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Abstract 
The paper presents a novel dynamic neural architecture that 
allows a flexible and compact representation of nonlinear 
processes. The suggested neural topology is obtained by 
providing local internal recurrence for the static neural 
network with complex weights. An evolutionary 
multiobjective design procedure assists the automatic 
selection of appropriate neural topologies and parameters. It 
searches for accurate neural models, characterised by good 
generalisation capabilities. The experiments reveal that the 
presented approach is suitable for system identification. 

 
1 Introduction 
The identification of dynamic nonlinear systems can be 
addressed by means of neural networks. These structures have 
become a powerful tool [4, 5], because they are able to 
generate complex mapping between the input and the output 
space, by learning the general trend of the target values.   

The multitude of computational models illustrates that none 
architecture can be uniformly better than the others. 
Although, the investigation of novel neural topologies is still 
necessary. These new alternatives could provide better results 
for a specific class of problems. Recently, the computational 
efficiency of the Neural Networks with Complex Weights 
(CWNNs) was demonstrated, both on mathematical examples 
and applications [4]. If these neural structures are compared 
with the nets characterised by real weights, some advantages 
can be revealed: the decreasing of the computational time and 
better approximation capabilities for certain applications. 

The present paper reconfigures the static topology of 
CWNNs, by including local internal recurrence. The resulted 
neural architecture can efficiently cope with system 
identification. The necessary information about the past 
values of the plant variables is provided by the states of the 
internal dynamic structures. Evolutionary algorithms are used 

for selecting appropriate dynamic neural networks with 
complex weights. The design procedure automatically 
searches for appropriate neural topologies and parameters, via 
a multiobjective optimisation.  

The paper is organized as follows. Section 2 describes the 
structure and the characteristics of the static neural networks 
with complex weights. The dynamic neural networks with 
complex weights are introduced in section 3. Then, in section 
4, a description of the evolutionary design algorithm is given. 
The applicability of the approach is investigated in section 5, 
with respect to the identification of an industrial system. 
Finally, in section 6, several conclusions are presented. 
 
2 Static neural networks with complex weights 
The considered CWNN topology [4] has m inputs, one hidden 
layer with n hidden neurons and one output linear neuron 
(Fig. 1). Assuming that the hidden neurons are characterised 
by the activation function ℜ→ℜ:g  and the input operator 
ϕ , the mathematical model of the net can be expressed as 
indicated in equation (1): 
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where  [ ] mkku ,..,1==u  denotes the neural input, ℜ∈ia , 
ni ,..1=  indicate the real weights of the output neuron,  
m

i ℜ∈c , [ ] mkiki c ,..,1==c  and m
i C∈w , [ ] mkiki w ,.,1==w , 

ni ,..1=  represent the centres and the complex weights 
associated to the ith hidden neuron,  respectively. 

The input operator is computed as follows:  

iiiiii cuwcuwcuw −⋅−= ,,),,(ϕ .   (2) 

Here, iw  denotes the conjugate of iw , for ni ,...,1= , and 

ii cuw −,  represents the inner product of vectors iw  and 

icu − .  



If iimi www === ....1 , meaning that ikj
iik eww θ= , with 

,]2,[],0[ U πππθ ∆+∆−∈ik 0>∆ , ni ,.,1= , mk ,.,1= , a 
simpler form of the input operator can be obtained, using 
Euler’s formula: 
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The present approach considers the activation function:  

)exp()(,: 2xxgg −=ℜ→ℜ . (5) 
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Fig. 1. The static topology of the neural networks with 

complex weights (m inputs, n hidden neurons, one output) 

It has been proven that the neural networks with complex 
weights represent universal approximators of static 
continuous nonlinear functions [4]. 

In order to model dynamic nonlinearities, identification 
schemes based on time delay networks with complex weights 
can be considered. The most suitable structure for the net is 
the input-output format. The case of Multi Inputs Multi 
Outputs (MIMO) systems is illustrated. For each output of the 
process, a different neural approximator is designed. A set of 
external blocks implements the lagged values of the process 
inputs and outputs, such that the static neural network could 
approximate one output of the process: 
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Here, k denotes the current sample time, un  and yn indicate 
the maximum time delays considered for the process inputs 
( pu ) and the process outputs ( py ), respectively, iy  denotes 

the ith output of the process and iŷ  represents the 
approximation given by the neural network for iy . 

