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Abstract

Integral action is required in many controllers in order to solve
real world problems. Modeling errors and disturbances are ex-
amples of issues that can be dealt with by using controllers
with integral action. This paper explores the use of disturbance
observers to introduce integral action into an output feedback
controller. In particular, the proposed solution is generalized to
include the case of plants where the number of outputs exceeds
the number of inputs.

1 Introduction

Integral action is often needed to achieve robustness to model-
ing errors and disturbance attenuation. In addition, error free
tracking of constant reference signals may be achieved by inte-
gral action. Integral action may be introduced in several ways.
A common approach is to extend the state vector to include
integrator states, ẋi � r� y. However, alternatives exist. In
this paper, we investigate the use of disturbance observers. In
particular, this method is commonly suggested in MPC appli-
cations, [4].

In this paper we will show how assumptions on the disturbance
model may be used to guarantee integral action in output feed-
back MIMO controllers. The case of m�m plants is a straight
forward generalization of the SISO case. The main contribu-
tion of this paper is the generalization to non-square plants,
where the number of outputs exceeds the number of inputs.

Without lack of generality, we could assume that the measured
output vector is partitioned as y �

�
yT

z yT
a

�T
, where yz represents

the controlled outputs and ya are the additional measured out-
puts (if any). We will also assume that the number of inputs of
the system equals the number of controlled outputs. The case
when the number of inputs equals the number of outputs will
be treated first. Thereafter, the controller will be generalized to
handle the case when there are additional measured outputs.

2 Square Plants

In this section, a controller with integral action for square plants
will be developed. The term square plant refers to the fact that
the transfer function matrix of a system with an equal number
of inputs and outputs is square. We will assume that the plant
model is given by

ẋ � Ax�Bu

y �Cx
(1)

where x � Rn, u � Rm and y � Rp. In this case, y � yz and ya

is not present. �A�B� is assumed to be controllable a pair and
�A�C� is assumed to be an observable pair. A standard way
of introducing integral action for such systems is described in
[5]. In this approach, a constant load disturbance, d, acting
on the plant input is assumed. Using an augmented system
description, a composite model may be written as

ẋe �

�
A B
0 0

�
xe �

�
B
0

�
u � Aexe �Beu

y �
�

C 0
�
xe �Cexe

(2)

where d � Rm represents the input disturbance and xe ��
xT dT

�T
.

The main idea is to use an observer based on this extended
system to estimate the input disturbance d, and to use the dis-
turbance estimation in the control law.

2.1 Observability

Before proceeding, it should be verified that the extended sys-
tem model is observable. The result is straight forward to de-
rive using the PBH test, and is summarized in the following
lemma.

Lemma 1 (Observability) The system (2) is observable if and
only if the system (1) is observable and has no zeros at s � 0.
Proof:
Using the PBH test we obtain the rank condition

rank

�
� A� sI B

0 �sI
C 0

�
�� n�m



If s �� 0 it is readily verified that the matrix has full rank if and
only if

rank

�
A� sI

C

�
� n�

Since (A,C) is assumed to be an observable pair this is always
the case. For s � 0 we have that

rank

�
A B
C 0

�
� n�m

That is, the system may not have any transmission zeros at s=0,
in which case this matrix looses rank.

Remark 1 The condition that the plant may not have zeros at
s � 0 is equivalent to that G�0� must be invertible, where G�s�
is the transfer function of the plant. This condition is identical
to that given for SISO systems in [5]. An interesting observa-
tion is that this condition appears as a condition for integral
stabilizability (see [1]), where the objective is to stabilize a
system using a controller containing integral action. The same
condition, but for a more general case, is given in [2].

2.2 Controller Structure

In order analyze the properties of the controller it is necessary
to make some assumptions about the controller structure. We
will assume that the control law is given by linear feedback,
from the state and disturbance estimations. The observer is
assumed to be given by

˙̂xe � Aex̂e �Beu�K�y�Cex̂e�� (3)

where Ae, Be and Ce are defined according to the augmented
system (2). Introducing the feedback law

u � �Lxx̂� d̂ �Lrr (4)

we obtain the following equations for the controller:� ˙̂x
˙̂d

�
�

�
A�BLx�KxC 0

�KdC 0

��
x̂
d̂

�
�

�

�
Kx

Kd

�
y�

�
BLr

0

�
r

u � �Lxx̂� d̂ �Lrr�

(5)

The feedback and observer gains is assumed to be chosen so
that A�BLx and Ae�KCe are stable matrices.

