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Abstract
We study the extension of what class of linear time in-
variant plants may be transformed into SPR systems in-
troducing an observer. It is shown that for the open loop
stable systems a cascaded observer achieves the result.
For the open loop unstable systems an observer-based
feedback is required to success. In general any system sta-
bilizable and observable may be transformed into an SPR
system. This overcomes the old conditions of minimum
phase and relative degree one. The result is illustrated
with some examples.
Keywords: Strictly Positive Real, Kalman Yakubovich
Popov Lemma, Minimal Realizations.

1 Introduction
The celebrated Kalman-Yakubovich-Popov
(KYP) Lemma gives algebraic equations which are equiv-
alent to an analytic property in the frequency domain of
a square transfer matrix Z(s). A system that holds this
frequency domain property is called Strictly Positive Real
(SPR) system. The original references [8], [18] and [13]
express the algebraic equations for a system to be SPR
provided that state space realization is minimal, i.e., con-
trollable and observable. It has been recognized for long
time ( Meyer [10], [12] and [2]) that the minimality of the
realization can be weakened to only stabilizability and
observability of the system. However a proof has not yet
been provided. Implicitly, Rantzer [14], has presented a
novel proof based on convexity properties and linear al-
gebra that does not requires minimality. But it was not
until recently [4] that the minimality issue was explicitly
proved in an algebraic fashion. It has been shown that
in some cases a minimal state-space SPR realization can
preserve this property even if we introduce uncontrollable
modes as long as they are stable. Further properties of
SPR systems and comparisons with other related results
are presented in [17] and [9].
This paper addresses the problem of transforming a lin-
ear time invariant system into an SPR system. Molander

and Willems [11] solved the problem for state feedback,
i.e., when the state is measurable. In the context of non-
linear systems, Byrnes et. al. [3] solved the problem
under smooth state feedback, and they established that
the problem may be solved if and only if the system has
relative degree 1 and is (weakly) minimum phase. In the
linear case Sun et. al. [16] presented a solution using
output feedback. The transformed system they obtain
is Extended SPR (ESPR) provided that the condition
D + DT > 0 is veri¯ed. A related result based on auxil-
iary optimization problem was provided by Haddad and
Bernstein [5]. Contrary to the algorithm in [16], our ap-
proach is based on the de¯nition of an output that is only
a function of the observed state.
The paper is organized as follows. Section II presents
some preliminaries. The case of stable systems is pre-
sented in section III while section IV is devoted to un-
stable systems. Some illustratives examples are given in
section V. The concluding remarks are ¯nally given in
section VI.

2 Preliminaries
Let us consider a linear time-invariant m-inputs m-
outputs transfer matrix Z(s) with a minimal realization
given by

P
1

²
x = Ax + B u
y = C x

(1)

where x 2 Rn, u,y 2 Rm ,m · n and A,B,C are ma-
trices of the approriate dimensions. Denote by C,C¡

and
°

C¡, the complex plane, the closed left hand complex
plane and the open left hand complex plane respectively.
Denote by σ (T) the set of eigenvalues of the square ma-
trix T .

De¯nition 1 [1], [12] The transfer matrix Z(s) is said
to be PR if: i) All elements of Z(s) are analytical in
Re[s] > 0; and ii) Z(s) + ZT (¡s) ¸ 0 for all Re[s] > 0.
Z(s) is said to be SPR if Z(s¡ ε) is PR for some ε > 0.



For the scalar case, m = 1, the classical interpretation of
z(s) being PR (SPR) is that its Nyquist plot lies entirely
in the right hand complex plane (open right hand complex
plane).We will need in the sequel the following version of
the KYP Lemma for strictly proper systems:

Lemma 2 Let Z(s) = C (sI ¡A)¡1 B be a m£m trans-
fer matrix such that Z(s) + ZT (¡s) has normal rank m,
where A is Hurwitz, (A,B) is stabilizable, and (C,A) is
observable. Then, Z(s) is strictly positive real (SPR) if
and only if there exist positive de¯nite symmetric matri-
ces P and Q such that

P A + AT P = ¡Q
P B = CT (2)

3 Stable case
Let us consider a linear time invariant system described
in standard state-space equations as (1), see [15].
Assumption I: The A matrix is stable [15] or [9], i.e.