Usually, the design procedures consider that the number of 

time delays and the dead time of the process are tuned 
according to trial and error method.  The dimension of the 
neural input increases, depending on the number of requested 
lagged measurements [5]. The topology indicated in Fig. 1 is 
characterized by 1)2( ++⋅= mnPs parameters. 
 
 3 Dynamic neural networks with complex 
weights 
The architecture of static CWNN is extended by including 
Auto-Regressive Moving Average (ARMA) filters. The novel 
neural architecture is named Dynamic Neural Network with 
Complex Weights (DCWNN).  

The ARMA filters placed on the input connections of a 
neuron implement the local synaptic feedback [5], the ARMA 
filters placed before the activation functions of the neurons 
implement the local activation feedback and the ARMA 
filters placed on the recurrent connections provided from the 
output of a neuron to the input of its activation function 
implement the output feedback. The internal dynamic blocks 
are denoted as follows (Fig. 2): s

ikFH , i=1,…,n, k=1,…,r 
represents the synaptic hidden filter corresponding to the 
connection considered from the kth input to the ith hidden 
neuron; a

iFH  and o
iFH  denote the activation filter and the 

output filter of the ith hidden neuron, respectively; s
iFO  

specifies the synaptic filter corresponding to the connection 
considered from the ith hidden neuron to the output neuron; 

aFO  and oFO denote the activation filter and the output 

filter of the output neuron, respectively.  

These filters are characterised by the discrete transfer 
function:  
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Here, )( 1−zP , )( 1−zQ , respectively, denote the numerator 
and the denominator of the discrete transfer function and 

010 ,,, aabw  indicate their coefficients. Using equation (7), 
two particular cases are simple to be illustrated: connection 
characterised by a simple weight ( 0010 === baa , 

wzG =− )( 1 ) and connection eliminated from the neural 
architecture ( 0=w ). This allows a convenient encoding of 
the dynamic neural topologies. 

The DCWNNs can provide a better approximation of the 
dynamic non-linearities, if the design procedure allows a 
flexible configuration of its internal dynamic blocks. The 
ARMA filters can reduce the level of noise that affect the 
neural inputs and memorize the necessary past states of the 
neural network. For example, oFO  acts as a memory of the 

network output, s
ikFH , i=1,…,n, k=1,…,m  memorize the 

past values of the neural inputs, etc. As consequence, an 



important reduction of input space dimensionality can be 
obtained, because the identification schemes based on 
DCWNNs do not need supplementary external dynamic 
elements. The neural input vector, denoted with )(ku , is 
obtained as follows: 

rℜ∈u , 







−

=
)1(

)(
)(

k
k

k
p

p
y

u
u ,  (8) 

where )(kpu and )(kpy  represent the inputs and the outputs 
of the process at kth time sample, respectively. 
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Fig. 2. The topology of DCWNNs (r inputs, n hidden 
neurons, one output). Here, θ  specifies the bias of the linear 

output neuron and ii w,c  indicate the centres and the complex 
weight of the ith hidden neurons, i=1,…,n. 

The structure of the DCWNN is defined by the number of 
hidden neurons, the type and the complexity of the ARMA 
filters that were included into the topology and the 
configuration of the connections existing between the input 
layer and the hidden layer. The neural parameters are 
represented by the coefficients of the ARMA filters, the bias 
of the linear output neuron, the centres and the complex 
weights of the hidden neurons. The DCWNN can have 
maximum 9)135( ++= nrPd parameters. 

The method described in the following uses evolutionary 
techniques in order to search for the optimal DCWNN 
topologies and parameters. The training procedure does not 
require the derivatives of the objective functions. Also, a 
flexible configuration of the neural architecture is performed. 
One considers neural topologies for which the input layer is 
not fully connected with the hidden neurons and not all 
permitted dynamic structures are compulsory. As 
consequence, no a priori knowledge about process dynamic 
orders and process dead time is required.  

Taking into account the maximum time-delays implemented 
according to the dynamic architecture indicated in Fig. 2, the 
performances of DCWNNs can be compared with the static 
topologies having 12)1(8 +−= rm inputs. For 2≥n , it 
results that PdPs > , if 4≥r . Moreover, the proposed design 
procedure guarantees a significant reduction of the total 
number of parameters, encouraging the selection of simple 
topologies.  
 

4 Evolutionary design of dynamic neural 
networks with complex weights 
At each iteration, the evolutionary algorithm acts on a 
population of Nind possible solutions, named individuals or 
chromosomes. The initial population is randomly generated 
from the space of permitted neural models. The centres of the 
hidden neurons are initialized according to the fuzzy C – 
means clustering algorithm. During the evolutionary loop, the 
values of these parameters are modified by means of genetic 
techniques. 

