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Abstract 
 

This paper presents implementations of Real-Time Control and Identification 
based on Multiple-Modeling approach for an experimental thermal process. 
The thermal process is a nonlinear plant; therefore, based on variations of the 
input and disturbance, four local operating regimes are defined. Then linear 
local ARMAX models are identified and integrated into a NARMAX model by 
combining local models via proper validity and interpolation functions.  Results 
of a single model and multiple model approach show superior performance of 
multiple modeling technique which is also more flexible. Moreover, the Real-
Time control of the plant with four locally designed controllers is addressed. 
The platform used for the Real-Time implementation is Matlab/Simulink/Real-
Time-Workshop with Visual C++ and Watcom compilers using a DAQ 
interface. The Real-Time application of the global controller based on multiple 
model approach proves excellent performance of this design in comparison to a 
single PID controller.  
 

1  Introduction 
 

Usually it is extremely difficult to identify a model that 
accurately matches a nonlinear plant in all operating regimes 
[1],[3],[5],[6],[7],[9],[12],[14],[16],[25],[26]. Even if such a 
model can be identified, controller design may be also difficult. 
Therefore it is quite attractive to use an alternative approach 
wherein local “Multiple Models” are identified at the different 
regions of operation and controller design is carried out based 
on these models. This allows to invoke simple linear models to 
represent a nonlinear system and then design systematic 
controllers. When we find different local models, each local 
model has a “Relative Validity” in its operating regime [12]. 
There are many advantages to use multiple models; such as 
their flexibility in selecting the modeling methods (e.g. transfer 
function and state space), different presentations (e.g. 
continuous time and discrete time) [12],[14] and other cases 
such as noise and disturbance reduction. Moreover, this method 
can be used to apply online control signals to the systems based 
on this modeling approach with high speed and accuracy 
[9],[25],[26]. 
Multiple Modeling control has been a research tool in various 
applications. One conventional method that guarantees the 
stability of a global system and includes some local sub-
systems or controllers is addressed by Fernandez-Anaya and 
Escandon-Alcazar [7] and is called “Simultaneous 
Stabilization”.  Necessary and sufficient conditions for control  

 
 
 
 
 
 
 
 
 
 
 
stability are presented and the method is used for three SISO 
plants to m SISO plants. Johansen and Foss [14] show an 
empirical modeling of a heat transfer process using local models 
and interpolation. Narendra, Balakrishnan and Ciliz [25] 
introduced a general methodology for the improvement of 
performance of dynamical system operating in rapidly varying 
environments. Both linear and nonlinear plants are considered 
and an indirect approach based on multiple models is used for 
control. Also the article has shown a general architecture for 
indirect adaptive control using neural networks (NN) and an 
architecture of the control system for robotic manipulators with 
N models and controllers. Gregorcic and Lightbody [9] 
compared pole-placement self-tuning control with the multiple 
model approach for the control of highly nonlinear process. A 
nonlinear “Continuous Stirred Tank Reactor” (CSTR) process is 
used to highlight some of the difficulties associated with self-
tuning control. Doya et al [6] introduced a modular 
reinforcement learning architecture for non-linear, non-
stationary control tasks which is called “Multiple Model-based 
Reinforcement Learning” (MMRL). There are two other 
methods used for complex system with several operation 
behaviors: The first method is introduced by Aarhus [1] called 
“Partial Least Squares regression” (PLS) models that usually is 
used for nonlinear empirical modeling. The second one is 
addressed by Angelis [3] named “Polytopic Linear Models” 
(PLM) which is used for modeling, control and identification.  
One of the latest application of the multiple modeling approach 
in radar and communication is introduced by Bar-Shalom and 
Dale Blair [5] which is called “Interacting Multiple Model” 
(IMM) estimator and provide superior tracking performance 
compared to maneuver detection schemes. Each of the above 
methods has some advantages and special complexity. Besides, 
none of  them, except [25], has applied the method for  Real-
Time applications. In this paper, we try not only to develop the 
multiple model based method in a simple way, but also its Real-
Time implementation is also considered. The system used in 
this paper is an experimental “Heating Plant” with an “air tube” 
which contains a “heating element” as input, “temperature 
sensor” as output and an “air damper” as a disturbance 
[12],[14],[26]. It is desirable to control the output temperature 
of this system. The main reason for using the multiple modeling 
approach is the special nonlinear behavior of this system 
[10],[11]. 
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Developing “Data Acquisition” (DAQ) software for real-time 
control can be a difficult task, often resulting in a software that 
is inflexible, hard to maintain and difficult to modify, 
especially if the specifications of the hardware involved change 
[24]. So another goal of this paper is applying the “Real-Time-
Control” signals to the real process. This needs advanced 
methods of sending and receiving data that match the special 
software and hardware equipments such as (DAQ)[20],[24]. 
The “Thermal-Process” is connected to a computer with 
MATLAB/SIMULINK environment using required interfaces 
[2],[22],[23]. 
 

