 
that the upper bounds of (9) are the 
lowest possible. 
 
4 The Significance of This Order 
Reduction 
      
Section 3 shows that the design of 
[11], which is uniquely simplified to 
the solving of (8) only, can uniquely 
guarantee that the observer order be 
generally and systematically designed 
to reach its lower bound (1 or 0) when 
possible and be guaranteed to be 
limited by its upper bound of (9).  



 

These bounds are the lowest possible. 
      
This section will emphasize that the 
observer order upper bound (9) can be 
very significantly lower than the 
prevailing state observer order n or n-
m. In addition, the practical 
significance of this analytical and 
general observer (or feedback 
controller) order reduction cannot be 
discounted by the newly developed 
computer numerical computation 
capability. 
      
For the simplicity of presentation, we 
will consider the strictly proper 
observer case (Kz = 0) only. 
      
As shown in Section 3, the upper bound 
v1+...+vp of observer order r is always 
lower than n whenever m > p.  For n » m 
» p and for evenly valued observability 
indexes vi, which is very common in 
practice, it is obvious that this upper 
bound can be significantly lower than n 
      
For example, in a circuit system with 
100 capacitors, 10 voltage or current 
meters, and 2 controlled voltage or 
current inputs (n = 100, m = 10, and p 
= 2), and suppose v1 =...= v10 = 10 
(v1+...+vm = n), then the observer order 
(9) of the design of [11] can be 
guaranteed to be no higher than v1 + vp 
= 20, which is significantly lower than 
n = 100. 
      
The controller order reduction from 100 
to 20 can hardly be discounted, even by 
today's computer computational 
capability.  It should be noted that 
practical problems are usually ill 
conditioned numerically.  In such 
problems, even today's super-computer 
cannot compute accurately a 100-th 
order controller.  
      
If the digital simulation of a 20-th 
order controller was formally 
impossible until now, then the 
significance of the above 100-to-20-th 
order reduction is feasible because of 
the new computer computation capability 
      
In fact, the general and analytical 
design result such as (9) simply cannot 
be discounted by numerical computation 
capability, no matter how powerful this 
capability is.  For example, the above 
100-to-20-th order reduction can simply 
be a 1000-to-20-th order reduction, if 
the parameters n and m of that example 

are changed to 1000 and 100, 
respectively (vi=10, i=1,...,100). 
The fact is, high observer order has 
been considered as a major drawback of 
state space control theory for years, 
and the minimal order observer design 
has been tried by researchers for 
years.  Hence the not fully successful 
past attempts of this task should not 
be a reason to discount the 
significance of this task, which is to 
design minimal order observer simply, 
generally and systematically and to 
achieve a generally guaranteed low 
observer order.  This is especially 
true when such a task is already 
successfully accomplished by the design 
of [11]. 
 
5 Conclusion & Additional Significance 
      
Even more significant than the claims 
of Sections 3 and 4, this paper also 
asserts the distinct design approach of 
[11]. That is to simplify the design 
problem to (4) or (8) only.  The actual 
numerical methods for solving (8) for 
the lowest possible number of rows of T 
may have room for improvement (although 
the bounds (9) of that number are 
already the lowest possible). But this 
design approach is the only right 
approach to minimal order observer 
design.  This is proved convincingly by 
the basic analysis, the design 
procedure, and the final results, of 
the first three sections of this paper. 
      
This distinct  design approach of 
observer/feedback controller has 
additional significance other than 
order reduction.  From Section 1, the 
basic advantage of this design approach 
is at the full exploration of the 
common fact that the number (p) of 
state feedback controls is less than n 
in (4). This is the only significant 
fact for the improvement of observer 
design, and the only fact which makes 
the observer order reduction possible.  
 
This fact is currently over looked -- 
the prevailing and existing state 
observer design always require the 
satisfaction of (3) and |C|≠0 together 
or the satisfaction of (3) and (4) for 
arbitrarily given K together.  The 
consequence is the unsatisfactory 
design result to the additional and 
critical observer design requirements 
such as the failed the realization of 
robustness properties of state feedback 



 

control (LTR) [13, 14].  The existing 
LTR result, which is based on state 
observers, is invalid to most plants 
(nonminimum-phase or rank(CB)< p or m < 
p), while a new result which fully uses 
this distinct fact is valid for most 
plants (all plants with m > p and 
almost all plants with m = p) [13, 14]. 
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