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Abstract

When inferring nonlinear dependence from measured data,
the nonlinear nature of the relationship may be characterised
in terms of al the explanatory variables. However, this is
rarely the most parsimonious, or insightful, approach.
Instead, it is usually much more useful to be able to exploit
the inherent nonlinear structure to characterise the nonlinesar
dependence in terms of the least possible number of variables.
In this paper a new way of inferring nonlinear structure from
measured data is investigated. The measured data is
interpreted as providing information on a nonlinear map. The
space containing the domain of the map is sub-divided into
unique linear and nonlinear sub-spaces that are structural
invariants. The most parsimonious representation of the map
is obtained by the restriction of the map to the nonlinear sub-
space. A direct constructive agorithm based on Gaussian
process prior models, defined using a novel covariance
function, is proposed. The agorithm infers the linear and
nonlinear sub-spaces from noisy data and provides a non-
parametric modd of the parsmonious map. Use of the
algorithm is illustrated by application to a Wiener-
Hammerstein system.

1. Introduction

Consider anonlinear dynamic system

Xim =005, 5), Y =h(x;,r) N
with state x0OO", input rO0™ and output yOOO. Theinput and
output are measured but the state is not. When the
unmeasured state can be diminated, the equivaent input-
output representation of the systemis

Yi =HY s Yica B i i) 2
and the task of identifying the system from the measured data
is equivaent to identifying the nonlinear function H(.). Of
course, the nonlinear nature of the dynamics may be
characterised in terms of al the explanatory variables (here,
al the delayed inputs and outputs). However, this is rarely
the most parsimonious, or insightful, approach. Instead, it is
usually much more useful to be able to exploit any inherent
nonlinear structure to characterise the nonlinear dependence
in terms of the least possible number of variables. For
example, it is often the case that dynamics involve a
significant linear component, in which case knowledge of the
nonlinear dependence can considerably reduce the

dimensionality of the nonlinear modelling task (e.g. [4],[8]).
Related to this, the use of appropriate co-ordinate axes
(determined by knowledge of the nonlinear dependence) can
greatly reduce the number of centres/operating regions
required in radial basis function networks, Takagi-Sugeno
fuzzy systems, loca model networks and other types of
blended multiple model representation (e.g. [1],[3],[4]).

In this paper, the nonlinear map, f: D - R, with domain
DOOP andrange RO 0O isinvestigated. Let W, and W,

be sub-spaces of 0P such that the map is linear and nonlinear
on DnW¥, and DnW,, respectivedy. To capture the

nonlinear structure of the map, the sub-space W, is required
to be of minimum dimension. The existence of W, and W
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sub-spacessuch that W, n¥, =9, DOWY, OV, =0° and
Y, isof minimum dimension, is discussed and the necessary
and sufficient conditions determining these sub-spaces are
derived in [5]. (In [5], the conditions on the map are that the
domain and range are non-empty and open and f is twice
continuoudy differentiable amost everywhere). For a
particular nonlinear map, the sub-spaces, W, and ¥, , are
structural invariants. The parsimonious representation of the
nonlinear component of f isthemap F:D n W, - R. While
this setting is generd, it includes (as reflected in the examples
chosen) the situation discussed in the previous paragraph.

The objective considered here is to identify from measured
data the linear and nonlinear sub-spaces and the associated
parssimonious map. Whereas an indirect method for
identifying the nonlinear sub-space is described in [5], a new
direct method is presented bel ow.

2. Nonlinear Structure Identification

Denote the nonlinear map by

y=t(2) ©)
Since measured data is generaly noisy it is natural to work
within a probabilistic framework. Suppose that N

measurements, {(z;,v, )}, of the value of the function, f(2),

with additive Gaussian white measurement noise, i.e
yi=f(z)+n;, are available and denote them by S It is of
interest here to use this data to learn the mapping f(2) or,
more precisaly, to determine a probabilistic description of f(2)
on the domain, D, containing the data. Note that this is a
regression formulation and it is assumed the input z is noise



free’. The probabilistic description of the nonlinear map
adopted is tha of a Gaussian process prior model within a
Bayesian probability context [7].

2.1 Gaussian process prior mode's

A brief overview of Gaussian process prior models within a
Bayesian probability context is given below. For further
detailssee [7].

