
NONLINEAR SYSTEM IDENTIFICATION
BASED ON EVOLUTIONARY DYNAMIC NEURAL

NETWORKS WITH COMPLEX WEIGHTS

L. Ferariu

“Gh. Asachi” Technical University of Iaşi
Dept. of Automatic Control and Industrial Informatics

RO-6600 Iaşi, Bd. D. Mangeron 53A
 ROMANIA

Phone, fax: +40-232-230751
E-mail: lferaru@ac.tuiasi.ro

Keywords: system identification, neural networks,
multiobjective optimisation, genetic algorithms.

Abstract
The paper presents a novel dynamic neural architecture that
allows a flexible and compact representation of nonlinear
processes. The suggested neural topology is obtained by
providing local internal recurrence for the static neural
network with complex weights. An evolutionary
multiobjective design procedure assists the automatic
selection of appropriate neural topologies and parameters. It
searches for accurate neural models, characterised by good
generalisation capabilities. The experiments reveal that the
presented approach is suitable for system identification.

1 Introduction
The identification of dynamic nonlinear systems can be
addressed by means of neural networks. These structures have
become a powerful tool [4, 5], because they are able to
generate complex mapping between the input and the output
space, by learning the general trend of the target values.

The multitude of computational models illustrates that none
architecture can be uniformly better than the others.
Although, the investigation of novel neural topologies is still
necessary. These new alternatives could provide better results
for a specific class of problems. Recently, the computational
efficiency of the Neural Networks with Complex Weights
(CWNNs) was demonstrated, both on mathematical examples
and applications [4]. If these neural structures are compared
with the nets characterised by real weights, some advantages
can be revealed: the decreasing of the computational time and
better approximation capabilities for certain applications.

The present paper reconfigures the static topology of
CWNNs, by including local internal recurrence. The resulted
neural architecture can efficiently cope with system
identification. The necessary information about the past
values of the plant variables is provided by the states of the
internal dynamic structures. Evolutionary algorithms are used

for selecting appropriate dynamic neural networks with
complex weights. The design procedure automatically
searches for appropriate neural topologies and parameters, via
a multiobjective optimisation.

The paper is organized as follows. Section 2 describes the
structure and the characteristics of the static neural networks
with complex weights. The dynamic neural networks with
complex weights are introduced in section 3. Then, in section
4, a description of the evolutionary design algorithm is given.
The applicability of the approach is investigated in section 5,
with respect to the identification of an industrial system.
Finally, in section 6, several conclusions are presented.

2 Static neural networks with complex weights
The considered CWNN topology [4] has m inputs, one hidden
layer with n hidden neurons and one output linear neuron
(Fig. 1). Assuming that the hidden neurons are characterised
by the activation function ℜ→ℜ:g and the input operator
ϕ , the mathematical model of the net can be expressed as
indicated in equation (1):

ℜ→ℜmf : ,)),,(()(
1

ii
n

i
i gaf cuwu ϕ∑ ⋅=

=
, (1)

where [] mkku ,..,1==u denotes the neural input, ℜ∈ia ,
ni ,..1= indicate the real weights of the output neuron,
m

i ℜ∈c , [] mkiki c ,..,1==c and m
i C∈w , [] mkiki w ,.,1==w ,

ni ,..1= represent the centres and the complex weights
associated to the ith hidden neuron, respectively.

The input operator is computed as follows:

iiiiii cuwcuwcuw −⋅−= ,,),,(ϕ . (2)

Here, iw denotes the conjugate of iw , for ni ,...,1= , and

ii cuw −, represents the inner product of vectors iw and

icu − .

If iimi www ===1 , meaning that ikj
iik eww θ= , with

,]2,[],0[U πππθ ∆+∆−∈ik 0>∆ , ni ,.,1= , mk ,.,1= , a
simpler form of the input operator can be obtained, using
Euler’s formula:

),(),,(iiii ww cucu ϕϕ (
⋅= , (3)

.)(sin

)(cos),(

2

1

2

1









∑ −⋅+

+







∑ −⋅=

=

=

m

k
ikkik

m

k
ikkiki

cu

cu

θ

θϕ cu(

 (4)

The present approach considers the activation function:

)exp()(,: 2xxgg −=ℜ→ℜ . (5)

Usually 01.0=∆ .