This choise of control law, u, has a strong intuitive appeal. It
is clear that if d̂ is an accurate estimation of d, the effect of the
disturbance is canceled. Also, the choice of controller structure
is not restrictive in the sense that any design method that yields
stable A�BLx and Ae�KCe matrices may be used.

Before we proceed, we notice that in stationarity, the following
identities hold

�A�BLx�x̂�Kx�y�Cx̂��BLrr � 0� Kd�y�Cx̂� � 0

� y � �C�A�BLx�
�1BLrr�

If we choose the gain Lr such that

Lr � �C��A�BLx�
�1B��1 (6)

the controller will have a unique equilibrium for y � r. This
follows from the fact that Kd is invertible (since Ae �KCe is
invertible), which implies that y� Ĉx̂ � 0 in stationarity. Notice
also that

rank

�
A�BLx B

C 0

�
� n�m

for any stabilizing Lx. This follows from Lemma 1. But this is
equivalent to the matrix C�A�BLx��

1B having full rank. The
inverse in expression (6) thus exists.

It is also clear that the controller has m eigenvalues that are
zero, which implies that the controller will have integral action.
We shall now investigate in detail this property of the controller.

2.3 Integral Action

In this section an input - output representation of the controller
is derived. The aim is to show that the controller contains in-
tegral action, which was one of the initial objectives of the de-
sign.

Using (5), the control law may be written as

U�s� � �I�LxΦ�s�B�LrR�s��LxΦ�s�KxY �s��

�
1
s

Kd�I�CΦ�s�Kx��CΨ�s�BLrR�s��Y �s��
(7)

where
Ψ�s� � �sI�A�BLx�

�1

Φ�s� � �sI�A�BLx�KxC��1
(8)

We assume that the matrix ��A � BLx � KC� � Φ�0��1 has
full rank. The first term of the controller expression represents
feedback and feedforward terms with finite gain. From the as-
sumptions above, it follows that the transfer function Ψ�s� is
stable.

The second term in the controller expression represents integral
action acting on r f �y, where rf is the filtered reference signal.
The stationary gain of the filter used to obtain r f is CΨ�0�BLr,
which by design is equal to identity. The integral gain is

Ki � Kd�I�CΨ�0�Kx�
�1 � Kd�I�CΦ�0�Kx� (9)

so Ki is bounded and has full rank.

2.4 Robustness and Sensitivity

The properties of the controller may also be illustrated by using
the concepts of robustness and sensitivity. In practice, there is
always a mismatch between the true plant and the plant model.
It is of course desirable that modeling error does not severely
degrade the control performance. In particular, stability and
steady state tracking properties should not be affected.



Let us assume that the true plant has the transfer function
P0�s�and that the available model is given by P�s�. If we as-
sume an output uncertainty model, we have that

P0�s� � �I�∆P�s��P�s��

In summary, the following relation holds:

∆Y �s� � S0�s�∆P�s� (10)

where S0�s� is the sensitivity function of the true system and
Y 0�s� � �I � ∆Y �s��Y �s�, [3]. For small ∆P�s�, S0�s� could
usually be approximated by S�s�. The sensitivity function is
readily identified as the transfer function from an output dis-
turbance v to the measured output y � Cx� v. The main result
result is summarized in the following theorem.

Theorem 1 Let the system (1) be controlled by (5) and the let
the sensitivity function of the closed loop system be S�s�. Then

S�0� � 0�

Proof:
Introduce the auxillary variable v, representing the ouput dis-
turbance:

y �Cx� v�

The result is proven by showing that y does not depend on v in
stationarity. Using the controller expression (2), we obtain the
equations

˙̂x � Ax̂�Bu�Kx�Cx� v�Cx̂�

˙̂d � Kd�Cx� v�Cx̂�

In stationarity we have that ẋ � 0, ˙̂x � 0 and ˙̂d � 0, yielding

Cx� v�Cx̂ � 0 (11)

since Kd is invertible. Using the expression (4) we obtain that

0 � Ax̂s�BLxx̂s �BLrrs � �A�BLx�x̂s �BLrrs

where subscript s indicates that the relation holds for constant
values of x̂ and r. Since A� BLx is assumed to be a stable
matrix, we have that

x̂s � ��A�BLx�
�1BLrrs� (12)

In particular, due to the choice of Lr, the expressions (11) and
(12) it is clear that

ys � Cxs� vs �Cx̂s � rs�

Obviously, y is not dependent on v in stationary, and thus
S�0� � 0.