 
4. 1  Encoding 

Each individual included in the population encodes the 
architecture and the parameters of a DCWNN. The 
chromosome is organized in a three–level structure, 
containing control and parametric genes, as described in Fig. 
3. The highest priority level, named level 1, specifies which 
hidden neurons are included in the neural topology. The 
second priority level indicates the active dynamic structures 
and the orders of the corresponding numerators and 
denominators. All neural parameters are encoded, as float 
numbers, in the lowest priority level, denoted with level 3.  

 Level 1
   

the ith  hidden neuron, i = 1,…,n 
0 – hidden neuron deactivated; 
1 – hidden neuron activated;  

Level 2 
 FHs

i1 … FHs
im FHa

i FHo
i  

 the dynamic blocks  for the ith hidden neuron   
 

FOs
1 … FOs

n FOa FOo 
the dynamics blocks for the output neuron 

According to eq. (7): 
0 – connection does not exist (w = 0) 

 (only for filters FHs, FHo and FOo); 

1 – simple weight:  wzG =− )1(  ;  

2 – filter described by )1
01/()1( −+=− zawzG ;  

3 – filter described by )2
1

1
01/()1( −+−+=− zazawzG ;  

4 – filter described by )2
1

1
01/()1

01()1( −+−+−+=− zazazbwzG . 
Level 3 

.. θi1 ...θim,  ci1… cim , wi … w b0 a1 a0 .. θ 
the parameters of the neural model 

Fig. 3. The hierarchical encoding of the DCWNNs  

The control genes included in a higher level can activate 
(when control gene’s value is nonzero) or deactivate (when 
control gene’s value is „0“) the corresponding control or 
parametric genes contained in a lower level. The inactive 
genes are preserved in the chromosome structure [6], being 
considered as initial values in the next activations. The 
hierarchical encoding assures an efficient exploration of the 
search space, because even small variations of the control 
genes can produce great changes in the structure of the 
encoded DCWNN. The approach allows the integer encoding 



of control levels, in order to improve the exploration 
capabilities of the algorithm, while maintaining a reduced 
length of the chromosome. 

 
4. 2 Genetic operators 

Offspring are generated using discrete recombination (for the 
control levels 1 and 2), intermediary crossover (for the 
parametric level 3) and uniform mutation [1]. These operators 
are able to reduce the negative effect of “competing 
conventions” and allow the efficient exploration of the search 
space.  

A correct architecture satisfies the following requirements: 
the hidden layer includes at least one hidden neuron; each 
input is connected to at least one hidden neuron; each hidden 
neuron is connected to the output neuron and with at least one 
input of the network. If an offspring encodes an incorrect 
topology, remedy actions are applied, meaning that 
supplementary connections and/or neurons are activated. The 
new structural elements are randomly selected from the set of 
available alternatives. 
 
4. 3 Multiobjective optimisation  

The selection of appropriate DCWNNs is done by means of a 
multiobjective optimisation. Six objective functions are 
considered. They are organized, according to the assigned 
priority, on a two-level hierarchy [2]. The objective function 
f1, namely the sum of the output squared errors computed for 
the normalised training data set, represents a measure of the 
neural model accuracy and is assigned with the highest 
priority. The values of this objective function are computed 
after applying the supervised training procedure presented 
below. The other objective functions describe the complexity 
order of the encoded neural architecture and have the same 
low-level priority. Taking into account the influence of each 
structural element on the functionality of the neural network 
and the resulted total number of neural parameters, five 
different directions are separated: f2 - the number of active 
hidden neurons; f3 - the number of active connections existing 
between the network’s inputs and the active hidden neurons; 
f4 - the number of active output filters; f5 - the sum of 
numerators and denominators’ orders, corresponding to all 
active output filters; f6 - the sum of numerators and 
denominators’ orders, corresponding to all active synaptic and 
activation filters. These objectives force the selection of 
simple neural models, with expected good generalisation 
capabilities.  

For each DCWNN encoded into the population, a supervised 
training procedure adapts the set of neural parameters, with 
respect to the minimisation of the highest priority objective 
function. The training algorithm is implemented as follows. 
At the first stage, a standard genetic search is performed, 
working, for a predefined number of generations (Ngen_Tr), 
on a population of Nind_Tr_1 individuals. The best set of 
parameters achieved at the end of this evolutionary loop, 
denoted as PR, is passed to the second stage of the training 
procedure. Here, a fine search is considered. The set PR 

competes with Nind_Tr_2 offspring (Nind_Tr_2 < 
Nind_Tr_1). The offspring are generated considering small 
variations in the genetic material of PR. The training 
algorithm does not require the derivatives of the objective 
function f1.  