.

.

.

.

.

.

uj

u1

um

y=f(u)
….

c1,w1

an

∑
cn,wn

ϕ

g

ϕ

a1

g

Fig. 1. The static topology of the neural networks with

complex weights (m inputs, n hidden neurons, one output)

It has been proven that the neural networks with complex
weights represent universal approximators of static
continuous nonlinear functions [4].

In order to model dynamic nonlinearities, identification
schemes based on time delay networks with complex weights
can be considered. The most suitable structure for the net is
the input-output format. The case of Multi Inputs Multi
Outputs (MIMO) systems is illustrated. For each output of the
process, a different neural approximator is designed. A set of
external blocks implements the lagged values of the process
inputs and outputs, such that the static neural network could
approximate one output of the process:

)).(),.....1(

),(),..1(),(()(ˆ

ypp

upppi

nkk

nkdkdkfky

−−

−−−−=

yy

uuu
 (6)

Here, k denotes the current sample time, un and yn indicate
the maximum time delays considered for the process inputs
(pu) and the process outputs (py), respectively, iy denotes

the ith output of the process and iŷ represents the
approximation given by the neural network for iy .

Usually, the design procedures consider that the number of

time delays and the dead time of the process are tuned
according to trial and error method. The dimension of the
neural input increases, depending on the number of requested
lagged measurements [5]. The topology indicated in Fig. 1 is
characterized by 1)2(++⋅= mnPs parameters.

 3 Dynamic neural networks with complex
weights
The architecture of static CWNN is extended by including
Auto-Regressive Moving Average (ARMA) filters. The novel
neural architecture is named Dynamic Neural Network with
Complex Weights (DCWNN).

The ARMA filters placed on the input connections of a
neuron implement the local synaptic feedback [5], the ARMA
filters placed before the activation functions of the neurons
implement the local activation feedback and the ARMA
filters placed on the recurrent connections provided from the
output of a neuron to the input of its activation function
implement the output feedback. The internal dynamic blocks
are denoted as follows (Fig. 2): s

ikFH , i=1,…,n, k=1,…,r
represents the synaptic hidden filter corresponding to the
connection considered from the kth input to the ith hidden
neuron; a

iFH and o
iFH denote the activation filter and the

output filter of the ith hidden neuron, respectively; s
iFO

specifies the synaptic filter corresponding to the connection
considered from the ith hidden neuron to the output neuron;

aFO and oFO denote the activation filter and the output

filter of the output neuron, respectively.

These filters are characterised by the discrete transfer
function:

)(
)(

1
1)(1

1

2
1

1
0

1
01

−

−

−−

−
− =

++

+
=

zQ
zP

zaza
zbwzG . (7)

Here,)(1−zP ,)(1−zQ , respectively, denote the numerator
and the denominator of the discrete transfer function and

010 ,,, aabw indicate their coefficients. Using equation (7),
two particular cases are simple to be illustrated: connection
characterised by a simple weight (0010 === baa ,

wzG =−)(1) and connection eliminated from the neural
architecture (0=w). This allows a convenient encoding of
the dynamic neural topologies.

The DCWNNs can provide a better approximation of the
dynamic non-linearities, if the design procedure allows a
flexible configuration of its internal dynamic blocks. The
ARMA filters can reduce the level of noise that affect the
neural inputs and memorize the necessary past states of the
neural network. For example, oFO acts as a memory of the

network output, s
ikFH , i=1,…,n, k=1,…,m memorize the

past values of the neural inputs, etc. As consequence, an

important reduction of input space dimensionality can be
obtained, because the identification schemes based on
DCWNNs do not need supplementary external dynamic
elements. The neural input vector, denoted with)(ku , is
obtained as follows:

rℜ∈u , 







−

=
)1(

)(
)(

k
k

k
p

p
y

u
u , (8)

where)(kpu and)(kpy represent the inputs and the outputs
of the process at kth time sample, respectively.

