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Abstract

The proposed observer computes an outer approximation of
the set of states which are consistent with a given uncertain
state space model and some measurements. The uncertainties
are modeled by unknown but bounded inputs. A
representation of domains by zonotopes (particular polytopes)
is used to reduce the computation of state bounds to rather
simple matrix operations and to control the wrapping effect.

1 Introduction

Given a model and some measurements, an observer aims at
providing information on the state of the system. In practice,
the exact modeling of a real system is almost impossible and
measurements are often corrupted by noise. Due to such
uncertainties, the precision of the available knowledge on the
system (model and measurement) is necessarily bounded.
Therefore, uncertainties have to be taken into account for the
state estimation to remain consistent with the available
knowledge. The approaches used to design observers can be
classified according to how they deal with uncertainties [4].
Some of them do not take explicitly the uncertainties into
account, such as Luenberger observers. A statistical modeling
of uncertainties can also be used: state estimators based on
Kalman filters [9] belong to this kind of approaches.
Assumptions about the distribution of the random variables
modeling the (state and measurement) perturbations have to
be done, but may be difficult to validate. The last group of
methods relies on the description of uncertainties by known
compact sets (in ℜn: bounded and closed sets). No assumption
about the statistical properties is then required. The result of
state estimation is a domain (compact set) in the state space
representing an outer approximation of all the states that are
consistent both with the uncertain model and the uncertain
measurements. This makes these approaches attractive for
fault diagnosis [2], [8] or localization [1] applications, for
instance. Several representations of domains can be used
when designing state bounding observers: ellipsoids,
orthotopes (boxes), parallelotopes or polytopes with limited
complexity (i.e. with a limited number of faces and vertices).
Among them, ellipsoids are certainly the most widely used

[3]. The present paper focuses on the representation of
domains by zonotopes [7], which correspond to a particular
class of polytopes. More precisely, a zonotope is the image of
a (unit) hypercube by a linear application. An appropriate
representation of domains results from a compromise between
the exactness (outer approximations are not too pessimistic)
and the required computation load. For instance, polytopes
may be used to represent exactly the domains in a linear
context; but if the number of faces and vertices increases at
each integration step, the computation load becomes quickly
prohibitive. That is why the state bounding observer presented
in this paper implements a step performing a reduction of the
zonotope complexity, in addition to a prediction step and a
correction step. The later two steps are similar to those
implemented in Kalman filters: prediction makes use of the
uncertain model whereas correction makes use of the
uncertain measurements to update the state estimation. The
use of zonotopes to implement the prediction step and the
reduction step has been largely inspired by the work of W.
Kühn [5], [6], [7]. This work aims at computing mathematical
rigorous error bounds for the numerical approximation of
discrete dynamical systems. Zonotopes are shown to be a
suitable representation in order to control the wrapping
effect1. The main originality of the present work is to add a
correction step in order to design a state bounding observer.

The paper is organized as follows: the first section deals with
the definition of the class of uncertain dynamical systems that
is used to design the proposed state bounding observer. The
second section defines the zonotopes and gives some of their
properties. The principle of bounded error state estimation is
recalled in the third section. Then, the prediction step, the
reduction step and the correction step are successively
detailed. Finally, the fourth section shows simulation results.

1 Problem formulation

Some notations are first introduced. The real interval [-1;1]
will be denoted by an empty square: ]1;1[−=� . Moreover,

the name of a variable v in brackets, [v], will denote a domain
of possible values for v: ][vv ∈ .

                                                          
1 Wrapping effect: (possibly unstable) growth of domains due
to the cumulative uncertainty resulting from the outer
approximations at each step when integrating a dynamical system.



