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Abstract 
When inferring nonlinear dependence from measured data, 
the nonlinear nature of the relationship may be characterised 
in terms of all  the explanatory variables. However, this is 
rarely the most parsimonious, or insightful, approach.  
Instead, it is usually much more useful to be able to exploit 
the inherent nonlinear structure to characterise the nonlinear 
dependence in terms of the least possible number of variables.  
In this paper a new way of inferring nonlinear structure from 
measured data is investigated.  The measured data is 
interpreted as providing information on a nonlinear map. The 
space containing the domain of the map is sub-divided into 
unique linear and nonlinear sub-spaces that are structural 
invariants. The most parsimonious representation of the map 
is obtained by the restriction of the map to the nonlinear sub-
space. A direct constructive algorithm based on Gaussian 
process prior models, defined using a novel covariance 
function, is proposed. The algorithm infers the l inear and 
nonlinear sub-spaces from noisy data and provides a non-
parametric model of the parsimonious map. Use of the 
algorithm is i llustrated by application to a Wiener-
Hammerstein system.  
 

1.  Introduction 
 

Consider a nonlinear dynamic system 
 )r,h(xy),r,g(xx iiiii1i ==+                           (1) 

with state x∈ℜn, input r∈ℜm and output y∈ℜ.  The input and 
output are measured but the state is not.  When the 
unmeasured state can be eliminated, the equivalent input-
output representation of the system is 
 )r,r,r,y,,H(yy ni1iini1ii −−−−= ��                       (2) 
and the task of identifying the system from the measured data 
is equivalent to identifying the nonlinear function H(.). Of 
course, the nonlinear nature of the dynamics may be 
characterised in terms of all the explanatory variables (here, 
all  the delayed inputs and outputs).  However, this is rarely 
the most parsimonious, or insightful, approach.  Instead, it is 
usually much more useful to be able to exploit any inherent 
nonlinear structure to characterise the nonlinear dependence 
in terms of the least possible number of variables. For 
example, i t is often the case that dynamics involve a 
significant linear component, in which case knowledge of the 
nonlinear dependence can considerably reduce the 

dimensionality of the nonlinear modelling task (e.g. [4],[8]).  
Related to this, the use of appropriate co-ordinate axes 
(determined by knowledge of the nonlinear dependence) can 
greatly reduce the number of centres/operating regions 
required in radial basis function networks, Takagi-Sugeno 
fuzzy systems, local model networks and other types of 
blended multiple model representation (e.g. [1],[3],[4]). 
 

In this paper, the nonlinear map, f: RD → , with domain 
pD ℜ⊆  and range ℜ⊆R  is investigated.  Let lΨ  and nlΨ  

be sub-spaces of pℜ such that the map is linear and nonlinear 
on lΨ∩D  and nlΨ∩D , respectively. To capture the 

nonlinear structure of the map, the sub-space nlΨ  is required 

to be of minimum dimension.  The existence of lΨ  and nlΨ , 

sub-spaces such that φ=Ψ∩Ψ nll , p
nll ℜ=Ψ∪Ψ⊆D  and 

nlΨ  is of minimum dimension, is discussed and the necessary 
and sufficient conditions determining these sub-spaces are 
derived in [5]. (In [5], the conditions on the map are that the 
domain and range are non-empty and open and f is twice 
continuously differentiable almost everywhere). For a 
particular nonlinear map, the sub-spaces, lΨ  and nlΨ , are 
structural invariants. The parsimonious representation of the 
nonlinear component of f is the map F: RD →Ψ∩ nl . While 
this setting is general, i t includes (as reflected in the examples 
chosen) the situation discussed in the previous paragraph. 
   

The objective considered here is to identify from measured 
data the linear and nonlinear sub-spaces and the associated 
parsimonious map.  Whereas an indirect method for 
identifying the nonlinear sub-space is described in [5], a new 
direct method is presented below. 
 