σ(A) ½
°

C¡, the open left half complex plane.
A full order observer for the system

P
1 is given by

cP
(

²
bx = A bx + B u +LC (x ¡ bx)
z = M bx

(3)

where the observer gain matrix L is such that A ¡ LC
has its spectrum in the open left half complex plane.
The system (1) and the observer (3) may be written com-
pactly as:

2
4

²x
²
bx

3
5 =

"
A 0

LC A ¡LC

#"
x
bx

#
+

"
B
B

#
u

(4)
Introducing the state estimation error as ex , bx ¡ x, the
system (4) may be expressed as:

P
0

8
<
:

2
4

²
x
²
ex

3
5 = A0

·
x
ex

¸
+ B0u (5)

where

A0 ,
·

A 0
0 A ¡ LC

¸
and B0 ,

·
B
0

¸
(6a)

Remark 1 Notice that the system
P

0 is not minimal,
all the modes associated to the block A¡LC are not con-
trollable. Since

P
0 is not minimal, few studies have been

made in the past [7] to de¯ne an output for system (5)
and attempt to obtain an SPR system.

Since A and AL , A¡LC are stable, then for all positive
de¯nite matrices Q11 and Q22 , there exist positive def-
inite matrices P and PL solution of the Lyapunov equa-
tions:

AT P + P A = ¡Q11

AT
L PL + PL AL = ¡Q22

(7)

Let us now de¯ne

P0 ,
·

P P
P µ PL

¸
(8)

where µ > 0 will be determined later. Then using AL ,
A ¡LC

AT
0 P0 +P0 A0 =

·
A 0
0 AL

¸T ·
P P
P µPL

¸
+

+
·

P P
P µ PL

¸ ·
A 0
0 AL

¸
= ¡Q0

(9)
Note that block (1,1) corresponds to the ¯rst equation of
(7), the block (2,2) is a µ scaled version of the second
equation of (7) and the cross term is

AT P+P (A ¡LC) = AT P+PA¡P LC = ¡Q11¡P LC
(10)

Then

Q0 =
·

Q11 Q11 +P LC
Q11 + CT LT P µQ22

¸
(11)

The composite system
P

0 (5) will satisfy the ¯rst equa-
tion of the KYP Lemma if Q0 > 0 and P0 > 0. We obtain
the following conditions for positiveness of Q0 and P0.
I) Conditions that guaranteed the positiveness of P0 are:

P0 > 0 ()
½

I.1 P > 0
I.2 µ PL ¡P > 0 (12)

Condition I.1 is satis¯ed due to ¯rst equation of (7) and
condition I.2 in (12) is obtained by the Schur complement
[6], Condition I.2 can also be expressed as µPL > P or
equivalently

µ > µ1 , kPk
kPLk (13)

II) Conditions that guarantee the positiveness of Q0 in
(11) are; i.e. Q0 > 0 if and only if:

II.1 Q11 > 0
II.2 µQ22 >

¡
Q11 +CT LT P

¢
Q¡1

11 (Q11 + PLC)
(14)

Condition II.2 is satis¯ed if

µ > µ2 ,
°°¡

Q11 + CT LT P
¢
Q¡1

11 (Q11 + PLC)
°° / kQ22k

(15)



Combining conditions I and II, P0 and Q0 are positive
de¯nite if (see 13 and (15)

µ > µ¤ , maxfµ1 , µ2g (16)

Notice that µ can always be chosen to satisfy the above
inequality. We have proved the ¯rst part of the following:

Theorem 3 Consider the stable transfer matrix Z(s)
with m-inputs and m-outputs and state-space realization:

P
1

(
²x = Ax +B u
y = C x

(17)

where A is stable, the pair (A,B) is stabilizable and the
pair (C,A) is observable. Then there exists a gain ob-
server matrix L given in (3) satisfying (9) such that the
transfer matrix between u and the new output z = M0bx
(with M0 = BT