The class of systems under study is that of discrete linear time
varying systems with additive and bounded uncertainties:
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xk, uk, yk are column vectors respectively representing the
state, the input and the measurement of the system. As no
model can exactly represent the system state and measurement
given only the known input, the validity of the model (1) is
restored by modeling uncertainties with two additive unknown
inputs: vk and wk. vk stands for the state perturbation whereas
wk stands for the measurement perturbation (offset, noise,
etc…). Instead of assuming statistical properties for vk and wk

as in Kalman filtering, they are only assumed to be bounded:
vk (resp. wk) belongs to a n (resp. p) dimensional hypercube
(1). Ak, Bk, Ck, Dk, Ek, Fk are known real matrices of
appropriate dimensions. Fk is assumed to be invertible.
Moreover, the initial state of the system is assumed to belong
to a known domain (that may be chosen large to represent a
lack of available information on the system initial state):

]ˆ[ 00 xx ∈ (2)

Given the model (1), yk and uk, the problem of designing a
state bounding observer consists in computing an outer
approximation ]ˆ[ kx of the domain of possible values for the

unknown state xk. For the precision of the state estimation to
be as good as possible, ]ˆ[ kx  should be of minimal size while

still guaranteeing that the relation ]ˆ[ kk xx ∈  holds. An

optimal minimization of the domain size is often a difficult
task. However, the choice of an appropriate domain
representation can help to compute not too pessimistic outer
approximations. This will be the subject of the next section.

Remark: Most of the time, xk is bounded due to physical
limits. When the system is observable (or, at least, detectable),
the sensors often provide more precise information on xk than
these physical bounds. However, when the system is not
observable and not detectable, the physical bounds of the state
represent the only available information to perform a
correction step. Modeling such bounds can be done by
introducing artificial measurements in the model (1) as:
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For example, if the matrix L is diagonal in the modified
measurement equation (3), each diagonal element has the
meaning of a physical bound for the corresponding state in xk.

2 Zonotopes: definition and properties

Zonotopes are a special class of convex polytopes. More
precisely, a p-zonotope in ℜn is the Minkowski sum of p
straight line segments in ℜn. It can be also defined as the

linear image of a p-dimensional hypercube in ℜn. Some
notations and examples will be given to illustrate these
definitions and to state some of the zonotope properties. To
begin with, the Minkowski sum of two sets, [x] and [y], is the
set defined as:

{ }][ ],[ /][][ yyxxyxyx ∈∈+=+ (4)

A straight line segment in ℜn, denoted [Si], can be defined by
two column vectors: ci ∈ ℜn stands for the segment center,
and ri ∈ ℜn defines both the direction and the radius of [Si]:

�.][ iii rcS += (5)

Following the first definition, a p-zonotope, [Z], is the
Minkowski sum of p straight line segments, [Si], i=1…p:

][][][ 1 pSSZ ++= � (6)

Substituting (5) for [Si], i=1…p, in (6), a second expression of
[Z] can be deduced:

pRcZ �.][ += (7)

pccc ++= �1 ,     ][ 1 prrR �= (8)

Except for the translation corresponding to the center c, (7)
shows that the p-zonotope [Z] can be defined as the linear
image (by R ∈ ℜn×p) of the p-dimensional hypercube �p (�p

will be called the abstract domain related to [Z]). The unary
operator � over the real matrices is used to denote such an
image. (7) can be thus rewritten as RcZ �+=][ , where:

pnp RRR ×ℜ∈=    ,.�� (9)

If R1 and R2 are identical up to a permutation of their column
vectors, then �R1=�R2. Figure 1 illustrates the previous
definitions by showing the step by step construction of a
zonotope generated by three straight line segments.

+r1

-r1

+r2-r2

+r3

-r3

[S1] [S1]+[S2] [Z]=[S1]+[S2]+[S3]

Figure 1: Construction of a 3-zonotope [Z] in ℜ2

The zonotope definitions can be particularized in many ways
and some links exist with other domain representations [5]:
the unit cube is �I where I is the identity matrix. If the n×n
matrix R is  (i) invertible, (ii) unitary: RT.R=I, or (iii) diagonal,
then �R is (i) a parallelotope, (ii) a cube or (iii) an interval
vector (i.e. a box aligned along the reference frame axes).

