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Abstract
obser ver

The design of a mninal order

which can estinmate the state feedback
control signal Kx(t) wth arbitrarily
given observer poles and KOR™", has
been tried for years, with the
prevailing conclusion that it is an
unsol ved probl em This paper asserts
the followi ng four clear-cut clains. 1)

this design problem has been sinplified
to a set of linear equations K =
K.diag{ci, ..., c}D (ciOR™™ m = rank(Q)
if the observer is strictly proper,
wher e D is already determ ned and
ot her paraneters conpletely free, and r
is the observer order. 2) only this set
of linear equations can provide the
unified wupper bound of r, m n{n,
Vit .. +vpl and min{n-m (vi-1)+. .. +(Vp-
1)}, for strictly proper and proper
observers, respectively, where v; (vi >

..> Vp is the i-th observability index
of system (A, B,C0). 3) This bound is
lower than all other existing ones and
is the |owest possible general upper
bound. 4) The observer order reduction
guaranteed by this bound is \very
significant even at the conputer age.

I. Introduction

For a given linear time-invariant

observabl e pl ant

d/dt x(t)
y(t)

and its state feedback contro

with KOR™" arbitrarily given,
functi on observer has the genera
space nodel

A x(t) + B u(t)
C x(t)

(1)

Kx(t)
t he
state

Fz(t) + Ly(t) + TBu(t)(2 a)
Kez(t) + Ky(t) (2.b)

and z have di mensions n,
respectively. The stable

where x, u, v,
and r,
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pol es (or the eigenval ues of F) of

observer (2) are also arbitrarily given
for a guaranteed rate of esitinmation of
Kx(t).

The well known state observer is a
special case of (2) in the sense that K
= | The observer (2) is strictly
proper and proper if = 0 or 2 O,
respectively. These differences are
reflected by (2.b) only but not (2.a).

Because both x(t) and y(t) = Cx(t) are
tine varying signals, and because both
K and C are constants, it is obvious
that in order to generate Kx(t) for a
constant K, z(t) must converge to Tx(t)
for a constant T in (2.b). The
necessary and sufficient condition for

z(t) - Tx(t) is [1]

TA - FT = LC, (F is stable)
Equat i on (3) concer ns with
paraneters of the dynamic part
observer (2.a) only but not of (2.b).

After (3)
satisfied,

(3)

t he
of

(or —z(t) is

(2.b) becones

Tx(t))

K=KT+ KC=[K:K][T:C]"

Equat i on (4) concer ns with t he
paraneters of the static output part of
observer (2.b) only but not of (2. a).
More inportant, because only (2.b) but
not (2.a) reflects the difference
between all types of observers, only
(4) but not (3) can provide order
difference and order reduction for
different types of observers.

= KC (4)

For exanple, because the nunber (p) of
rows of Kis usually rmuch | ower than n,
the nunber (r) of rows of T needed to
satisfy (4) can be nuch lower than n-m
(or the nunber of rows of C can be mnuch
[ower than n). This is the only reason

that the function observer order r can
be much | ower than n-m
Because high observer order has been



considered a nmajor drawback that limts
the practical application of state
space control theory, the mnimal order

function observer design has been tried

for years. This design can be divided
into state space (of solving (3) and
(4) [ 2-6] and transfer function
approaches [7-9]. The general upper
bound of r from the transfer function
approach is mn{n-m p(v:-1)} [7] where
vy is the highest observability index
of plant (1), while the conparable
gener al upper bound has not been
guaranteed by the designs of [2-6]. For

exanple the design of [3] is limted to

the single-output plants only. In fact,
the prevailing conclusion is that the
really general and systematic nininal
or der function observer design
procedure and the really general
mni mal function observer order have

not been achieved [7, 9].

2 The Sinplification To A Set O Linear
Equations Only

As analyzed in Section 1,
which is a set of |Ilinear equations
only, can provide the order reduction
of function observers. To conpute the

of this equation wth the
nunber of rows of T (or mininal
observer order), really systematically,
it is obvious that each row of T and
each node of the dynamc part (F, T,L)

only (4),

sol ution
m ni nal

of observer (2.a) nust be conpletely
decoupled. It is also obvious that the
remai ning design freedom of T nust be
really fully usabl e in this
conput ati on. Because (F, T,L) nust
satisfy (3) first (see Section 1), the
remaining freedom of T is also the

remai ni ng design freedom of (3) (and of
the dynam c part of observer (2.a)).

Unfortunately, such a solution (F, T,L)

of (3) has not been wused in the
exi sting desi gns of [2-9].
Consequently, the existing design nust
conpute the solutions of (3) and (4)
together and has not been able to
conpute the solution of (4) separately
and therefore systematically. This is
the sinple and critical reason that the
existing design of [2-6] cannot be

really generally systematic and cannot
guarantee a really general and really

[ow upper bound of function observer
order [10].