2.  Nonlinear Structure Identification 
 

Denote the nonlinear map by 
 y=f(z)                                                                  (3) 
Since measured data is generally noisy it is natural to work 
within a probabilistic framework.  Suppose that N 

measurements, N
iii 1)}y,{ ( =z , of the value of the function, f(z), 

with additive Gaussian white measurement noise, i.e. 
yi=f(zi)+ni,  are available and denote them by S. It is of 
interest here to use this data to learn the mapping f(z) or, 
more precisely, to determine a probabil istic description of f(z) 
on the domain, D, containing the data. Note that this is a 
regression formulation and it is assumed the input z is noise 



 

free1. The probabil istic description of the nonlinear map 
adopted is that of a Gaussian process prior model within a 
Bayesian probability context [7]. 
 

2.1 Gaussian process pr ior  models 
 

A brief overview of Gaussian process prior models within a 
Bayesian probability context is given below. For further 
details see [7]. 
 

The probabil istic description of the function, f(z), is the 
stochastic process, fz, and the E[fz ], as z varies, is interpreted 
to be a fit to f(z). By necessity to define the stochastic 
process, fz, the probability distributions of fz for every choice 
of value of z∈D are required together with the joint 
probability distributions of 

i
f z  for every choice of finite 

sample, { z1,…,zk} , of D, for all k>1. Of course, the joint 
probability distributions of lower dimensionality must be the 
marginal distributions of those of higher dimensionality. 
Given the joint probability distribution for 

i
f z , i=1..N, and 

the joint probability distribution for ni, i=1..N, the joint 
probability distribution for yi, i=1..N, is readily obtained as 
their product since the measurement noise, ni, and the f(zi) 
(and so the 

i
f z ) are statistically independent. S is a single 

event belonging to the joint probability distribution for yi,  
i=1..N. 
  

In the Bayesian probability context, the prior belief is placed 
directly on the probabili ty distributions describing fz which 
are then conditioned on the information, S, to determine the 
posterior probabili ty distributions.  In particular, for the 
Gaussian process prior models considered here, the prior 
probability distributions for the fz are chosen to be Gaussian 
with zero mean (in the absence of any evidence the value of 
f(z) is as likely to be positive as negative). To complete the 
statistical description, requires only a definition of the 
covariance function C(

i
f z ,

j
f z )=E[

i
f z ,

j
f z ], for all zi and zj. 

The resulting posterior probabili ty distributions are also 
Gaussian. The choice of Gaussian probabili ty distributions 
may seem strangely restrictive initially, but recall that this is 
simply a prior on the relevant stochastic process space and so 
places few inherent restrictions on the class of nonlinear 
functions that can be modelled.  Indeed, it can be shown that 
the result is, in fact, a Bayesian form of kernel regression 
model [2] subsuming, amongst others, RBF, spline and many 
neural network models [7]. The Gaussian process prior model 
is non-parametric in the sense that the imposition of a specific 
parametric structure is avoided. This model is used to carry 
out inference as follows. 
  

By Bayes theorem, )(p/),p(f)|p(f SSS zz = , where p(S) acts 
as a normalising constant.  Hence, from the Gaussian nature 
of the probabil ity distributions 

                                                
1No attempt to being made here to propagate a Gaussian or 
other distribution through a nonlinear function. 
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where T
N1 ]y,,y[ �=Y , Λ11 is C(fz , fz), the ij th element of 

the covariance matrix ΛΛΛΛ22 is C(yi, yj) and the i th element of 
vector ΛΛΛΛ21 is C(yi, fz). Both Λ11 and ΛΛΛΛ21 depend on z.  
Applying the partitioned matrix inversion lemma, it follows 
that 

��
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zzzzzz S  (5) 

with 21
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22

T
2111
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T
21 ,f̂ ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ −Λ=Λ= zz Y .  Therefore, the 

prediction from this model is that the most l ikely value of f(z) 

is the mean, zf̂ , with variance Λz. Note that zf̂  is simply a z-
dependent weighted linear combination of the measured data 

points, Y, using weights -1
22

T
21ΛΛΛΛΛΛΛΛ . 