Pareto-optimisation. The search procedure is combined with a 
decision mechanism, according to a progressive articulation 
of preferences [3, 9]. A goal is associated to each objective 
function. The goals define the desired area for the objective 
values. The individuals placed beyond the specified area are 
not encouraged to produce offspring and to survive. During 
the evolutionary loop, the goals are adapted according to the 
mean performances of the current population [7]. The Pareto-
optimisation method is based on a ranking selection. The 
ranks of the individuals are computed according to the 
following rules. If an individual satisfies all imposed goals, its 
rank is assigned based on the values of the highest priority 
objective function, f1. Otherwise, the rank is specified taking 
into account the degree of goals’ violations and the priority of 
the unsatisfied goals. These rules encourage the algorithm to 
produce accurate models, characterised by a simple 
architectures [2].  
 
4. 4  Insertion and migration 

The insertion is solved by means of the Pareto reservation 
strategy [10]. Soff offspring and Nind – Soff individuals 
contained in the current population are selected to survive in 
the next generation. The method encourages the survival of 
non–dominated chromosomes.  

Migration strategy. The population is separated into two 
partially isolated subpopulations [2]. The genetic material of 
the main subpopulation is improved according to the 
multiobjective optimisation previously formulated. It 
guarantees the achievement of accurate models, characterised 
by simple topologies. For the auxiliary subpopulation, a 
mono-objective optimisation is considered, demanding only 
the minimisation of the highest priority objective function, f1. 
The auxiliary subpopulation improves the accuracy of the 
neural models. Once at No_migr generations, an exchange of 
information is permitted between the two subpopulations. 
During migration, the genetic material of the main 
subpopulation is enriched with accurate models and, as 
consequence, the highest priority goal is considerable 
reduced. Also, chromosomes that encode simple neural 
structures are introduced into the auxiliary subpopulation; 
their approximation capability will be improved till the next 
migration stage. At the end of the evolutionary loop, the best 
neural model included in the main subpopulation is used. The 
algorithm encourages the survival and the duplication of 
accurate models, while maintaining an adequate complexity 
order of the encoded topology. The selection pressure 
imposed by the highest priority objective is adapted according 
to the performances of the current population.  
 
4. 5 The stages of the evolutionary algorithm  

A schematic description is presented in the following: 



1. Create an initial hierarchical population containing Nind 
individuals. 
2. Check the correctness of the encoded topologies (with 
remedy actions if necessary) and compute actual values of 
goals. 
3. Train the neural networks encoded into the population.  
4. Evaluate the chromosomes according to all considered 
objectives and compute the fitness values. 
5. Loop over a number of Max_gen generations: 

5.1 For each subpopulation: 
5.1.1. Select parents for the reproduction pool. 
5.1.2. Apply crossover and mutation operators. 
5.1.3. Check the consistency of offspring (with remedy 
actions if necessary). 
5.1.4. Train the neural networks encoded by the 
offspring. 
5.1.5. Evaluate offspring and compute their fitness 
values. 
5.1.6. Insert the offspring into the population, according 
to the Pareto reservation strategy. 
5.1.7. Once at No_migr generations, exchange 
individuals with the other subpopulation (migration stage). 
5.1.8. Adapt goals and compute fitness values. 

5.2 Determine the best individual(s) of the main 
subpopulation. 

6. Determine best individual(s) over all performed 
generations. 
7. Train the selected neural model (considering bigger 
values for Ngen_Tr, Nind Tr_1, Nind_Tr_2). 
8. End of the algorithm. 
 
5 APPLICATION 
The performances of DCWNNs are investigated with respect 
to the identification of an industrial evaporator system [8,11]. 
Details are given in the following. 
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Fig. 4. First section of the evaporation station (Sugar factory, 
Lublin, Poland) 

The evaporator is a component sub-process of the first section 
of the Evaporation Station (ES) from the Sugar Factory of 
Lublin, Poland (Fig. 4). The ES has to increase the 
concentration of the sucrose juice. The thin juice passes, in 
sequence, through all five sections of the ES, each one 

reducing the water content. The steam recovered from a stage 
is used as heating source in the next section. The evaporator is 
a multi input single output process. The inputs of the systems 
are the steam flow to the input of ES, the steam temperature 
at the input of ES, the juice temperature after the heater. The 
juice temperature after section 1 of ES represents the output 
of the evaporator. No analytical model is known for this 
process.  