Such a solution is used in [11] to
design the mninal order function

observers. This solution is based on
the Jordan formof matrix Fand C=1] O
1G] (| G| 20). This form of C can
al ways be derived by simlarity
transf ormati on. Then for distinct and
real eigenvalues of F, the i-th row t;
of T can be expressed as

ti =ci D, OI (5)
where ¢ OR™™ is conpletely free and

DOR™ is forned by the basis vectors
of t; and can be fully determined from
t he equati on

D(A- Axl)dnnO=0, Oi
0 0O

(6)

where ); is the i-th eigenval ue of F.

It is obvious that the |left n-m col ums
of (3) can be satisfied by (5) and (6),

and this result can be easily
generalized to the general eigenval ue
case of F [10]. The right and

remai ning m colums of
be satisfied by [10]

(3) can always

L=(TA- FNO G (7)

o nJ
Substitute (5) into (4), we have for K,

= 0 (strictly proper observer case):

K=K © OO ( 8.a)

I

O c OO
Wien K, # 0 and matrix Cis used in (4)
(proper observer case), only the left

n-m colums of (4) need to be satisfied
(simlar to the solution of (3)):

K=K [€1 b0 ( 8.b)
N N
0 cOomlOo
where K and D g i are the left n-m

colums of the corresponding natrices.

The right and remaining m colums of
(4) can al ways be satisfied by
Ky = (K- K0 €
00
I nspection of (8) shows that it

uniquely and truly unifies the strictly



proper and proper observer cases, and
is truly a set of linear equations with
unknown paranmeters K, (which fully
represents the freedom of (2.b)) and
ci's (whi ch fully repr esent t he
remai ni ng freedom of (2.a) or (3)) on

the sane side of the equation.

It is obvious that the sinmplification

to (8) is uniquely enabled by the
solution (5-7) of (3).

3 The Unified, GCeneral, and Lowest
Possi bl e bserver O der Bound

As analyzed in Sections 1 and 2, only
from (4) or (8) and only when (8) is
conput ed i ndependent |y, can t he
observer order reduction be determ ned

really systematically and generally.
The algorithm of and
fully used the free paraneters c¢;i to
satisfy (8). As analyzed in [12], this
al gorithm guarantees that the observer

[11] uni quely

order r satisfies
1 <r <cmn{n, vi+t...+vp}, if K=0 (9. a)
and 0 < r < nmin{n-m (vi-1)+...+(vp-1)},
if Kk 20 (9.b)
wher e t he vVi's are t he pl ant
observability indexes in descending
order (vit...+vyn = n). This is |ower
than the existing general upper bound
mn{n, pvy} and mn{n-m p(vi-1)} [7]
because the vi's are in descending
order.
W will showin the follow ng and based
on (8) alone, that (9) is also the
conpletely wunified and the |owest
possi bl e bounds of observer order r.
As analyzed in Section 1, r is the
| owest possible nunber of rows of T

needed to satisfy (4).

From (8), 1 and 0 of (9) are indeed the
| owest possible lower bound of r
because K cannot be 0 while K can in
(8.a) and (8.b), respectively. These
t wo | ower bounds are achi evabl e
whenever K is a linear conbination of
the rows of D and of C in (8.a) and
(4), respectively.

From (8), the observer order can reach
n or n-mregardl ess of the values of D
matrixes (or of T) because K can be |

(state observer case). However, when
the nunmber of rows of K p, is less
than n, r may be lower than n or n-m

and can be as low as its |ower bound (1

or 0) as shown in Section 1 and in the
previ ous paragraph. More inportant,
when p is less than m then r is

guar anteed to be bounded by vi+...+v, or
(vi-1)+. .. +(vp-1) which is always |ower
than n or n-m respectively. Thus the
function observer and its special state
observer case, and the upper and | ower
bounds of r, are conpletely unified by

(9).

From (8), the single-output
and the multi-output plant case are
also conpletely wunified. For single-
output plant, which has m= 1 and v; =
n, the two terns of the upper bounds of
(9.a) and (9.b) becone a unified n and

pl ant case

n-1, respectively. As m is increased
conpared to p, or as the plant output
observation information is increased

and the nunber of state feedbacks to be
estimated is decreased, the second term
of the upper bound of (9.a) and (9.b),
Vit .. Vg and (vi-1)+. .. +(vp-1)
respectively, becone gradually | ower
than the respective first term n
(=vit+...+vp and n-m (=(vi-1)+. .. +(Vyr
1)). Hence not only the single and
multiple output plant cases, but also
the two terns of the upper bound of (9)
are conpletely unified.