The probabilistic description of the function, f(z), is the
stochastic process, f,, and the E[f,], as z varies, is interpreted
to be a fit to f(2). By necessity to define the stochastic
process, f,, the probability distributions of f, for every choice
of value of zOD are required together with the joint
probability distributions of f, for every choice of finite

sample, {z,...,z}, of D, for al k>1. Of course, the joint
probability distributions of lower dimensionality must be the
margina distributions of those of higher dimensionality.
Given the joint probability distribution for f, , i=1..N, and
the joint probability distribution for n;, i=1..N, the joint
probability distribution for y;, i=1..N, is readily obtained as
their product since the measurement noise, n;, and the f(z)
(and so the f, ) are statistically independent. Sis a single
event belonging to the joint probability distribution for vy;,
i=1..N.

In the Bayesian probability context, the prior belief is placed
directly on the probability distributions describing f, which
are then conditioned on the information, S to determine the
posterior probability distributions. In particular, for the
Gaussian process prior models considered here, the prior
probability distributions for the f, are chosen to be Gaussian
with zero mean (in the absence of any evidence the value of
f(2) is as likely to be positive as negative). To complete the
statisticad description, requires only a definition of the
covariance function C(f,, ,fZj )=ELf,, ,fzj], for al z and z.

The resulting posterior probability distributions are also
Gaussian. The choice of Gaussian probability distributions
may seem strangely restrictive initialy, but recall that thisis
simply a prior on the relevant stochastic process space and so
places few inherent restrictions on the class of nonlinear
functions that can be modelled. Indeed, it can be shown that
the result is, in fact, a Bayesian form of kernel regression
model [2] subsuming, amongst others, RBF, spline and many
neural network models [7]. The Gaussian process prior model
is non-parametric in the sense that the imposition of a specific
parametric structure is avoided. This model is used to carry
out inference as follows.

By Bayestheorem, p(f, | S) = p(f,,S)/p(S) , where p(9 acts
as a normalising constant. Hence, from the Gaussian nature
of the probability distributions

No attempt to being made here to propagate a Gaussian or
other distribution through a nonlinear function.
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where Y =[y,,---,y 1", A is C(f, , f,), the ij™ dement of
the covariance matrix Ax is C(y;, y;) and the i" dement of
vector Ay is C(y;, f). Both Ay; and Ay depend on z
Applying the partitioned matrix inversion lemma, it follows
that
1 ~ ~

p(fz |S)|:|exp|:_5(fz_fz)/\zl(fz _fz):| (5)
with f, =ALALY, A, =A,, ~ALALA,,. Therefore the
prediction from this mode isthat the most likely value of f(2)
is the mean, fz , with variance /\,. Note that fz issimply a z-
dependent weighted linear combination of the measured data
points, Y, using weights ALA .

The measurement noise, n, has covariance ng; and is
statistically independent of f(z). Hence, the covariances for
the measured output, y;, are smply

Clyuyy) = (C(f, .f,)) +ng) © Clif) =C(f, . 1) (6)

2.2 Choice of covariancefor f,

A straightforward smoothness prior covariance function for
f,, which ensures that outputs associated with nearby inputs
should have higher covariance than more widely separated
inputs, is[7]

Clt,.f,) =aexpl-(z,-2,)'D(z, -2,)/2)

D =diag[d,,---,d,]

The vaue of di¢ characterises the rate of variation of the
function, f, in the direction of the k™-axis; the smaller the
magnitude of dy, the dower the rate of variation of f with
respect to z. The matrix, D, thus indicates the degree of
nonlinearity or relative smoothness in the directions of each
explanatory variables. The covariance, (7), is used in [5] to
identify the nonlinear maps f(z) and in [6] to reconstruct
nonlinear systems from localy identified models. The
corresponding covariance for y; is

Cy;.y;) =aexpl-(z,-2))"D(z, -2))/2+ng;p  (8)
To obtain a modd given the data, S, the hyperparameters (a,
di, Nn), whilst constrained to be positive, are adapted to
maximise the likdihood, p(S|(a,d,,n)).

()

The covariance (8) has the disadvantage that it provides
information about the rates of variation of f projected in the
directions of the axes, only. The characteristic signature of the
nonlinear sub-space, W, , is that nonlinear variation occurs

only in those directions lying in W, . Suppose the dimension
of W, isone but the basis vector has a non-zero component

aong each axes. In this case, there is variation in the direction
of each axis and each hyperparameter in (7) needs to be non-
zero. The dituation is indistinguishable from when the
dimension of W, isequa to the dimension of the domain of



f. Hence, W, cannot be identified directly using (8). To do

so requires a different choice of covariance.
Initialy, restrict the function, f, to being constant on
Y, . Continuing with the supposition that the dimension of

Y, isone, anove choice of covariancefor f,,
aep(-ly(z,-2))1?12)
=aep(-(z, -2,) Mz, -2,)12)
M=pw" 5 ¥V =V ¥,]
is suggested. Since (z, —z;)"M(z; —z;) =0 whenever (z-2)
is orthogonal to ); the covariance (9) is only capable of
indicating the rate of variation of f in the direction of y. The
rate of variation in directions orthogonal to y; is perforce zero.