The model of the system is designed using real data from the 
sugar factory. A large collection of measurements was 
available. They were acquired with the sample period Ts =10 
sec, during one month of plant exploitation. The selected 
learning data set contains 3000 rows and corresponds to a 
period of time of about 8 hours, i.e. a production shift. It 
illustrates the maximum possible excitation of the process and 
it includes a reduced number of missing or uncertain values. 
The isolated missing and uncertain values have been replaced 
by means of polynomial interpolation. In order to reduce the 
noise, a low - pass filtering, based on 4th order Butterworth 
filters, has been performed. This also allows the reduction of 
the amount of data used during the learning stage. The data 
have been decimated using each 10-th sampled value. The 
validation of the neural model is done with respect to another 
testing data set, which includes measurements collected from 
the previous month of plant exploitation. 

For stability reason, series-parallel schemes are utilized, 
meaning that the output of the plant is fed back into the neural 
model during the training stage.  

The DGNN had 4 inputs, representing the current values of 
the process inputs and the plant output values obtained at the 
previous sampling moment, as indicated in equation (8). The 
ARMA filters’ parameters were selected between –5 and 5. 
No a priori information about the process dead time and 
process order is required. In all experiments, a reduced 
number of hidden neurons was sufficient, i.e. 4=n . This 
allowed for a fast evaluation of the DCWNNs and for a 
significant reduction of the search space. 

A set of preliminary experiments was carried out, in order to 
find appropriate values for all parameters of the design 
procedure.  

It is advantageous to set low values for Ngen_Tr, even in 
combination with a high population size, because the local 
optimisation procedure must be applied sequentially, iteration 
by iteration, to each chromosome, but the genetic search can 
support a parallel implementation. If the Ngen_Tr value is too 
low, the topology of the best neural model can result very 
different from a generation to another one. The procedure can 
offer, as final solution, sometimes very simple architectures 
and sometimes very complex and bad adapted architectures, 
due the fact that the evaluation is made on insufficient trained 
networks. Low values for Nind cannot support an efficient 
exploration of the search space and the obtained results are 
unsatisfactory. 

Also, if the number of generations considered between two 
successive migrations is too small, a premature exchange of 



information between the main and the auxiliary subpopulation 
can be allowed, with negative effect on the exploration 
capabilities of the algorithm.  

The results commented in the following were obtained 
considering a population of 160=Nind  individuals, 

200_ =genMax  evolutionary generations and 
25_ =migrNo  generations between two successive 

migrations. The training procedure was applied for 
 80 =Ngen_Tr iterations, considering 001 1=Nind_Tr_  test 

individuals per iteration at the first stage and 
40 2 =Nind_Tr_  test individuals at the second stage. The best 

neural model obtained at the end of the evolutionary loop was 
supplementary trained for  008 =Ngen_Tr , 

0003 1=Nind_Tr_ , 300 2 =Nind_Tr_ . 

The selected DCWNN provides a good approximation of the 
normalised training data set. Its generalisation capabilities are 
illustrated in Fig. 5, with respect to the testing data set.  

Also, this neural model has a reduce order of complexity, as 
suggested by the corresponding low-priority objective values: 

5;0;0;4;1 65432 ===== fffff . The topology includes 
one hidden neuron, connected with all neural inputs: two 
connections are characterised by simple weights and the other 
two connections have active ARMA synaptic filters. No 
output filter is included in the selected neural architecture. 
The structure also contains an activation ARMA filter for the 
hidden neuron and a synaptic ARMA hidden filter for the 
output neuron.  
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Fig. 5: Evaporator subsystem – model validation on the 

testing data set (one step ahead prediction). Here the output of 
the process is indicated with solid line and the DCWNN 

output with dotted line. 
 

6 CONCLUSIONS 
The paper investigates the identification capabilities of new 
dynamic neural networks. The presented approach improves 
the computational efficiency of the neural topologies with 
complex parameters, by providing the static architectures with 

local internal dynamics. The resulted structures can perform 
accurate approximations of dynamic nonlinearities and are 
characterised by good generalisation capabilities. 

The design procedure does not require any information about 
the gradient of the objective functions. It supports a flexible 
configuration of the neural topology, via a multiobjective 
optimisation. The approach can be used only for off-line 
identification, because it needs large computational resources.  
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