  

The measurement noise, ni, has covariance nδij and is 
statistically independent of f(zi). Hence, the covariances for 
the measured output, yi, are simply 

C(yi,yj) = (C(
i

f z ,
j

f z ) + nδij)    ;   C(yi, fz) = C(
i

f z , fz)   (6) 
 

2.2 Choice of covar iance for  fz 
 

A straightforward smoothness prior covariance function for 
fz, which ensures that outputs associated with nearby inputs 
should have higher covariance than more widely separated 
inputs, is [7] 

( )
],,[diag

2/)()(exp)f,f(C

p1

jijiji

ddD

Da T


=

−−−= zzzzzz
               (7) 

The value of dk characterises the rate of variation of the 
function, f, in the direction of the kth-axis; the smaller the 
magnitude of dk, the slower the rate of variation of f with 
respect to zk. The matrix, D, thus indicates the degree of 
nonlinearity or relative smoothness in the directions of each 
explanatory variables.  The covariance, (7), is used in [5] to 
identify the nonlinear maps f(z) and in [6] to reconstruct 
nonlinear systems from locally identified models.  The 
corresponding covariance for yi is 

( ) pnDa ij
T δ+−−−= 2/)()(exp)y,y(C jijiji zzzz     (8) 

To obtain a model given the data, S, the hyperparameters (a, 
dk, n), whilst constrained to be positive, are adapted to 
maximise the likelihood, ),,(|(p ndaS k ). 
   

The covariance (8) has the disadvantage that it provides 
information about the rates of variation of f projected in the 
directions of the axes, only. The characteristic signature of the 
nonlinear sub-space, nlΨ , is that nonlinear variation occurs 

only in those directions lying in nlΨ .  Suppose the dimension 

of nlΨ  is one but the basis vector has a non-zero component 
along each axes. In this case, there is variation in the direction 
of each axis and each hyperparameter in (7) needs to be non-
zero. The situation is indistinguishable from when the 
dimension of nlΨ  is equal to the dimension of the domain of 



 

f.  Hence, nlΨ  cannot be identified directly using (8). To do 
so requires a different choice of covariance. 
  Initially, restrict the function, f, to being constant on 

lΨ . Continuing with the supposition that the dimension of 

nlΨ  is one, a novel choice of covariance for fz, 
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is suggested. Since )()( jiji zzzz −− MT  = 0 whenever (zi-zj) 

is orthogonal to γ, the covariance (9) is only capable of 
indicating the rate of variation of f in the direction of γ. The 
rate of variation in directions orthogonal to γ, is perforce zero. 
Consequently, the vector γ directly indicates the direction of 
variation of the function; that is, γ is a basis vector for nlΨ . 

Hence, the covariance, (9), a priori incorporates the 
information that the dimension of nlΨ  is one and, adapting 
the hyperparameters to maximise the corresponding 
likelihood, enables nlΨ  to be identified directly. 
 

In general by the same reasoning, when the dimension of nlΨ  
is q, a covariance that a priori incorporates this information is 

       ( ) TT MM ΓΓ=−−− ;2/)()(exp jiji zzzzα      (10) 

where pq
ij }{ ×ℜ∈=Γ γT . Without loss of generality, to avoid 

over-parameterisation γij= 0 for i>j. The corresponding 
covariance for yi is 

( ) ij
T nM δα +−−−= 2/)()(exp)y,y(C jijiji zzzz    (11) 

To identify the nonlinear sub-space, nlΨ , given the data, the 

hyperparameters (α, γij, n) are adapted, whilst (α, n) are 
constrained to be positive, to maximise the likelihood, 

),,(|(p nS i jγα ).  The prediction from the model, so obtained, 

is that the most likely nonlinear sub-space, nlΨ , is the sub-

space spanned by the rows of Γ.  Of course, even though lΨ  

and nlΨ  are sub-spaces, the prediction using (11) is only 

valid on the region D containing the data and not everywhere. 
  