.

.

.

.

.

.

uk

u1

ur

….

c1,w1

cn,wn

ϕ

ϕ

FH s11

FH s1k

FH sn1

FH snk

FH s1r

FH snr

….

….

….

….

….

FH o1

FH a1
F0 s1

FO a

FO sn FO o

y

∑ ….
θ

FH on

FH an

Fig. 2. The topology of DCWNNs (r inputs, n hidden
neurons, one output). Here, θ specifies the bias of the linear

output neuron and ii w,c indicate the centres and the complex
weight of the ith hidden neurons, i=1,…,n.

The structure of the DCWNN is defined by the number of
hidden neurons, the type and the complexity of the ARMA
filters that were included into the topology and the
configuration of the connections existing between the input
layer and the hidden layer. The neural parameters are
represented by the coefficients of the ARMA filters, the bias
of the linear output neuron, the centres and the complex
weights of the hidden neurons. The DCWNN can have
maximum 9)135(++= nrPd parameters.

The method described in the following uses evolutionary
techniques in order to search for the optimal DCWNN
topologies and parameters. The training procedure does not
require the derivatives of the objective functions. Also, a
flexible configuration of the neural architecture is performed.
One considers neural topologies for which the input layer is
not fully connected with the hidden neurons and not all
permitted dynamic structures are compulsory. As
consequence, no a priori knowledge about process dynamic
orders and process dead time is required.

Taking into account the maximum time-delays implemented
according to the dynamic architecture indicated in Fig. 2, the
performances of DCWNNs can be compared with the static
topologies having 12)1(8 +−= rm inputs. For 2≥n , it
results that PdPs > , if 4≥r . Moreover, the proposed design
procedure guarantees a significant reduction of the total
number of parameters, encouraging the selection of simple
topologies.

4 Evolutionary design of dynamic neural
networks with complex weights
At each iteration, the evolutionary algorithm acts on a
population of Nind possible solutions, named individuals or
chromosomes. The initial population is randomly generated
from the space of permitted neural models. The centres of the
hidden neurons are initialized according to the fuzzy C –
means clustering algorithm. During the evolutionary loop, the
values of these parameters are modified by means of genetic
techniques.

4. 1 Encoding

Each individual included in the population encodes the
architecture and the parameters of a DCWNN. The
chromosome is organized in a three–level structure,
containing control and parametric genes, as described in Fig.
3. The highest priority level, named level 1, specifies which
hidden neurons are included in the neural topology. The
second priority level indicates the active dynamic structures
and the orders of the corresponding numerators and
denominators. All neural parameters are encoded, as float
numbers, in the lowest priority level, denoted with level 3.

 Level 1

the ith hidden neuron, i = 1,…,n
0 – hidden neuron deactivated;
1 – hidden neuron activated;

Level 2
 FHs

i1 … FHs
im FHa

i FHo
i

 the dynamic blocks for the ith hidden neuron

FOs
1 … FOs

n FOa FOo
the dynamics blocks for the output neuron

According to eq. (7):
0 – connection does not exist (w = 0)

 (only for filters FHs, FHo and FOo);

1 – simple weight: wzG =−)1(;

2 – filter described by)1
01/()1(−+=− zawzG ;

3 – filter described by)2
1

1
01/()1(−+−+=− zazawzG ;

4 – filter described by)2
1

1
01/()1

01()1(−+−+−+=− zazazbwzG .
Level 3

.. θi1 ...θim, ci1… cim , wi … w b0 a1 a0 .. θ
the parameters of the neural model

Fig. 3. The hierarchical encoding of the DCWNNs

The control genes included in a higher level can activate
(when control gene’s value is nonzero) or deactivate (when
control gene’s value is „0“) the corresponding control or
parametric genes contained in a lower level. The inactive
genes are preserved in the chromosome structure [6], being
considered as initial values in the next activations. The
hierarchical encoding assures an efficient exploration of the
search space, because even small variations of the control
genes can produce great changes in the structure of the
encoded DCWNN. The approach allows the integer encoding

of control levels, in order to improve the exploration
capabilities of the algorithm, while maintaining a reduced
length of the chromosome.