0 P0) is characterized by a representation
(A0, B0,M0) that is SPR.

Proof. The proof of the ¯rst equation of the KYP
Lemma is already done provided that µ > µ¤, now if the
output z becomes

z = M0

·
x
ex

¸

= BT
0 P0

·
x
ex

¸

=
£

BT 0
¤ ·

P P
P µ PL

¸·
x

bx ¡ x

¸

= BT Px +BT P (bx ¡x)
= BT Pbx
= M bx

(18)

The composed system (A0, B0,M0), which is not mini-
mal, satis¯es the KYP Lemma equations, i.e. AT

0 P0 +
P0 A0 = ¡Q0 and M0 = BT

0 P0 =
£

BT P BT P
¤

The system (1) and the observer (3) can be combined
to obtain the composite system (5). A0 in (5) and (6a)
satis¯es the Lyapunov equation (9) where P0 and Q0 are
positive de¯nite. Therefore if the new output z is de¯ned
as z = BT

0 P0 bx, the transfer function from u to z is SPR.

4 Unstable case
Let us now study the case when Assumption I is not ful-
¯lled. We will therefore consider the case when system

(1) is unstable, i.e. σ(A) "
°
C¡. It is clear that if the

state is measurable we can introduce a state feedback to
stabilize the system and then proceed as in the previous
section. However, we assume that the state is not measur-
able and only the output y in (1) is available. Therefore
we introduce a stabilizing control law based on the state
estimate bx (3) as follows

u = ¡K bx + v (19)

where v is a new input signal. The composed system
becomes

P
K

8
<
:

2
4

²x
²
ex

3
5 = A1

·
x
ex

¸
+ B1v (20)

where A1 ,
"

A ¡ B K ¡B K
0 A ¡ LC

#
; B1 ,

·
B
0

¸

Let us introduce the short hand notation AK = A¡B K
and AL = A ¡ LC. Again K and L are such that

σ (A ¡ B K) , σ (A ¡ LC) ½
°

C. Then for every QK and
QL positive de¯nite, there exist positive de¯nite matrices
PK and PL solution of the Lyapunov equations

AT
K PK + PK AK = ¡QK

AT
L PL +PL AL = ¡QL

(21)

Let us de¯ne P1 as

P1 ,
·

PK PK
PK µPL

¸
(22)

where again µ > 0 will be de¯ned later. We then have
the equation

AT
1 P1 + P1 A1 = ¡QKL (23)

where, if we de¯ne Q12 , ¡AT
K PK ¡ PK AL + PK B K

QKL =

"
QK Q12

QT
12 µQL + KT BT PK +PK B K

#

(24)
Stability of the feedback system will be guaranteed if we
can ¯nd a value for µ such that P1 > 0 and QKL > 0.

Condition III. As before, positiveness of P1 is
guaranteed if µ is large enough, i.e.

P1 > 0 ()
½

III.1 PK > 0
III.2 µ PL > PK

Condition III.1 is satis¯ed in view of (21) and Condition
III.2 is satis¯ed if

µ > µ3 , kPKk
kPLk (25)

Condition IV. Positiveness of QKL can be obtained us-
ing the Schur complement again. Introducing as Q22 ,
µQL + KT BT PK + PK B K and remebering Q12 ,
¡AT

K PK ¡ PK AL + PK B K ; then QKL > 0 if QK > 0
and

Q22 ¡QT
12Q

¡1
K Q12 > 0 (26)

The above condition (26) will be satis¯ed if µ is such that



µ > µ4 ,
°°KT BT PK +PK B K ¡ QT

12Q
¡1
K Q12

°°/ kQLk
(27)

Combining (25) and (27), it follows that P1 and Q1 are
positive de¯nite if

µ > µ¤
K , max fµ3 , µ4g (28)

Notice that µ can always be chosen to satisfy the above
inequality. Now we can state the main result of this sec-
tion:

Theorem 4 Consider a strictly proper square transfer
matrix Z(s) not identically zero, with stabilizable and ob-
servable realization (A,B,C). There exists a gain ob-
server matrix L as in (3), an estimated state feedback
gain matrix K and matrix M1 which de¯nes a new out-
put z = M1bx (with M1 = BT