2  Problem Definition 
 

2.1  The Thermal Process and Its DAQ Interface 
Consider the experimental heating plant schematically depicted 
in Fig 1. The practical process consists of a tube, an air damper, 
a heating element and a temperature measuring device. 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic of the Thermal-Process 
 

Air enters the tube and is warmed up by the heating element. 
The temperature of the air is measured by the temperature 
sensor and is feedback to the controllers to make a proper 
signal. The variables are: 
• Input voltage u(t) which is applied to the heater and changes 
by the fire angle of a BT-137 Triac. 
• Fan driver v(t) that is considered as a disturbance and 
changes by the potentiometer which controls the fan driver 
containing two BD-140 and 2N-3055 Transistors. 
• Output temperature y(t) which is measured by an LM-35 
Transistor and amplified by an OP-07 Op-Amp. The measured 
output sensitivity is 1V/20ºC. 
For implementation of identification and control algorithms, 
the thermal process is connected to a computer via a PCL-
818HG DAQ-card of Advantech Company which is a high-
gain, high-performance multifunction data acquisition card for 
IBM PC/XT/AT or compatible computers. It offers the five 
most desired measurement and control functions: 12-bit A/D 
conversion, D/A conversion, digital input, digital output and 
timer/counter [2]. The platform to implement the control and 
identification procedures is developed within 
Matlab/Simulink/Real-Time-Workshop. This can be done by 

defaulting Visual C++, Watcom and Java compilers to make a 
link with ISA slot [22],[23]. This algorithm needs to generate 
the codes such as “Target Module”, “Dynamic Link Library 
(DLL) Files”, “Intermediate Object Files”, “Batch Files”, “Data 
Type Transition C Files” and “Model Header Files” which is 
called “Build a Model”. 
 

2.2  The Multiple Modeling Approach Based on the Process 
Operating Regimes 
Any model will have a limited range of validity. The model 
restrictions may be due to the assumptions made for a 
mechanistic model, or by the experimental conditions under 
which the data was logged for an empirical model. To 
emphasize this, a model that has a range of validity less than the 
desired range of validity will be called a local model, as 
opposed to a global model that is valid in the full range of 
operation. We will be concerned with a modeling framework 
that is based on combining a number of local models, where it is 
of particular importance to describe the region in which each 
local model is valid. We call such a region an operating regime 
[17]. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The set of two-dimensional operating points is decomposed into four 

regimes. The vector z(t) = (z1(t); z2(t)) is the operating point [12] 
 