Following the previous definitions, some properties of
centered zonotopes will be stated. Firstly, the (Minkowski)
sum of two centered zonotopes in ℜn can be computed by a
matrix concatenation:

�R1 + �R2 = �[R1 R2] (10)



Secondly, the image of a centered zonotope by a linear
application L can be computed by a standard matrix product:

L.(�R) = �(L.R) (11)

Thirdly (and finally), the smallest centered interval vector
containing �R is called the interval hull of �R and denoted
�R. It can be computed as follows (R ∈ ℜn×p):

�R = �rs(R),     ∑
=

=
p

j
ijii RRrs

1

)(
(12)

where rs stands for “row sum” and rs(R) is a diagonal matrix
defined as in (12). The interval hull (Figure 2) is interesting to
compute easily an outer approximation of reduced complexity
for a given zonotope. Apart from the intersection, it can be
noticed that several basic operations involving zonotopes
reduce to simple (and fast) matrix computations.

��R

�R

Figure 2: interval hull of a zonotope

3 Bounded error state estimation

The purpose of a state bounding observer is to find, in the
state space, a minimal (if possible) outer approximation of the
domain that is consistent both with the measurements and a
given model of the system. In order to detail the algorithm
steps, some notations are first introduced:

]ˆ[ '/ kkx  denotes the domain of possible states at time k

resulting from the state space model of the system (1) and the
measurements until time k’ (time k’ included). When k=k’, the
notation is simplified as: ]ˆ[]ˆ[ / kkk xx = .

]ˆ[ / kykx  denotes the domain of possible states at time k

resulting from the measurements at time k, yk, and from the
measurement equation in the system model (1).

][ ky

]ˆ[ 1/ −kkx

Model
prediction

]ˆ[ / kykx

Measurement
information

]ˆ[ 1−kx

]ˆ[ kx

∩
Correction

Figure 3: Principle of bounded error state estimation

]ˆ[ 0x  is used to initialize the algorithm (2). Assuming ]ˆ[ 1−kx

is known, the state equation in (1) is used to compute
]ˆ[ 1/ −kkx . The prediction step is followed by a reduction step

designed so as to control the zonotope complexity which

would be else greater at each step. Finally, the correction step
consists in computing an outer approximation of the
intersection between ]ˆ[ 1/ −kkx  and ]ˆ[ / kykx  (Figure 3). The

main loop of the state bounding algorithm is given in Figure
4. The main three steps it is composed of will be detailed in
the following three subsections.

Initialization ( ]ˆ[ 0/1x  is computed from ]ˆ[ 0x )

For k=1 to kmax

System at time k: Ak, Bk, Ck, Dk, Ek, Fk, uk, yk

]ˆ[ kx  ← Correction( ]ˆ[ 1/ −kkx , yk, uk)

]ˆ[ /1 kkx +  ← Prediction( ]ˆ[ kx )

]ˆ[ /1 kkx +  ← Reduction( ]ˆ[ /1 kkx + )

End

Figure 4: Main loop of the state bounding algorithm

3.1 Prediction step

The prediction step aims at computing ]ˆ[ /1 kkx +  from ]ˆ[ kx

and the state equation in the model (1). ]ˆ[ kx  is assumed to be

a zonotope such that ]ˆ[ kk xx ∈ . This membership relation

holds at k=0 and the recurrence in Figure 4 will be shown to
be designed so that the relation also holds at time k. To that
purpose, ]ˆ[ /1 kkx +  should be so that ]ˆ[ /11 kkk xx ++ ∈ . Let ck

and Rk respectively denote the center and the matrix
generating the zonotope ]ˆ[ kx :

kkk Rcx �+=]ˆ[ (13)

According to (1), kkkkkkk vEuBxAx ...1 ++=+ , on the one

hand, according to the fact that ]ˆ[ kk xx ∈  and that n
kv �∈ ,

on the other hand, it follows that ]ˆ[ /11 kkk xx ++ ∈  where:

n
kkkkkkk EuBxAx �..]ˆ.[]ˆ[ /1 ++=+

(14)

Substituting (13) for ]ˆ[ kx  in (14), denoting respectively ck+1/k

and Rk+1/k the center and the matrix generating the zonotope
]ˆ[ /1 kkx + , and applying (9), (10) and (11), it comes:

kkkkkk Rcx /1/1/1 ]ˆ[ +++ += � (15)

kkkkkk uBcAc ../1 +=+ (16)

]   [/1 kkkkk ERAR =+ (17)