The probabilistic description of the parsimonious nonlinear 
map F(ξξξξ), ξξξξ=Γz, is the stochastic process, Fξξξξ. The probabil ity 
distributions for Fξξξξ remain Gaussian with covariance 
functions 

( )
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It follows, similarly to p(fz |S),  that 
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T
21 ,F̂ ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ ξξξξξξξξ −Λ=Λ= Y  where 11Λ  is 

C(Fξξξξ, Fξξξξ) and the i th element of vector 21ΛΛΛΛ  is C(yi, Fξξξξ).   The 

prediction from this model is that the most likely value of 

F(ξξξξ) is the mean, ξξξξF̂ , with variance ξξξξΛ . 
 

To accommodate the function being non-constant on lΨ , the 

term 

                  ],,[diag; p1ji
wwWWT �=zz                      (14) 

which is the covariance corresponding to a general l inear 
function, see [7], can be added to the covariance. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: 8.0,0.1,1)zzsin()(f 212211 ===+= aaAaaAz   

The unit basis vector for nlΨ  is (0.7809,0.6247). Since f(z) is 

constant on lΨ , there is no need to add the linear term, (14), 
to the covariance. The domain, D, is the 
rectangle, 7z0 1 ≤≤ , 8z0 2 ≤≤  and the training data is the 
values on a regular 16x16 grid covering D with noise of 
intensity 0.05. In this example the dimension of nlΨ  is one. 
On maximising the likelihood, the hyperparameters (typical 
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     Figure 2 Prediction error and confidence intervals. 

Figure 1 Test data and prediction. 
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for a successful optimisation) obtained with the covariance 
(11) are 

α = 2.1338, γ1 = -0.4286, γ2  = -0.3430, n=0.00244 
that is, the estimate of noise intensity is 0.0493 and the 
estimate of  the unit basis vector for nlΨ  is (0.7807,0.6249). 
The model (11) is used to predict the value of f(z) on a 
regular 31x31 grid covering D. The exact and predicted 

values, respectively f(z) and zf̂ , are shown in Figure 1 and the 

prediction error and confidence interval (± two standard 
deviations) in Figure 2. It is worthwhile noting, that the 
confidence interval increases rapidly in the direction of nlΨ  
when nearing the boundary of D but not in the direction of 

lΨ . The predicted parsimonious map, F(ξξξξ), is depicted in 

figure 3. 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A model of the nonlinear map is also constructed for the 
above example using the covariance (8). The prediction error 
and the confidence interval for the Gaussian process model of 

the nonlinear map with this choice of covariance is depicted 
in Figure 4. With the covariance (11), the measurement data 
is being used to construct a q-dimensional model; 
specifically, the parsimonious model from the data projected 
into nlΨ . In contrast, with the covariance (8), the 

measurement data is being used to construct a p-dimensional 
model dependent on all the explanatory variables. Since q<p, 
the former is generally more accurate than the latter. 
Comparing Figures 2 and 4, this can be seen to be the case 
with the errors considerably larger in the latter than the 
former. 
 

3 Identification algor ithm 
 

As in the example in section 2.2, the novel covariance, (11), 
enables a basis for the nonlinear sub-space, nlΨ , and the 
parsimonious map, F, to be identified directly from measured 
data when the dimension of nlΨ  is known and the 

hyperparameters optimise successfully. A systematic 
algorithm util ising the Gaussian process prior models with 
covariance functions (8) and (11) is described in this section. 
The two issues of determining the dimension of nlΨ  and 
ensuring successful optimisation of the hyperparameters are 
addressed. 
 

The optimisation procedure with the covariance for fz chosen 
to be (10) proves to be rather temperamental in practice. It 
frequently fails or produces very poor fits when the initial  
values for the hyperparameters are chosen too distant from 
those that maximise the likelihood, ),,(|(p nS i jγα ). This 

tendency increases rapidly with the number of data points and 
the degree of the function being fitted. The solution is to 
determine initial values for the hyperparameters sufficiently 
close to the optimal ones by the following procedure that 
simultaneously indicates whether the dimension of nlΨ  is 
chosen correctly. First, the covariance for yi, (8), is used and 
the hyperparameters (a, dk, n), whilst constrained to be 
positive, are adapted to maximise the likelihood. Second, the 
covariance is modified to 
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2/)()(exp