This result implies that the controller is robust in the sense that
the steady state tracking properties are not affected by model-
ing errors.
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Figure 1: The dashed line represents the case when only the
controlled output is measured, whereas the solid line represents
the case when both states are measured.

2.5 Example

In Figure 1 the controller described in this section is applied to
a simple second order system, given by

ẋ �

�
a �1
1 0

�
x�

�
0
b

�
u

yz �
�

1 0
�
x

ya �
�

0 1
�
x�

For the true plant, the parameters are a � �0�2 and b � �1�2,
whereas for the model used for control design, the parameters
are a � �0�5 and b � �1. Notice that there is a mismatch
between the the real plant and the model used for control de-
sign. The plot shows the response for a reference step input at
t � 1 s and an input step disturbance applied at t � 10 s. In
the first simulation, represented by the dashed curves, only one
measurement is used by the controller, and the scheme works
as intended. However, if a controller using both available state
measurements is employed, there will be a stationary error. In
the first case S�0� � 0 as expected, but in the second case we
have that

S�0� �

�
0�28 1�39
0�14 0�72

�

This apparent paradox will be discussed in detail in the next
section.

3 Non-Square Plants

Now, suppose that apart from the controlled variables, which
are assumed to be measured, there are additional measured sig-
nals. We may without lack of generality assume that y is par-
titioned as y �

�
yT

z yT
a

�T , where yz are the controlled variables



and ya the additional measured outputs. It is reasonable to as-
sume that the number of controlled variables equals the number
of inputs. This gives that yz � Rm and ya � Rpa , pa � 1. No-
tice that r specifies reference values for yz, whereas there are
no reference values for ya. Certainly the additional measured
variables can be used to estimate the state of the plant. How-
ever, it is easily demonstrated that the method presented above
for introducing integral action into the controller may fail in
such cases. If we assume that both states are available for mea-
surements in the previous example, Figure 1 shows the result.
Control performance is significantly degraded - even if more
information is available. The controller has integral action, but
this is obviously not enough to give the desired steady state
tracking properties because of the bias in the additional mea-
surement signals. In the presence of model - plant mismatch,
as in the example above, the measured signals are not compat-
ible with the dynamics of the model.

One way to deal with this situation is to determine the confi-
dence associated with the two sets of measured signals yz and
ya. Since the outputs yz are controlled, a reasonable assump-
tion is that we are confident in those, i.e. there is no bias in yz.
The fact that we in effect integrate the deviations of yz from r
supports this assumption.

To recover the properties of the controller described in the pre-
vious section, the following augmented model is introduced

�
� ẋ

v̇a

ḋ

�
��

�
� A 0 B

0 0 0
0 0 0

�
�
�
� x

va

d

�
��

�
� B

0
0

�
�u

yz �
�

Cz 0 0
��

xT vT
a dT

�T
ya �

�
Ca I 0

��
xT vT

a dT
�T

(13)

where x � Rn, u � Rm, d � Rm, yz � Rpz , ya � Rpa and va � Rpa .
As previously, an input disturbance d is assumed. Also, the
disturbance model is augmented to include an output distur-
bance va acting on the additional measured outputs ya. This
assumption reflects the fact that confidence is put in the con-
trolled outputs.

The results derived in the previous section will now be gener-
alized to the modified assumptions stated above.

3.1 Observability

In order to use the model (13) for state and disturbance esti-
mation, it must be verified that the model is indeed observable.
The result is summarized in the following lemma.

Lemma 2 (Observability) The system (13) is observable if
the system (1) is observable and has no zeros at s � 0.
Proof:

Using the PBH test we obtain the rank condition

rank

�
�����

A� sI 0 0
0 �sI 0
0 0 �sI
Cz 0 0
Ca I 0

�
				�� n�m� pa

If s �� 0 it is readily verified that the matrix has full rank if and
only if

rank

�
� A� sI

Cz

Ca

�
�� n�

Since �A� �CT
z CT

a �
T � is assumed to be an observable pair this is

always the case. For s � 0 we have that

rank

�
� A 0 B

Cz 0 0
Ca I 0

�
�� n�m� pa

But this is equivalent to the matrix

rank

�
A B
Cz 0

�
� n�m�

having full rank.