1 P1) such that the transfer
matrix from v (see (19)) to the new output z is SPR.

Proof. The ¯rst equation of the KYP Lemma is just
proved for su±ciently high µ, the second part is similar
to the Theorem for stable systems.
The system (1), the observer (3) and the controller in (19)
can be combined to obtain the composite system (20). A1

in (20) satis¯es the Lyapunov equation (23) where P1 and
Q1 are positive de¯nite. Therefore if the new output z is
de¯ned as z = M1 bx with M1 = BT

1 P1 then the transfer
function from ν to z is SPR.

Remark 2 Notice that either in the stable or in the un-
stable cases, the Lyapunov equations AT

0 P0+P0A0 = ¡Q0
and (23) do not have positive de¯nite solutions P0 and P1

respectively for all Q0 > 0 and Q1 > 0. We are imposing
a particular structure on the solution matrices P0 and P1
and µ su±ciently large in order that P0,Q0, P1,Q1 are
all positive de¯nite.

5 Some illustrative examples.

We will present two detailed examples. The ¯rst example
deals with an unstable system. The second example is an
unstable system with a nonminimal state space represen-
tation.

Example 5 Let us consider the following unstable trans-
fer function

z(s) =
1

s3 +2s2 ¡ s ¡ 2
=

1
(s + 1) (s ¡ 1)(s +2)

(29)

which has a minimal representation representation

P
a

8
>><
>>:

²x =

2
4

0 1 0
0 0 1
2 1 ¡2

3
5 x +

2
4

0
0
1

3
5 u

y =
£

1 0 0
¤
x

(30)

A full order observer for
P

a, with eigenvalues at

f¡2,¡3,¡4g, is
²
bx =

2
4

0 1 0
0 0 1
2 1 ¡2

3
5 bx +

2
4

0
0
1

3
5 u+

+

2
4

7
13
7

3
5

| {z }
L

£
1 0 0

¤
(x ¡ bx)

If we assign the closed loop eigenvalues at f¡1,¡1 § jg
we get

K = ¡
£

4 5 1
¤

(31)

If we choose Q11 = ¡2I then we get the solution of Lya-
punov equation AT

K PK + PK AK = ¡Q11,

PK =

2
4

3.9 2.8 0.5
2.8 4.95 0.95
0.5 0.95 0.65

3
5 > 0 (32)

For Q22 = ¡2I then the solution of the Lyapunov equa-
tion AT

L PL + PL AL = ¡Q22,

PL =

2
4

3.0958 ¡1.2583 ¡0.8625
¡1.2583 0.7500 0.2583
¡0.8625 0.2583 0.6292

3
5 > 0

µ¤ > maxf µ3, µ4g
= maxf3879.1, 1.9124g = 3879.1

Choosing µ = 3900, then
P0 =2

6666664

3.9 2.8 0.5 3.9 2.8 0.5
2.8 4.95 0.95 2.8 4.95 0.95
0.5 0.95 0.65 0.5 0.95 0.65
3.9 2.8 0.5 12074 ¡4907.5 ¡3363.7
2.8 4.95 0.95 ¡4907.5 2925 1007.5
0.5 0.95 0.65 ¡3363.7 1007.5 2453.7

3
7777775

Q0 =

2
6666664

2 0 0 73.2 6.3 3.1
0 2 0 96.9 11.5 4.2
0 0 2 23.5 4.2 3.3

73.2 96.9 23.5 7800 0 0
6.3 11.5 4.2 0 7800 0
3.1 4.2 3.3 0 0 7800

3
7777775

the spectra of the matrix Po and Qo are:

σ (P0) = f0.4447, 1.618, 7.3511, 607.5, 1679.8, 15165g
σ (Q0) = f.0107,1.9988, 1.9998, 7800, 7800, 7802g
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Nyquist Diagrams for the unstable example.