The representation of domains by zonotopes reduces the
prediction step to very simple matrix computations ((16) and
(17)). Moreover, the prediction in itself is not subjected to any
approximation. However, expanding the recurrence

]   [1 kkkk ERAR =+  (see note 2) shows the need for a

                                                          
2 Identifying Rk+1/k and Rk+1 (by comparison with (17)) does
not lead to a loss of generality as the only prediction step is
studied here (i.e. the correction step and the reduction step
can be momentarily viewed as identity operators).



reduction step: as R0, Ak and Ek are n×n matrices, Rk is an
n×n(k+1) matrix. Consequently, the number of segments
generating the zonotope ]ˆ[ /1 kkx +  is increased by n at each

step if the prediction is considered alone. In order to control
the domain complexity, a reduction step is thus implemented.

3.2 The reduction step

Let Red denote a reduction operator. Red is defined so as to
map centered zonotopes into centered zonotopes and to map
sets into supersets [7], [5]:

])([][ ZRedZ ⊆ (18)

As above mentioned, choosing the identity operator Id for Red
provides an exact solution but leads to a linear in k increase of
the zonotope complexity. The interval hull (12) is another
example of reduction operator. However, the outer
approximations are then very pessimistic and the wrapping
effect is most of the time prohibitive. Consequently, a
compromise between exactness (Red=Id) and reduced domain
complexity (Red=�) has to be found. To that purpose, an
heuristic will be introduced. It is based on the fact that each
segment generating a zonotope correspond to some edges of
the final domain (Figure 1). An heuristic to reduce the
complexity of a centered zonotope, �R, consists in finding an
outer zonotope, Red(�R), generated by less segments than
�R, the edges of �R with lower length having priority to be
involved in the reduction. Following the proposed heuristic,
the reduction algorithm is formalized. A parameter d defining
the maximal zonotope complexity is chosen. d can be defined
as the maximal number of n×n bloc matrices involved in Rk+1/k

(17). With no loss of generality, the centered zonotope to be
reduced, �R=�Rk+1/k, is assumed to be generated by p=n.d
segments (Rk+1/k can be completed with null column vectors to
build R if p<n.d, R=Rk+1/k otherwise):

]       [ 1 pi rrrR ���� = ,   p=n.d (19)

The column vectors of R are sorted on decreasing Euclidian
norm. σ stands for the related index permutation. As a column
permutation does not modify the zonotope, (20) holds:

]       [ )(³)(³)1(³ pi rrrR ���� = ,   )1(³)(³ +≥ ii rr (20)

    ]       [ 121 dd-d QQQQR −= ��� (21)

The resulting matrix belongs to ℜn×nd. It can be thus written as
the concatenation of d bloc matrices Qj of size n×n (21).
Then, the proposed reduction consists in replacing the
zonotope generated by [Qd-1 Qd] by its interval hull:

]   [ 21 NQQR d −⊆ ��� ,   nn
dd QQrsN ×

− ℜ∈= ]) ([ 1
(22)

Such a reduction only operates on the generator segments (i.e.
edges) of lower size, that is to say, those in Qd-1 and Qd. The
reduction operator in (22) can be also expressed as:

] [ ]   [)( 121 ddd QQQQRRed −− += ��� �
(23)

The proposed reduction scheme makes it possible to set the
zonotope complexity by choosing d. In other words, d allows
to adjust the compromise between exactness (d is big) and
reduced domain complexity (d is small). Other reduction
strategies exist such as cascade reduction [5] or flush when
full strategies [6]. The reduction proposed in this paper is easy
to generalize when Ek is not a square matrix (1).