It

should be noticed that the existing

general observer order upper bound pv;
and p(vi-1) cannot fit into this
uni fication.

The conpl ete uni fication of t he
function observer and state observer
cases (for K arbitrary and K = 1) and
of the single-output and nmulti-output
plant cases (for m= 1 and m > 1), as

sinply described
par agraphs, also

in the previous two
clearly denonstrate

that the upper bounds of (9) are the
| owest possi bl e.

4 The Significance of This Oder
Reduct i on

Section 3 shows that the design of
[11], which is uniquely sinplified to
the solving of (8) only, can uniquely
guarantee that the observer order be

generally and systematically designed

to reach its lower bound (1 or 0) when
possible and be guaranteed to be
l[limted by its wupper bound of (9).



These bounds are the | owest possible.
This section will enphasize that the
observer order upper bound (9) can be
very significantly | ower than the
prevailing state observer order n or n-
m In addi tion, t he practi cal
significance of this analytical and
gener al observer (or f eedback
controller) order reduction cannot be
discounted by the newy devel oped
conput er nureri cal conput ation
capability.

For the sinplicity of presentation, we
will consider the strictly proper

observer case (K, = 0) only.

As shown in Section 3, the upper bound
vit. .. +v, of observer order r iIs always
| ower than n whenever m> p. For n » m

» p and for evenly valued observability
i ndexes vi, which is very comon in
practice, it is obvious that this upper
bound can be significantly lower than n

For exanple, in a circuit system wth
100 capacitors, 10 voltage or current
neters, and 2 controlled voltage or
current inputs (n = 100, m= 10, and p
= 2), and suppose v; =..= v = 10
(vi+...+vyy = n), then the observer order
(9) of the design of [11] can be

guaranteed to be no higher than v; + v,
= 20, which is significantly |ower than
n = 100.

The controller order reduction from 100
to 20 can hardly be discounted, even by
t oday' s conput er conput ati ona
capability. It should be noted that
practical problens are wusually ill
conditioned numerically. In such
probl ens, even today's super-conputer
cannot conpute accurately a 100-th
order controller.

If the digital simulation of a 20-th
or der controller was formal |y
i mpossi bl e unti | now, t hen t he
significance of the above 100-to0-20-th
order reduction is feasible because of
t he new conputer conputation capability

In fact, the general and analytica
design result such as (9) sinply cannot
be discounted by nunerical conputation
capability, no matter how powerful this
capability is. For exanple, the above
100-to0-20-th order reduction can sinply
be a 1000-to-20-th order reduction, if
the paraneters n and m of that exanple

are changed to 1000 and 100,
respectively (vij=10, i=1,...,100).

The fact is, high observer order has
been considered as a nmjor drawback of
state space control theory for years,
and the mninmal order observer design
has been tried by researchers for
years. Hence the not fully successful
past attenpts of this task should not
be a reason to di scount t he
significance of this task, which is to
design mninmal order observer sinply,
generally and systematically and to
achieve a generally guaranteed |ow
observer order. This is especially
true when such a task 1is already

successfully acconplished by the design
of [11].

5 Conclusion & Additional Significance
Even nore significant than the clains
of Sections 3 and 4, this paper also
asserts the distinct design approach of
[11]. That is to sinplify the design
problemto (4) or (8) only. The actua
nurreri cal methods for solving (8) for
the | owest possible nunber of rows of T
may have room for inprovenent (although
the bounds (9) of that nunber are
already the |owest possible). But this
design approach is the only right
approach to mnimal order observer
design. This is proved convincingly by
t he basi c anal ysi s, t he desi gn
procedure, and the final results, of
the first three sections of this paper.

This distinct design approach of
obser ver/ f eedback controller has
addi ti onal significance other t han
order reduction. From Section 1, the
basi c advantage of this design approach

is at the full exploration of the
comon fact that the nunber (p) of
state feedback controls is less than n
in (4). This is the only significant
fact for the inprovenent of observer
design, and the only fact which nakes
t he observer order reduction possible.

This fact is currently over |ooked
the prevailing and existing state
observer design always require the

satisfaction of (3) and | #0 together
or the satisfaction of (3) and (4) for
arbitrarily given K together. The
consequence is t he unsati sfactory
design result to the additional and
critical observer design requirenments
such as the failed the realization of
robustness properties of state feedback



control (LTR) [13, 14]. The existing
LTR result, which is based on state
observers, is invalid to nost plants
(nonm ni mum phase or rank(CB)< p or m<
p), while a new result which fully uses
this distinct fact is valid for nost
plants (all plants with m > p and
alnost all plants with m= p) [13, 14].
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