The output matrix becomes
Mo =

£
0.5 0.95 0.65 0.5 0.95 0.65

¤
; and

M =
£

0.5 0.95 0.65
¤

The transfer function from a new input v and new output
z becomes

Hzv(s) =
0.65s2 + 0.95s +0.5
s3 + 3s2 + 4s +2

=
0.65 (s + .731 § 0.4846j)

(s + 1)(s + 1 § j)

(33)

Example 6 Let us consider the following unstable and
non-minimum phase transfer function

z(s) =
s ¡ 2

s2 + s ¡ 2
=

s ¡ 2
(s ¡ 1) (s + 2)

(34)

which has a nonminimal, but stabilizable and observ-
able, state space representation

P
b

8
>><
>>:

²x =

2
4

0 1 0
2 ¡1 ¡2
0 0 ¡1

3
5 x +

2
4

0
1
0

3
5 u

y =
£

¡2 1 4
¤
x

(35)

A full order observer for
P

b, with eigenvalues at
f¡2,¡3,¡4g, is

²
bx =

2
4

0 1 0
2 ¡1 ¡2
0 0 ¡1

3
5 bx +

2
4

0
1
0

3
5 u+

+

2
4

¡13
¡7
¡13

3
5

| {z }
L

£
¡2 1 4

¤
(x ¡ bx)

If we assign the closed loop eigenvalues at f¡1,¡1 § jg
we get K = ¡

£
4 1 ¡2

¤

If we choose Q11 = ¡2I then we get the solution of Lya-
punov equation AT

K PK + PK AK = ¡Q11,

PK =

2
4

2.5 0.5 0
0.5 0.75 0
0 0 1

3
5 > 0 (36)

For Q22 = ¡2I then the solution of the Lyapunov equa-
tion AT

L PL + PL AL = ¡Q22,

PL =

2
4

3.7571 ¡3.1286 ¡9.8571
¡3.1286 3.2024 7.8619
¡9.8571 7.8619 27.924

3
5 > 0

µ > maxfµ3 , µ4g
= max

n
7861.9, 0.4889

o
= 7861.9

Taking µ = 7900, then

P0 =

2
6666664

2.5 0.5 0 2.5 0.5 0
0.5 0.75 0 0.5 0.75 0
0 0 1 0 0 1

2.5 0.5 0 29681 ¡24716 ¡77871
0.5 0.75 0 ¡24716 25299 62109
0 0 1 ¡77871 62109 2. 2 £ 105

3
7777775

(37)

Q0 =

2
6666664

2 0 0 78 ¡32.5 ¡145
0 2 0 27 ¡8.25 ¡48.5
0 0 2 5 ¡4.5 ¡10

73.2 96.9 23.5 15800 0 0
6.3 11.5 4.2 0 15800 0
3.1 4.2 3.3 0 0 15800

3
7777775

(38)
the spectra of the matrix P0 and Q0 are:
σ (P0) = f0.6171, .9999, 2.6262, 9.18, 7774.7,266810g
σ (Q0) = f.00965, 1.9992, 2, 15800, 15800,15802g

The output matrix becomes
M0 =

£
0.5 0.75 0 0.5 0.75 0

¤
; and

M =
£

0.5 0.75 0
¤
The transfer function from a new

input v and new output z becomes

Hzv(s) =
0.75s + 0.5
s2 +2s + 2

=
0.75 (s + 0.6667)

(s + 1 § j)
(39)
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Nyquist Diagrams of a nonminimal unstable system and
its SPR transformed.

Nevertheless the Nyquist Diagram of the open loop orig-
inal system lies in the open right hand complex plane, it
fails to be SPR because it is not analytic in the stability
domain.



6 Concluding Remarks.

This paper has shown that a non SPR but stable linear
system can be transformed into an SPR system by in-
troducing a state observer and de¯ning an appropriate
output as a function of the observed state. The state of
the original system is not assumed to be measurable. In
spite of that fact the composite system obtained from the
original system and the observer has a non-minimal state
space representation, the overall system is SPR.

It has also been proved that an unstable system can
also be transformed into an SPR system by introducing
an observer, a feedback control using the state estimates
and de¯ning an appropriate output as a function of the
state estimate.

We have proved that in both cases the transformed
system veri¯es the equations of the Kalman-Yakubovich-
Popov Lemma. Therefore, the composite system inherits
all the properties of SPR systems.

Some examples have been given to illustrate the result
in the case of stable or unstable open loop systems with
minimal realizations, and in the case of unstable systems
with nonminimal realization.
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