3.3 The correction step

The correction step aims at taking into account the
information provided by the measurements at time k. Ideally,
it would consist in computing the exact intersection between

]ˆ[ 1/ −kkx  and ]ˆ[ / kykx  (Figure 3). As rapidly computing the

exact intersection of two zonotopes is not a trivial task, a
zonotope only including the searched intersection will be
computed in practice. One of the specifications was to reduce
the correction step to standard and rather simple vector or
matrix operations. In particular, solutions involving an
enumeration of vertices or facets have not been considered for
the overall algorithm to remain efficient from a real-time point
of view. In the following, the correction problem will be first
rewritten into a standard form. Then, the proposed correction
step will be described. ]ˆ[ 1/ −kkx  is such that ]ˆ[ 1/ −∈ kkk xx . It

can be decomposed into its center and a centered zonotope as:

p
kkkkkkkkkk RcRcx �� .]ˆ[ 1/1/1/1/1/ −−−−− +=+= (24)

The measurement equation in the model (1) is:

kkkkkkk wFuDxCy ... ++= (25)

Moreover, a prediction of the measurement at time k can be
computed from the center of ]ˆ[ 1/ −kkx :

kkkkkkk uDcCy .. 1/1/ += −− (26)

The difference between yk and yk/k-1 reflects the extra
information provided by the measurement at time k compared
to what can be deduced from the model. This difference is
analogous to the innovation in the framework of Kalman
filtering. From (25) and (26), it comes:

( ) ( ) kkkkkkkkkk wcxCFyyF +−=− −
−

−
−

1/
1

1/
1 ... (27)

Let introduce the following notations to reformulate the
correction problem at time k:

( )1/
1. −

− −= kkkk yyFδ ,     kk CFM .1−=

1/ −= kkRR ,     kww =

(28)

δ, M and R can be computed at time k as they only depend on
known variables. δ can be viewed as an innovation term that is
normalized by the measurement uncertainties. Moreover, as

]ˆ[ 1/ −∈ kkk xx  and according to (24), there exist s∈�p such

that sRcx kkk .1/ =− − . The correction problem can be thus

expressed in the abstract space of ]ˆ[ 1/ −kkx  as finding an outer

approximation [s] of the intersection between �p and the



domain of possible values for s resulting from the
measurement equation (27). According to the notations
introduced in (28), one way to formalize the correction
problem at time k is the following: the correction problem at
time k consists in finding an outer approximation [s] of the s
domain resulting from the three statements in (29):

ps �∈ ,   mw �∈ ,   sMRw .=−δ (29)

]ˆ[ kx  is then computed from [s] as:

].[]ˆ[ 1/ sRcx kkk += − (30)

MR

Abstract space for the states, Σ Measurement space

MR.s
ps �∈

][s mw �∈

Kernel
    V0

Kernel ⊥

    V1

Image
   U1

Image ⊥

   U0

S1

S1
-1

δ

Figure 5: Illustration of the correction step

Before computing the intersection, the base of the abstract
space, Σ, is changed in order to decompose it into two
subspaces: the first subspace, generated by V0, is the kernel of
MR. It represents the subspace of Σ that is not influenced by δ
(i.e. by the measurement at time k). The second subspace,
generated by V1, is the supplement to the kernel of MR. The
inverse image of the measurement domain (centered on δ)
defines a domain in this second subspace, where the
intersection will take place (Figure 5). V0 and V1 are computed
from a singular value decomposition of MR as:
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U=[U1 U0] and V=[V1 V0] are unitary matrices (UTU=I,
VTV=I) and S1 is a diagonal matrix where diag(S1) are the
(nonzero) singular values of MR. Let σ1 and σ0 denote the
coordinates of s in the new base. It comes:
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According to (31) and (32), the last two statements in (29) are
verified if (33) holds:

TT USUSZ 1
1

11
1

111 ][ −− −=∈ �δσ (33)

According to (32), the projection in the subspace generated by

V1 (resp. V0) of the first statement in (29), ps �∈ , can be
expressed as:

TV11 �∈σ    (resp. TV00 �∈σ  ) (34)

As a consequence of (33) and (34), the three statements in
(29) hold when (35) holds:

TVZ 111 ][ �∩∈σ    and   TV00 �∈σ (35)

An intersection of two zonotopes is involved in (35). An outer
approximation of this intersection by a box, [Binter], can be
obtained by intersecting the interval hulls of the two
zonotopes, which is an easy task (intersection of two boxes):