Consequently, the vector ydirectly indicates the direction of
variation of the function; that is, yis a basis vector for W, .
Hence, the covariance, (9), a priori incorporates the
information tha the dimension of W, is one and, adapting
the hyperparameters to maximise the corresponding
likeihood, enables W, to beidentified directly.

©)

In general by the same reasoning, when the dimension of ¥,
is g, a covariance that a priori incorporates thisinformation is
aep(-(z,-2)"M(z,-2,)/2 ; M=TT"  (10)

where '™ ={),} 0 0% . Without loss of generdlity, to avoid
over-parameterisation ;= 0 for i>j. The corresponding
covariance for y; is

. yy) =aep(-(z -2,) Mz, -2))/2) +ng, (11)
To identify the nonlinear sub-space, ¥, , given the data, the
hyperparameters (a, ), n) are adapted, whilst (a, n) are
congtrained to be positive, to maximise the likelihood,
P(S|(a,y;,n)). The prediction from the model, so obtained,
is that the most likely nonlinear sub-space, W, , is the sub-
space spanned by the rows of I'. Of course, even though W,
and W, are sub-spaces, the prediction using (11) is only
valid on the region D containing the data and not everywhere.

The probabilistic description of the parsimonious nonlinear
map F(&), &=z, is the stochastic process, F¢. The probability
distributions for Fg remain Gaussian with covariance
functions

CF, ) =aexpl- (& -&) € -€,)/2)

C(R, ,y;) = C(F, .f,) (12)
=aexp(-(€ -I"z)" (€ -"2,)/2)
It follows, similarly to p(f; |S), that
p(F |S) 0 exp[—% (F ~FAL(F -F )} (13)

with F =ALABY, Ag=A, -ALALA, where Ay is
C(Fg, Fe) and the i"™ element of vector A,, isC(y;, Fe). The

prediction from this model is that the most likely vaue of
F(&) isthemean, Fg, with variance Ag.

To accommodate the function being non-constant on W, , the
term

Wz, ; W =diaglw,,---, W,] (14)
which is the covariance corresponding to a genera linear
function, see [7], can be added to the covariance.

Test Data and Prediction

Figure 1 Test data and prediction.

Prediction Error and Confidence Interval

Figur e 2 Prediction error and confidence intervals.

Example: f(z) = Asin(a,;z, +a,z,) A=1a =10,a, =038
The unit basis vector for W, is(0.7809,0.6247). Since f(2) is
constant on W, , thereis no need to add the linear term, (14),
to the covariancee The doman, D, is the
rectangle,0<z, <7,0<z, <8 and the training data is the
values on a regular 16x16 grid covering D with noise of
intensity 0.05. In this example the dimension of W, is one.
On maximising the likelihood, the hyperparameters (typica



for a successful optimisation) obtained with the covariance
(11) are
a =2.1338, y1=-0.4286, ) =-0.3430, n=0.00244

that is, the estimate of noise intensity is 0.0493 and the
estimate of the unit basis vector for W, is (0.7807,0.6249).
The model (11) is used to predict the value of f(z) on a
regular 31x31 grid covering D. The exact and predicted
values, respectivey f(z) and fz, are shown in Figure 1 and the
prediction error and confidence interval (£ two standard
deviations) in Figure 2. It is worthwhile noting, that the
confidence interva increases rapidly in the direction of W,
when nearing the boundary of D but not in the direction of
Y, . The predicted parsimonious map, F(E), is depicted in
figure 3.

Parsimonious map and confidence interval

Figure 3 Parsimonious map and
confidence intervals.

Prediction Error

Figure 4 Prediction error and confidence intervals with
covariance (8).