Remark 2 This condition is very similar to the one given in
the previous section, the plant may not have zeros at s � 0.
Notice that the condition applies to the sub plant with input u
and output yz, and does not include the additional outputs y a.
No additional constraints are thus introduced in the presence
of extra measurement signals.

3.2 Controller Structure

We will use the same controller structure as previously. By
using the estimator given by equation (3) and the control law
(4), the modified controller may now be written as�
� ˙̂x

˙̂va
˙̂d

�
��

�
� A�BLx�KxC �Kxa 0

�KvC �Kva 0
�KdC �Kda 0

�
�
�
� x̂

v̂a

d̂

�
��

�

�
� Kxz Kxa

Kvz Kva

Kdz Kda

�
�� yz

ya

�
�

�
� BLr

0
0

�
� r

u � �Lxx̂� d̂ �Lrr�

(14)

As previously, we assume that A�BLx and Ae�KCe are stable
matrices. Lr is chosen as

Lr � �Cz��A�BLx�
�1B��1

The controller then has the unique equilibrium r � yz. The
same arguments given previously applies also in this case.

We notice that the order of the controller is now increased com-
pared to the design in the previous section. One extra state for
each additional measured signal is introduced. We also notice
that the controller has m eigenvalues equal to zero, which im-
plies the presence of integrators.



3.3 Integral Action

As we have seen, the presence of integrators in the controller
alone is not sufficient to ensure zero steady state tracking error.
In this section we will establish that the controller gives integral
action acting on e f � r f � yz f , where the filters used to obtain
r f and yz f have special properties.

Introducing

Φ�1
e �s� �

�
sI�A�BLx �KxC Kxa

KvC sI �Kva

�

Ct �

�
Cz 0
Ca I

�
The following expressions are obtained:�

X̂�s�
V̂a�s�

�
� Φe�s�


�
Kx

Kv

�
Y �s��

�
BLr

0

�
R�s�

�

D̂�s� �
1
s

Kd



Y �s��Ct

�
X̂ �s�
V̂a�s�

��
The controller may then be written as

U�s� � �LxX̂�s�� D̂�s��LrR�s�

�



I�

�
Lx 0

�
Φe�s�

�
B
0

��
LrR�s�

�
�

Lx 0
�

Φe�s�

�
Kx

Kv

�
Y �s�

�
1
s

Kd



I�CtΦe�0�

�
Kx

Kv

��
�CΨ�s�BLrR�s��Y �s��

� M0�s�R�s��
�

M1�s� M2�s�
�� Yz�s�

Ya�s�

�
�

�
1
s

Kd

�
M3�s� M4�s�

�� CzΨ�s�BLrR�s��Yz�s�
CaΨ�s�BLrR�s��Ya�s�

�

The definitions of Ψ�s� and Φ�s� are given by (8). We also
make the assumption that the matrix Φe�0� has full rank and
that Ψ�0� is stable. It then follows that the matrices M0�0�,
M1�0� and M2�0� represents finite feedback and feedforward
gains.

Now, the aim of the controller is somewhat more elaborate than
in the previous case; integral action is desired to act on r f �

yz f . In order for the proposed controller to achieve this, it must
be verified that M4�0� � 0 and that M3�0�, the integral gain,
has full rank. We start by verifying that M4�0� � 0. By direct
calculation we obtain:

M4�0� �



I�CtΦe�0�

�
Kx

Kv

���
0
I

�

�

��
0
I

�
�Ct

�
�A�BLx �KxC Kxa

�KvC Kva

�
�1 �

Kxa

Kva

�

�


�
0
I

�
�Ct

�
0
I

��
� 0

where we have used the identity�
X11 X12
X21 X22

�
�1�

X12
X22

�
�

�
0
I

�
�

As for Ki � KdM3�0� we have

Ki � Kd



I�CtΦe�0�

�
Kx

Kv

���
I
0

�

�



Kdz�

�
KdC Kda

�
Φe�0�

�
Kxz

Kvz

��
�

(15)

But this expression is recognized as the Schur-complement of
Φ�1

e �0� with respect to the matrix�
� �A�BLx �KxC Kxa Kxz

KvC Kva Kvz

KdC Kda Kdz

�
�

� (16)