)()(][ 11
1

11
1

11
TTTinter VUSUSB �� ∩−=∈ −− δσ (36)

(35) shows that the pessimism induced by such an
approximation is limited to the subspace influenced by the
measurements at time k (V1). Pessimism does not affect the
supplementary subspace (V0), where only the model
prediction provides information. This justifies the proposed
decomposition of the abstract space Σ (Figure 5, (31) and
(32)). [Binter] can be decomposed into its center, cinter and a
(diagonal) matrix Rinter as:

interinterinter RcB �+=∈ ][1σ (37)

As 0011 .. σσ VVs +=  (32), on the one hand, as ][1
interB∈σ

(37) and TV00 �∈σ  (35), on the other hand, an outer

approximation of the searched domain is computed as:

].   .[).(][ 0011
Tinterinter VVRVcVs �+= (38)

Given [s] (38), the correction step finally returns ]ˆ[ kx  from

(30). Through the intersection step, the center of ]ˆ[ kx  does

not only depend on the innovation (i.e. on yk, uk, ck/k-1) but also
on the dynamic evolution of the computed domains.

4 Simulation results

The state bounding observer has been applied to the state
estimation of three systems. The first one is observable and
detectable (O, D), the second one is non observable but
detectable (NO, D) and the third one is neither observable nor
detectable (NO, ND). The corresponding state space
representations are given by (39) and Table 1.
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The last three lines of Ck, Dk and Fk are implemented in the
observer algorithm in order to bound the state domain. They
correspond to the above defined “artificial measurements” (3).

(Ak, c) a c
O, D [2.548  –2.5165  0.94848] [1  –2.7    1.4]
NO, D [2.548  –2.5165  0.94848] [1  –2.95  1.9]
NO, ND [2.6      –2.5725  1.01475] [1  –3.1    2.2]

Table 1: Parameters of the three systems under study



Figure 6 shows simulation results when d=5, uk=0,
Tx ]4  4  4[0 = , 3

0 ]5;5[]ˆ[ −=x  (i.e. (2) holds) and vk (resp.

wk) is a uniform random noise in �n (resp. in �p).
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Figure 6: Responses of the state bounding observer
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(a): State bounds at time k (b): (NO, ND), k=30, zoom

Figure 7: 1D and 2D projection of the estimated state domain

Each subplot in Figure 6 refers to the time responses related
to one state (column-wise) and to one of the system under
study (line-wise). Each subplot is composed of four curves:
The min and max curves represent the state bounds computed
from the interval hull of the zonotope describing the set of
possible states at time k (Figure 7a). In Figure 6, the dotted
lines correspond to the projection of the center of the
estimated state domain. It is to be compared with the
continuous line representing the time evolution of the system
“real” state. Figure 6 shows the convergence of the state
bounding observer, except for the (NO, ND) case.
Convergence is fast in the (O, D) case and slower in the (NO,
D) case. The (NO, D) system is composed of two observable
oscillating poles and one unobservable real pole (z=0.95,
|z|<1). The observer convergence, as shown by the state
bounds, follows the dynamic involved by this later mode
(Figure 6). The (NO, ND) case is also worth commenting. The
“real” state remains inside the state bounds (until the
“physical” bounds, 106, are reached (39), what occurs at

k=125). Figure 6 could let believe that the state information is
very inaccurate (i.e. the bounds related to the three states
diverge). A 2D projection of the zonotope representing the set
of possible states at k=30 (Figure 7b) shows that the
increasing inaccuracy is oriented toward a single direction.
This direction is that of the unobservable subspace,
DNO=[0.631  0.574  0.522]T. Figure 7b allows to check that
the principal direction of the state domain projection is
parallel to [0.631  0.574]T (projection in the plane (x1,x2)).

5 Conclusion

The proposed state-bounding observer shows that zonotopes
may be a suitable alternative to other domain representations.
The resulting algorithm reduces to rather simple and fast
matrix computations. Moreover, the wrapping effect that is
often critical when integrating uncertain dynamical systems,
can be controlled through the parameterization of domains
complexity. Simulation results show the effectiveness of the
proposed correction step. Quantifying the pessimism induced
by the successive outer approximations could however be
useful to study, optimize and compare several reduction and
correction strategies. Comparisons on benchmarks with
Kalman filters and other existing state bounding observers
also seem necessary to assess more precisely the potential
fields for the future applications of zonotope based observers.
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