A mode of the nonlinear map is aso constructed for the
above example using the covariance (8). The prediction error
and the confidence interval for the Gaussian process model of

the nonlinear map with this choice of covariance is depicted
in Figure 4. With the covariance (11), the measurement data
is being used to construct a ¢-dimensionad model;
specificaly, the parsimonious model from the data projected
into W,. In contrast, with the covariance (8), the
measurement data is being used to construct a p-dimensiona
mode dependent on al the explanatory variables. Since g<p,
the former is generaly more accurate than the latter.
Comparing Figures 2 and 4, this can be seen to be the case
with the errors considerably larger in the latter than the
former.

3 Identification algorithm

Asin the example in section 2.2, the novel covariance, (11),
enables a basis for the nonlinear sub-space, W, and the
parsimonious map, F, to be identified directly from measured
data when the dimenson of W, is known and the
hyperparameters  optimise successfully. A systematic
algorithm utilising the Gaussian process prior models with
covariance functions (8) and (11) is described in this section.
The two issues of determining the dimension of ¥, and
ensuring successful optimisation of the hyperparameters are
addressed.

The optimisation procedure with the covariance for f, chosen
to be (10) proves to be rather temperamentd in practice. It
frequently fails or produces very poor fits when the initial
values for the hyperparameters are chosen too distant from
those that maximise the likelihood, p(S|(a,);,n)). This
tendency increases rapidly with the number of data points and
the degree of the function being fitted. The solution is to
determine initia values for the hyperparameters sufficiently
close to the optimal ones by the following procedure that
simultaneoudly indicates whether the dimension of W, is
chosen correctly. First, the covariance for y;, (8), is used and
the hyperparameters (a, di, n), whilst constrained to be
positive, are adapted to maximise the likelihood. Second, the
covariance is modified to
Baexp(-(z,-2,)"D(z, -2,)12)
raepl-(z,-2) Mz, -2,)12) +ng,
with the hyperparameters (a, dy) constant and set to the values
found in the first step. The hyperparameters (5, a, ), n) are
then adapted, with (8, a, n) constrained to be positive, to
maximise the likelihood for a particular choice of the
dimension of W, . The presence of the first term in (15)
successfully moderates the optimisation procedure. The
magnitude of Bis an indicator of the correctness of the choice
of dimension of W, . When fSisclose to zero, a model of the
form (11) with the chosen dimension of W, is a good
representation of the data When S is not close to zero, no
model of the form (11) can be found that is a good
representation of the data; that is the chosen dimension of
Y, istoo small. The values for the hyperparameters (a, J;

(15



n) are suitable initial values for the optimisation procedure
with the covariance chosen to be (11).

The full dgorithmisasfollows:

1. Choose the covariance function to be (8) with the initial
vaues for the hyperparameters chosen randomly. The
hyperparameters (a, dy, n), whilst constrained to be
positive, are adapted to maximise the likdihood,
p(sl(a!dk!n))'

2. Let ulz,/dklekl, where d, is the largest of the
hyperparameters, d,, and €, is the unit vector in the
direction of the k;-st axis; u, = ,/dkz €, » where d, is
the next largest of the hyperparameters, di, and e, is

the unit vector in the direction of the k,-nd axis; etc.

3. Choose g, thedimension of W, to beone.

Assign the rows of G={g;} 00" to be uj,--,ug,
and re-order them so that G is upper-triangular.

5. Change the covariance to (15). The hyperparameters (a,
dy) are constant and set to the vaues found in 1. The
initial values for the other hyperparameters are as
follows: Bisset to (1-6), aissetto (£a), y; aesettog;
and n is set to the value found in 1. The value chosen for
£ is arbitrary, but positive and small, say 0.1. The
hyperparameters (5, a, y;, n) are then adapted, with (5 a,
n) constrained to be positive, to maxi mise the likelihood.

6. Repeat the procedure from 4 with q incremented by one
until <<1.

7. Change the covariance to (11) with the initia values for
the hyperparameters (a, ), n) set to values found in 5.
When the value of SBis very smal this last optimisation
may be omitted. The hyperparameters (a, );, n) are then
adapted, with (a, n) constrained to be positive, to
maxi mise the likelihood.