The framework can be conceptually illustrated as in Fig. 2. The 
system full range of operation is completely covered by a 
number of possibly overlapping operating regimes. In each 
operating regime the system is modeled by a local model, and 
the local models can be combined into a global model using an 
interpolation technique. One motivation behind this framework 
is that global modeling is complicated because one will need to 
describe the interactions between a large number of phenomena 
that appear globally. Local modeling, on the other hand, may be 
considerably simpler because locally there may be a smaller 
number of phenomena that are relevant, and their interactions 
are simpler [12]. 
For some applications, one may need a model that only 
describes the input/output behavior of the system (i.e. the 
system is considered a black box). The ARMAX model 
representation is a well known linear input/output model 
representation, while the NARMAX (Nonlinear ARMAX) 
model representation is an extension that represents the model 
as a nonlinear mapping of past inputs, outputs and noise terms 
to future outputs [13]. The NARMAX model representation: 
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is able to represent the observable and controllable modes of a 
large class of discrete-time non-linear systems. Here 

mRYty ⊂∈)(  is the output vector, rRUtu ⊂∈)(  is the input 

vector, and mREte ⊂∈)(  is the noise vector. We assume yn , 

un and en  are known. The problem is to construct the 
nonlinear function mRf →Ψ: . So we introduce the 

))(( uey rnnnm ++ -dimensional information vector: 

)2.2(])()1(

)()1()()1([)1(
T

e

uy

ntete

ntutuntytyt

−−

−−−−=−

L

LLψ  

belonging to the set euy nnn EUY ××=Ψ . This enables us to 
write (2.1) in the form: 

)())1(()( tetfty +−= ψ                            (2.3) 
Provided that necessary smoothness conditions on f are 
satisfied, a general way of approximating f is by series 
expansions. A first order Taylor-series expansion about an 
equilibrium point yields an ARMAX model. Second- and third-
order Taylor-expansions are also possible, while higher-order 
Taylor-expansions are not very useful in practice because the 
number of parameters in the model increases rapidly with the 
expansion order, and because of the poor extrapolation and 
interpolation capabilities of higher-order polynomials. Splines 
offer another possible solution to this problem, where the idea 
is to patch together low-order polynomials. A representation 
that is closely related to splines in spirit, but still very different 
for multi-dimensional modeling problems, is based on patching 
together local models [12]. For the optimal combination of 
local models suppose N local models (indexed by { }Ni ,,2,1 K∈ )  

)())1((ˆ)( tetfty i +−= ψ                        (2.4) 
are available, and the different local models are accurate under 
different operating conditions. Hence, under some operating 
conditions there may be several local models that are accurate, 
while no local model may be accurate under other conditions. 
Suppose the relative validity (or relevance) of each local model 
is indicated by the weighting functions [ ]1,0:~,,~,~

21 →ΨNρρρ K . 
If at a given Ψ∈ψ the local model indexed with i is accurate, 
then )(~ ψρ i  will be close to one, while )(~ ψρ i  is close to zero 
for all Ψ∈ψ  where local model i is inaccurate. We essentially 
seek a global model: 

)())1((ˆ)( tetfty +−= ψ                     (2.5) 
based on a combination of the local models (2.4). From the 
definition of iρ~ , it is natural to require that, )(ˆ ψf  should be 
close to )(ˆ ψif  at those Ψ∈ψ  where )(~ ψρ i

 is large. The subset 
of Ψ where )(~ ψρ i

 is large [12] is denoted iΨ . This suggests 

that f̂  should minimize a criterion given by: 
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where 
2

⋅ is the Euclidean norm.  
It can be shown by a theorem [3],[12] that if the function 
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minimizes M on )(ψmC  [3], [12], [16]. 
 

3 Modeling and Identification of the Thermal Plant 
 

3.1 Semi-Mechanistic Model Identification 
Semi-physical modeling is an application of system 
identification where physical insight is used to come up with 
suitable nonlinear transformations of the raw measurements, so 
as a good model structure is achieved. Semi-physical modeling 
is less ambitious than physical modeling in that no complete 
physical structure is sought, just suitable inputs and outputs that 
can be subjected to more or less standard model structures such 
as linear regressions are considered [14],[18]. 
This method can be applied for the thermal process by 
identifying the parameters and solving the following energy 
balance equation [10],[11]:  
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where the parameters are defined in Table 1. This model will be 
discretized and the parameter identification equations are solved 
to reach at a semi-mechanistic NARMAX model. This requires 
cumbersome calculations such as RLS methods [8] to find the 
unknown parameters of the system especially time delays of 
input and disturbance (τu and τv) thus is not considered in this 
paper. 