It is clear that the matrix (15) having full rank is equivalent to
(16) having full rank. Now, let us rearrange the elements of this
matrix by permuting the rows and columns, an operation that
preserves the rank of the matrix�

� �A�BLx �KxC Kxz Kxa

KdC Kdz Kda
KvC Kvz Kva

�
�

� (17)

If we take the Schur-complement of�
Kdz Kda
Kvz Kva

�

with respect to (17) we obtain

Φ�0��
�

Kxz Kxa
�� Kd

Kv

�
�1 �

Kd
Kv

�
C � Ψ�0��

The invertability of �K T
d KT

v �
T follows from the matrix Ae�KCe

having full rank. Further, Ψ�0� is assumed to have full rank by
design, and we can conclude that the matrix (15) has indeed
full rank.

We have now shown that the integral action property of the con-
troller is recovered. As in the previous case, we have integral
action acting on

CzΨ�s�BLrR�s��Yz�s��

Due to the choice of Lr, this gives integral action acting on
r� yz in stationarity. The integral gain, Ki, is given by (15).

3.4 Robustness and Sensitivity

Let us now investigate the robustness properties of the con-
troller. The critical feature of the controller is that r � yz also
in in the presence of modeling errors. To establish this, we use
the relation

∆Y �s� � S�s�∆P�s��

However, now we are concerned with the controlled outputs yz,
and not all of the measured outputs as previously. The addi-
tional measured outputs are not controlled, and are likely to be
influenced by disturbances as well as modeling errors. For this
reason we use

∆Yz
�s� � Sz�s�∆P�s��



That is, only deviations of the controlled outputs from the nom-
inal case r � yz are considered. In this case Sz�s� consists of the
first m rows of the sensitivity function matrix S�s�. It follows
that Sz�s� is the transfer function form v to yz. In particular we
would like to show that Sz�0� is zero, which would imply that
the controller is robust to modeling errors in steady state. We
have the following result:

Theorem 2 Let the system (1) be controlled by (14), and let
the sensitivity function of the closed loop system be S�s� ��

Sz�s�T Sa�s�T
�T

. Then

Sz�0� � 0�

Proof:
Introduce the auxillary variables va and vz, representing the
output disturbances:

yz �Czx� vz� ya � Cax� va

The same technique as in theorem (1) is used; it will be shown
that yz does not depend on vz or va in stationarity. The equa-
tions for the controller may be written as

˙̂x � Ax̂�Bu�Kxz�Czx� vz�Czx̂��

�Kxa�Cax� va�Cax̂� v̂a�

˙̂va � Kvz�Czx� vz�Czx̂��Kva�Cax� va�Cax̂� v̂a�

˙̂d � Kdz�Czx� vz�Czx̂��Kda�Cax� va�Cax̂� v̂a�

In stationarity we have that ẋ � 0, ˙̂x � 0 and ˙̂d � 0 which yields

Czx� vz�Czx̂ � 0� Cax� va�Cax̂� v̂a � 0 (18)

since
�
KT

d KT
v

�T
is invertible. Using the expression (4) we ob-

tain that

0 � Ax̂s�BLxx̂s �BLrrs � �A�BLx�x̂s �BLrrs

where subscript s indicates that this relation holds in stationar-
ity, as before. Since A�BLx is assumed to be a stable matrix,
we have that

x̂s � ��A�BLx�
�1BLrrs� (19)

In particular, due to the choice of Lr, the expressions (18) and
(19) it is clear that

yzs �Czxs � vzs �Czx̂s � rs�

Obviously, yz is not dependent on v in stationary, which implies
that Sz�0� � 0.

This result proves that the robustness property described in the
previous section is recovered.

3.5 Example

In Figure 2, the improved controller structure is simulated, us-
ing the same system as in the previous section. The system
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Figure 2: Responses of the controllers derived in Section 2
(dashed) and section 3 (solid).

has one input, and two measured outputs, of which one is con-
trolled. There is also a modeling error present. As we can
see, the improved controller preforms well, and achieves zero
steady state tracking error. In addition,

S�0� �

�
0�00 0�00
0�20 1�00

�

and in particular Sz�0� � 0.

4 Conclusions

In this paper the design of centralized controllers including in-
tegral action has been discussed. The proposed solution ex-
plores disturbance observers of a certain structure. The case of
square plants, including SISO plants, has been generalized to
the case of plants with additional measured signals.
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