This agorithm is very reliable and well-behaved in practice.
The most likdy sub-space, W, is of dimension, ¢, and is

spanned by therows of I
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4, Application to a Wiener-Hammer stein System

Consider the identification of a transversd Wiener-
Hammerstein system
X =yl +oo 3,k
z; =f(x;) (16)
Yi =bpzip, te-t bz,

Assume that N>n+m input-output measurements {(r,, )},
are available, where §, =y, +n, with n; zero mean Gaussian
noise. Let R; denote the delayed input vector

R, = [ri—(n—m) li(n-m-1) r ]T (17)
Reformulating the dynamicsin terms of R; and y; yields
yi =FR)) (18)

where

)l xa(t)=0.9184r(t)

F(R,)=b, f(H,,R)+---+b,f(H,R;) (19)
a, a, O 0
0 a, --- a, O 0

H= . (20)
0 0 a, - a

and Hy, k=1..m+1 denotes the k™ row of H. At least one of
the coefficients by, k=0..m is non-zero. Clearly, the rows of
H condtitute a basis for the nonlinear sub-space, W,
associated with the map, F(R;). The agorithm discussed in
Section 3, can be applied to determine W,; and to identify the

map, F(R).

_> X2(tn): 0. 3Xl(tn)2

+0.3674r(tn

Y(tn)= Xa(tn)

+0. 55Xo(t,, 2)

Figure5 Block diagram representation of system.

Confidence interval and training data

Figure 6 Contours of constant confidence intervals

and data points.
Example:
Consider the Wiener-Hammerstein  nonlinear  system

illugtrated in Figure 5. Reformulating the dynamics in terms
of the measured variables (input r and output y) yields

y; =0.3(H,R)* +0.165(H ,R)? (21)
where R =[r(t;) r(t,) r(t,) r(t3)]" with
0.9184 0.3674 0 0
H=| O 0.9184 0.3674 0 (22
0 0 0.9184 0.3674



and H; is thei-th row of H. The sub-space W, has dimension
two and its unit basis functions are (0.9284,0.3714,0,0) and
(0,0,0.9284,0.3714). The output in response to a Gaussian
input is measured: data is collected for 15 seconds with a
sampling interva of 0.1 seconds (150 data points). Gaussian
white noise of standard deviation 0.1 units is added to the
output measurement (the underlying signal has a peak
magnitude of 0.5, so this represents a substantial level of
noise). Again for clarity, f(2) is constant on ¥, and there is
no need to add the linear term (14) to the covariance.

Set the dimension of W, to one. On maximising the
likdihood, the hyperparameters for the covariance, (15), are
K =-0.3084, )p =-0.1478, )5=-0.2283, j; =-0.0920
a =15.2976, n=0.00958, 5= 0.4415
that is, the estimate of noise intensity is 0.0979 and the
estimate of the unit bass vector for W, is

(0.7321,0.3507,0.5418,0.2183). However, Sis large, 0.4415,
indicating that the dimension of W, is greater than one.

Set the dimension of W, to two. On maximising the
likdihood, the hyperparameters are

1= 0.3244, 11, = 0.1286, yi3=-0.0081, )14 =-0.0061
1= 0, o =-0.0102, J53= 0.2628, )54 = 0.1072
a =55.4304, n=0.00917, B= 2e-012

that is, the estimate of noise intensity is 0.0958 and the
estimate of the unit basis vectors for W, ae
(0.9292,0.3685,-0.0231,-0.0173) and  (0,-0.0358,0.9254,
0.3775). Since the value of Sis very smdl, 2e-012, it can be
concluded that the dimension of W, istwo and step 7 of the
algorithm can be omitted. The sub-space, W,, , is spanned by
the above two vectors. Clearly the prediction for the two
basis vectors is good, particularly in view of the low signal to
noise ratio and smal number of data points on which it is
based (150 points from a four dimensiona map). In figure 6,
the contours of constant confidence intervas for the
parsimonious nonlinear map are shown together with the
measurement data points projected onto W, . The confidence
intervas are smdl where the data points are dense but
increase as the data points become scarce.

Identification of the Wiener-Hammerstein system is not
pursued to completion as that is not the objective of this
paper. However, having identified WY, and the

hyperparameters defining the parsimonious nonlinear map,
F(E), therest is straightforward.

5. Conclusions

In this paper a new way of inferring nonlinear structure from
measured data is investigated. The measured data is
interpreted as providing information on a nonlinear map. The
space containing the map is sub-divided into unique linear
and nonlinear sub-spaces that are structura invariants. The
most parsimonious representation of the map is obtained by
the restriction of the map to the nonlinear sub-space; that is,
the dimensionality of the nonlinear component of the map is

minimised. A new direct constructive algorithm based on
Gaussian process prior modes, defined using a nove
covariance function, is proposed. The algorithm infers the
linear and nonlinear sub-spaces from noisy data and provides
a non-parametric model of the parsimonious map. Use of the
algorithm is illustrated by application to a Wiener-
Hammerstein system.
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