4. 2 Genetic operators

Offspring are generated using discrete recombination (for the
control levels 1 and 2), intermediary crossover (for the
parametric level 3) and uniform mutation [1]. These operators
are able to reduce the negative effect of “competing
conventions” and allow the efficient exploration of the search
space.

A correct architecture satisfies the following requirements:
the hidden layer includes at least one hidden neuron; each
input is connected to at least one hidden neuron; each hidden
neuron is connected to the output neuron and with at least one
input of the network. If an offspring encodes an incorrect
topology, remedy actions are applied, meaning that
supplementary connections and/or neurons are activated. The
new structural elements are randomly selected from the set of
available alternatives.

4. 3 Multiobjective optimisation

The selection of appropriate DCWNNs is done by means of a
multiobjective optimisation. Six objective functions are
considered. They are organized, according to the assigned
priority, on a two-level hierarchy [2]. The objective function
f1, namely the sum of the output squared errors computed for
the normalised training data set, represents a measure of the
neural model accuracy and is assigned with the highest
priority. The values of this objective function are computed
after applying the supervised training procedure presented
below. The other objective functions describe the complexity
order of the encoded neural architecture and have the same
low-level priority. Taking into account the influence of each
structural element on the functionality of the neural network
and the resulted total number of neural parameters, five
different directions are separated: f2 - the number of active
hidden neurons; f3 - the number of active connections existing
between the network’s inputs and the active hidden neurons;
f4 - the number of active output filters; f5 - the sum of
numerators and denominators’ orders, corresponding to all
active output filters; f6 - the sum of numerators and
denominators’ orders, corresponding to all active synaptic and
activation filters. These objectives force the selection of
simple neural models, with expected good generalisation
capabilities.

For each DCWNN encoded into the population, a supervised
training procedure adapts the set of neural parameters, with
respect to the minimisation of the highest priority objective
function. The training algorithm is implemented as follows.
At the first stage, a standard genetic search is performed,
working, for a predefined number of generations (Ngen_Tr),
on a population of Nind_Tr_1 individuals. The best set of
parameters achieved at the end of this evolutionary loop,
denoted as PR, is passed to the second stage of the training
procedure. Here, a fine search is considered. The set PR

competes with Nind_Tr_2 offspring (Nind_Tr_2 <
Nind_Tr_1). The offspring are generated considering small
variations in the genetic material of PR. The training
algorithm does not require the derivatives of the objective
function f1.

Pareto-optimisation. The search procedure is combined with a
decision mechanism, according to a progressive articulation
of preferences [3, 9]. A goal is associated to each objective
function. The goals define the desired area for the objective
values. The individuals placed beyond the specified area are
not encouraged to produce offspring and to survive. During
the evolutionary loop, the goals are adapted according to the
mean performances of the current population [7]. The Pareto-
optimisation method is based on a ranking selection. The
ranks of the individuals are computed according to the
following rules. If an individual satisfies all imposed goals, its
rank is assigned based on the values of the highest priority
objective function, f1. Otherwise, the rank is specified taking
into account the degree of goals’ violations and the priority of
the unsatisfied goals. These rules encourage the algorithm to
produce accurate models, characterised by a simple
architectures [2].

4. 4 Insertion and migration

The insertion is solved by means of the Pareto reservation
strategy [10]. Soff offspring and Nind – Soff individuals
contained in the current population are selected to survive in
the next generation. The method encourages the survival of
non–dominated chromosomes.