Parameter Variable Unit 
ρ Mass density of air g/l 
V Volume of tube l 
cp Specific heat capacity of air J/gK 
q Volumetric air flow rate l/s 
G Conductance in resistor Ω-1 

U Effective heat transfer coefficient J/Ks 
Q Heat added through fan W 
u Voltage resistor (input) V 
v Speed of fan (disturbance) ° 
T Air temperature in tube (output) °C 
T0 Air temperature in environment °C 
T1 Temperature in equipment °C 
τv Time delay of disturbance to output s 
τu Time delay of input to output s 

Table 1: Parameters used in the thermal process mechanistic model 



3.2  An “ARMAX” Model Identification 
For the purpose of identification the data sequences shown in 
Figure 3 are used. The sampling interval due to the long time 
constant of the system and its slow dynamics behavior is 
chosen ∆t=0.1 sec and the sequence contains about 10000 
samples. The input ]2,0[)( ∈tu volts, is an exciting signal with 
normal random distribution which covers the full range of input 
operation. The speed of the fan varies with its driver voltage 

]5,3[)( ∈tv volts, and acts as the disturbance. This variable has 
deviation over the full range of its operation in a pseudo-
random manner. Application of these random input and 
disturbance to the experimental plant result an output 
temperature y(t) shown in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Data sequences used for identification 

Using these data sequences collected at the room temperature 
and acts as offset, the following ARMAX model for the overall 
range of variations of input and disturbance will be obtained 
[19]. This model is estimates the temperature of the heating 
plant and compared with the actual output temperature (Fig.4).  
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where the output  is given by: 
                                            Y(z)=H(z)U(z)+G(z)V(z)               (3.2) 
 
 
 
 
 
 
 
 

Figure 4: Simulation of an ARMAX modeling 

3.3  The Multiple Model Based Identification 
The single ARMAX model developed before is not sufficiently 
accurate for the whole operating region of the non-linear 
process considered here. Thus, one may look for accurate 
models valid at some smaller operating regions of the process. 
This means, first the different operating regimes of the thermal 
process should be identified. For this purpose, we applied a 
wide range of step changes to both input and disturbance and 
collected the resulting output samples. This is done by applying 
constant input with deviations in disturbance and fixed 
disturbance by changing the input. This provides rich 
information of the system operating regimes. It is obvious that 
the steady state response of the plant depends on both u(t) and 
v(t). 

There are several methods of searching algorithms for optimal 
decomposition of the overall plant into different operating 
regimes [13],[15]. Most of these algorithms are heuristic and 
depend on exhausting search methods to find the best operating 
regimes. According to the nonlinear steady-state response gain 
characteristic of the system, we chose to combine four local 
ARMAX model structures into an NARMAX model structure. 
The input and disturbance deviations are thus decomposed into 
the following separate regimes. In advanced applications, 
intersections between regimes can be considered: 
Regime #1:  ]1,0[)( ∈tu   ]4,3[)( ∈tv , Regime #2:  ]1,0[)( ∈tu   ]5,4[)( ∈tv  
Regime #3:  ]2,1[)( ∈tu   ]4,3[)( ∈tv , Regime #4:  ]2,1[)( ∈tu   ]5,4[)( ∈tv  

Four separate data sequences with the necessary deviations in 
each operating regime are generated to identify and construct 
local ARMAX models. Based on these data sets, the following 
local models are obtained: 
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where the output of each regime is obtained from (3.2). The 
errors have been calculated based on the “Normalized Root 
Mean Square Error” (NRMSE) [4],  
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where x̂  is the output vector of model and x  is the actual 
output of the thermal process. The errors between model and 
actual plant in each operating regime are shown in Table 2. 
 