2/)()(exp
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−−−

zzzz
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       (15) 

with the hyperparameters (a, dk) constant and set to the values 
found in the first step. The hyperparameters (β, α, γij, n) are 
then adapted, with (β, α, n) constrained to be positive, to 
maximise the likelihood for a particular choice of the 
dimension of nlΨ . The presence of the first term in (15) 
successfully moderates the optimisation procedure. The 
magnitude of β is an indicator of the correctness of the choice 
of dimension of nlΨ . When β is close to zero, a model of the 

form (11) with the chosen dimension of nlΨ  is a good 

representation of the data. When β is not close to zero, no 
model of the form (11) can be found that is a good 
representation of the data; that is the chosen dimension of 

nlΨ  is too small. The values for the hyperparameters (α, γij, 
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Figure 4 Prediction error and confidence intervals with 
covariance (8). 
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n) are suitable initial values for the optimisation procedure 
with the covariance chosen to be (11). 
 

The full algorithm is as fol lows: 
1. Choose the covariance function to be (8) with the initial 

values for the hyperparameters chosen randomly. The 
hyperparameters (a, dk, n), whilst constrained to be 
positive, are adapted to maximise the likelihood, 

),,(|(p ndaS k ). 

2. Let 
1k1k1 eu d= , where 

1kd  is the largest of the 

hyperparameters, dk, and 
1ke  is the unit vector in the 

direction of the k1-st axis; 
2k2k2 eu d= , where 

2kd  is 

the next largest of the hyperparameters, dk, and 
2ke  is 

the unit vector in the direction of the k2-nd axis; etc. 
3. Choose q, the dimension of nlΨ  to be one. 

4. Assign the rows of pq
ij }{G ×ℜ∈= g  to be TT

q1 u,,u � , 

and re-order them so that G is upper-triangular. 
5. Change the covariance to (15). The hyperparameters (a, 

dk) are constant and set to the values found in 1. The 
initial values for the other hyperparameters are as 
follows: β is set to (1-ε), α is set to )( aε , γij are set to gij 

and n is set to the value found in 1. The value chosen for 
ε is arbitrary, but positive and small, say 0.1. The 
hyperparameters (β, α, γij, n) are then adapted, with (β, α, 
n) constrained to be positive, to maximise the l ikelihood. 

6. Repeat the procedure from 4 with q incremented by one 
until  β<<1. 

7. Change the covariance to (11) with the initial values for 
the hyperparameters (α, γij, n) set to values found in 5. 
When the value of β is very small this last optimisation 
may be omitted. The hyperparameters (α, γij, n) are then 
adapted, with (α, n) constrained to be positive, to 
maximise the likelihood. 
 

This algorithm is very reliable and well-behaved in practice. 
The most l ikely sub-space, nlΨ , is of dimension, q, and is 

spanned by the rows of Γ.  
 

4. Application to a Wiener-Hammerstein System 
 

Consider the identification of a transversal Wiener-
Hammerstein system 
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Assume that N>n+m input-output measurements N
1iii )}ŷ,{ (r =  

are available, where iii nyŷ +=  with ni zero mean Gaussian 
noise.  Let Ri denote the delayed input vector 

                  [ ]T
i1)m(nim)(nii rrr �

−−−−−=R                  (17) 

Reformulating the dynamics in terms of Ri and yi yields 
                             )F(y ii R=                                            (18) 

where 

         )f(b)f(b)F( i10i1mmi RHRHR ++= +
�                  (19) 
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and Hk, k=1..m+1 denotes the kth row of H.  At least one of 
the coefficients bk, k=0..m is non-zero.  Clearly, the rows of 
H constitute a basis for the nonlinear sub-space, nlΨ , 

associated with the map, F(Ri). The algorithm discussed in 
Section 3, can be applied to determine nlΨ  and to identify the 
map, F(Ri). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Example: 
Consider the Wiener-Hammerstein nonlinear system 
il lustrated in Figure 5.  Reformulating the dynamics in terms 
of the measured variables (input r and output y) yields 