Migration strategy. The population is separated into two
partially isolated subpopulations [2]. The genetic material of
the main subpopulation is improved according to the
multiobjective optimisation previously formulated. It
guarantees the achievement of accurate models, characterised
by simple topologies. For the auxiliary subpopulation, a
mono-objective optimisation is considered, demanding only
the minimisation of the highest priority objective function, f1.
The auxiliary subpopulation improves the accuracy of the
neural models. Once at No_migr generations, an exchange of
information is permitted between the two subpopulations.
During migration, the genetic material of the main
subpopulation is enriched with accurate models and, as
consequence, the highest priority goal is considerable
reduced. Also, chromosomes that encode simple neural
structures are introduced into the auxiliary subpopulation;
their approximation capability will be improved till the next
migration stage. At the end of the evolutionary loop, the best
neural model included in the main subpopulation is used. The
algorithm encourages the survival and the duplication of
accurate models, while maintaining an adequate complexity
order of the encoded topology. The selection pressure
imposed by the highest priority objective is adapted according
to the performances of the current population.

4. 5 The stages of the evolutionary algorithm

A schematic description is presented in the following:

1. Create an initial hierarchical population containing Nind
individuals.
2. Check the correctness of the encoded topologies (with
remedy actions if necessary) and compute actual values of
goals.
3. Train the neural networks encoded into the population.
4. Evaluate the chromosomes according to all considered
objectives and compute the fitness values.
5. Loop over a number of Max_gen generations:

5.1 For each subpopulation:
5.1.1. Select parents for the reproduction pool.
5.1.2. Apply crossover and mutation operators.
5.1.3. Check the consistency of offspring (with remedy
actions if necessary).
5.1.4. Train the neural networks encoded by the
offspring.
5.1.5. Evaluate offspring and compute their fitness
values.
5.1.6. Insert the offspring into the population, according
to the Pareto reservation strategy.
5.1.7. Once at No_migr generations, exchange
individuals with the other subpopulation (migration stage).
5.1.8. Adapt goals and compute fitness values.

5.2 Determine the best individual(s) of the main
subpopulation.

6. Determine best individual(s) over all performed
generations.
7. Train the selected neural model (considering bigger
values for Ngen_Tr, Nind Tr_1, Nind_Tr_2).
8. End of the algorithm.

5 APPLICATION
The performances of DCWNNs are investigated with respect
to the identification of an industrial evaporator system [8,11].
Details are given in the following.

LC51_01

R
LC51_03

R

TC51_05 ?C

R

PC51_01

kPa

T51_07 0C
P51_03 kPa

T51_06 0C
F51_02 t/h

P51_04
kPa

T51_02 0C T51_03 0C T51_04 0C

T51_01 0C

F51_03 t/h

F51_01 m3/h T51_08 0C

Control
Valve

R

Vapours

Evaporator

Steam

Heater

Fig. 4. First section of the evaporation station (Sugar factory,
Lublin, Poland)

The evaporator is a component sub-process of the first section
of the Evaporation Station (ES) from the Sugar Factory of
Lublin, Poland (Fig. 4). The ES has to increase the
concentration of the sucrose juice. The thin juice passes, in
sequence, through all five sections of the ES, each one

reducing the water content. The steam recovered from a stage
is used as heating source in the next section. The evaporator is
a multi input single output process. The inputs of the systems
are the steam flow to the input of ES, the steam temperature
at the input of ES, the juice temperature after the heater. The
juice temperature after section 1 of ES represents the output
of the evaporator. No analytical model is known for this
process.

The model of the system is designed using real data from the
sugar factory. A large collection of measurements was
available. They were acquired with the sample period Ts =10
sec, during one month of plant exploitation. The selected
learning data set contains 3000 rows and corresponds to a
period of time of about 8 hours, i.e. a production shift. It
illustrates the maximum possible excitation of the process and
it includes a reduced number of missing or uncertain values.
The isolated missing and uncertain values have been replaced
by means of polynomial interpolation. In order to reduce the
noise, a low - pass filtering, based on 4th order Butterworth
filters, has been performed. This also allows the reduction of
the amount of data used during the learning stage. The data
have been decimated using each 10-th sampled value. The
validation of the neural model is done with respect to another
testing data set, which includes measurements collected from
the previous month of plant exploitation.