Model NRMSE 
Local Model #1 0.0801 
Local Model #2 0.0973 
Local Model #3 0.1006 
Local Model #4 0.0253 

Table 2: Errors of the identified local models 
 



4  Validity and Interpolation Functions 
 

To combine the four local ARMAX model structures into an 
NARMAX model in a smooth manner as mentioned in local 
multiple model section, we need to define a validity function 
which shows the relative validation of each local model. The 
validity functions are considered two dimensional Gaussian 
functions which are illustrated in Fig.5: 
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According to (2.7) interpolation functions can be defined as:  
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Figure 5: Validity functions used for the plant 
 

The output of the model can be found by combining the outputs 
of local models with interpolating functions which varies by the 
value of input and disturbance. This can be done by an offline 
algorithm shown in the block diagram of Fig. 6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Block Diagram of the Multiple-Models 
 

An important task is to choose the best variance for the validity 
functions such that minimum NRMSE can be achieved. The 
variations of NRMSE versus changes in variances of input and 
disturbance is sketched in Fig.7. The best values of σu and σv 
can be selected from this diagram. These are given in Table 3a. 
The performance of multiple model approach can be seen in 
Fig.8. 
 

 
 
 
 
 
 
 
 

Figure 7: NRMSE vs. variance deviations 
 
 

 
 
 
 
 
 
 

Figure 8: Identified multiple model estimation 
 

The NRMSE of the single ARMAX model and the NARMAX 
multiple model approach are compared in Table 3b. It is evident 
that multiple model performs much better than a single 
ARMAX model acting globally. 

Optimal Variances  Model 
Input Variance σu=0.43  Single ARMAX  0.1453 

Disturbance Variance σv=0.40  Multiple Model 0.0517 
        Table 3a: Optimal variances               Table 3b: Errors of identified models  

 

5 Real-Time Control and the  Implementation Results 
In this section the procedure for designing the Real-Time 
control system is presented. The global controller for the 
thermal process consists of four local digital PID filters [27] 
with the structure given below: 
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and KP, KI and KD are the proportion, integration and 
differentiation coefficients. There are several methods to tune 
the PID controllers by auto-calibration [28]. The criteria in most 
methods depends on overshoot and settling time or gain margin 
and phase margin. One of the practical methods to apply is a 
dynamic system simulation for MATLAB which is called 
nonlinear control design (NCD) [21]. The NCD blockset uses 
time domain constraint bounds to represent lower and upper 
bounds on response signals. Constraint bounds can be changed 
to meet the best performance. Based on this technique, for each 
of the local models a digital controller is obtained as: 
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These controllers are combined via the validity and 
interpolation functions to obtain the global controller for the 
thermal plant. It is noted that the validity and interpolation 
functions were found in the previous section. The block 
diagram of this implementation is shown in Fig.9. The 
saturation function at the output port limits the level of the 
control signal which applies to the DAQ card to avoid the 
unbounded signals. 
 
 
 
 
 
 
 
 

Figure 9: Block Diagram of Real-time control system 
 

To illustrate the performance of the multiple model controller 
three random setpoint changes at 15, 120 and 160 sec. together 
with disturbance changes at 35, 140 and 270 sec. with 20 sec. 
duration were applied. The data sequences are shown in Fig.10. 
The results of an experiment with a single PID controller and 
its comparison with the Multiple-Model based control are 
shown in Fig.11. As it is clear from this experiment, the 
multiple models show better performance (such as lower 
overshoot) versus the single PID controller. 
 

 

 
 

 

 

 

 
 

Figure 10: Applied setpoints and disturbances 

 

 
 

 

 
 

 
 

Figure 11: Closed-loop responses 

6  Conclusions 
In this paper Multiple-Model based control and identification of 
a nonlinear thermal process are presented. After defining 
several operating regimes for the operation of the nonlinear 
process, local models and local controllers are developed. Then 
these models and controllers were put together to find a global 
model and a global controller. This method will simplify 
modeling and control of complex systems. Besides, a useful 
environment were set up for the Real-Time implementation on 
the experimental nonlinear thermal process. 
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