                    2
3

2
1i )(165.0)(3.0y RHRH +=                    (21) 

where T
3-i2-i1-ii )]r(t)r(t)r(t)[r(t=R  with 
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x1(tn)= 0.9184r(tn) 
          +0.3674r(tn-

 

y(tn)= x2(tn) 
          +0. 55x2(tn-2)

 

x2(tn)=   0.3x1(tn)
2 
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Figure 5  Block diagram representation of system. 
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Figure 6 Contours of constant confidence intervals 
and data points. 



 

and H i is the i-th row of H. The sub-space nlΨ  has dimension 
two and its unit basis functions are (0.9284,0.3714,0,0) and 
(0,0,0.9284,0.3714). The output in response to a Gaussian 
input is measured: data is collected for 15 seconds with a 
sampling interval of 0.1 seconds (150 data points).  Gaussian 
white noise of standard deviation 0.1 units is added to the 
output measurement (the underlying signal has a peak 
magnitude of 0.5, so this represents a substantial level of 
noise). Again for clarity, f(z) is constant on lΨ  and there is 
no need to add the l inear term (14) to the covariance. 
  

Set the dimension of nlΨ  to one. On maximising the 
likelihood, the hyperparameters for the covariance, (15), are 

γ1 = -0.3084, γ2  = -0.1478, γ3 = -0.2283, γ4  = -0.0920 
α = 15.2976, n=0.00958, β = 0.4415 

that is, the estimate of noise intensity is 0.0979 and the 
estimate of  the unit basis vector for nlΨ  is 

(0.7321,0.3507,0.5418,0.2183).  However, β is large, 0.4415, 
indicating that the dimension of nlΨ  is greater than one. 

  Set the dimension of nlΨ  to two. On maximising the 

likelihood, the hyperparameters are 
γ11 = 0.3244, γ12  = 0.1286, γ13 = -0.0081, γ14  = -0.0061 

γ21 = 0, γ22  = -0.0102, γ23 = 0.2628, γ24  = 0.1072 
α = 55.4304, n=0.00917, β = 2e-012 

that is, the estimate of noise intensity is 0.0958 and the 
estimate of  the unit basis vectors for nlΨ  are 
(0.9292,0.3685,-0.0231,-0.0173) and (0,-0.0358,0.9254, 
0.3775). Since the value of β is very small,  2e-012, it can be 
concluded that the dimension of nlΨ  is two and step 7 of the 

algorithm can be omitted. The sub-space, nlΨ , is spanned by 
the above two vectors.  Clearly the prediction for the two 
basis vectors is good, particularly in view of the low signal to 
noise ratio and small number of data points on which it is 
based (150 points from a four dimensional map). In figure 6, 
the contours of constant confidence intervals for the 
parsimonious nonlinear map are shown together with the 
measurement data points projected onto nlΨ . The confidence 
intervals are small where the data points are dense but 
increase as the data points become scarce. 
 

Identification of the Wiener-Hammerstein system is not 
pursued to completion as that is not the objective of this 
paper. However, having identified nlΨ  and the 

hyperparameters defining the parsimonious nonlinear map, 
F(ξξξξ), the rest is straightforward. 
 

5.  Conclusions 
 

In this paper a new way of inferring nonlinear structure from 
measured data is investigated.  The measured data is 
interpreted as providing information on a nonlinear map. The 
space containing the map is sub-divided into unique linear 
and nonlinear sub-spaces that are structural invariants. The 
most parsimonious representation of the map is obtained by 
the restriction of the map to the nonlinear sub-space; that is, 
the dimensionality of the nonlinear component of the map is 

minimised.  A new direct constructive algorithm based on 
Gaussian process prior models, defined using a novel 
covariance function, is proposed.  The algorithm infers the 
linear and nonlinear sub-spaces from noisy data and provides 
a non-parametric model of the parsimonious map. Use of the 
algorithm is il lustrated by application to a Wiener-
Hammerstein system.   
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