For stability reason, series-parallel schemes are utilized,
meaning that the output of the plant is fed back into the neural
model during the training stage.

The DGNN had 4 inputs, representing the current values of
the process inputs and the plant output values obtained at the
previous sampling moment, as indicated in equation (8). The
ARMA filters’ parameters were selected between –5 and 5.
No a priori information about the process dead time and
process order is required. In all experiments, a reduced
number of hidden neurons was sufficient, i.e. 4=n . This
allowed for a fast evaluation of the DCWNNs and for a
significant reduction of the search space.

A set of preliminary experiments was carried out, in order to
find appropriate values for all parameters of the design
procedure.

It is advantageous to set low values for Ngen_Tr, even in
combination with a high population size, because the local
optimisation procedure must be applied sequentially, iteration
by iteration, to each chromosome, but the genetic search can
support a parallel implementation. If the Ngen_Tr value is too
low, the topology of the best neural model can result very
different from a generation to another one. The procedure can
offer, as final solution, sometimes very simple architectures
and sometimes very complex and bad adapted architectures,
due the fact that the evaluation is made on insufficient trained
networks. Low values for Nind cannot support an efficient
exploration of the search space and the obtained results are
unsatisfactory.

Also, if the number of generations considered between two
successive migrations is too small, a premature exchange of

information between the main and the auxiliary subpopulation
can be allowed, with negative effect on the exploration
capabilities of the algorithm.

The results commented in the following were obtained
considering a population of 160=Nind individuals,

200_ =genMax evolutionary generations and
25_ =migrNo generations between two successive

migrations. The training procedure was applied for
 80 =Ngen_Tr iterations, considering 001 1=Nind_Tr_ test

individuals per iteration at the first stage and
40 2 =Nind_Tr_ test individuals at the second stage. The best

neural model obtained at the end of the evolutionary loop was
supplementary trained for 008 =Ngen_Tr ,

0003 1=Nind_Tr_ , 300 2 =Nind_Tr_ .

The selected DCWNN provides a good approximation of the
normalised training data set. Its generalisation capabilities are
illustrated in Fig. 5, with respect to the testing data set.

Also, this neural model has a reduce order of complexity, as
suggested by the corresponding low-priority objective values:

5;0;0;4;1 65432 ===== fffff . The topology includes
one hidden neuron, connected with all neural inputs: two
connections are characterised by simple weights and the other
two connections have active ARMA synaptic filters. No
output filter is included in the selected neural architecture.
The structure also contains an activation ARMA filter for the
hidden neuron and a synaptic ARMA hidden filter for the
output neuron.

0 500 1000 1500 2000 2500 3000
125

126

127

128

129

130

131

132 Model validation - testing data set

time [x 10sec]

th
e

D
C

W
N

N
 o

ut
pu

t a
nd

 th
e

pl
an

t o
ut

pu
t

Fig. 5: Evaporator subsystem – model validation on the

testing data set (one step ahead prediction). Here the output of
the process is indicated with solid line and the DCWNN

output with dotted line.

6 CONCLUSIONS
The paper investigates the identification capabilities of new
dynamic neural networks. The presented approach improves
the computational efficiency of the neural topologies with
complex parameters, by providing the static architectures with

local internal dynamics. The resulted structures can perform
accurate approximations of dynamic nonlinearities and are
characterised by good generalisation capabilities.

The design procedure does not require any information about
the gradient of the objective functions. It supports a flexible
configuration of the neural topology, via a multiobjective
optimisation. The approach can be used only for off-line
identification, because it needs large computational resources.

REFERENCES

[1] T. Bäck, D. Fogel and Z. Michalewicz. Handbook of
Evolutionary Computation, Oxford University Press, UK,
(1997).

[2] L. Ferariu, and T. Marcu. ”Evolutionary Design of
Dynamic Neural Networks applied to System
Identification”, Proceedings of IFAC Congress b’02,
Barcelona, Spain, CD-ROM-2110, (2002).

[3] C. M. Fonseca and P. J. Fleming. “Multiobjective
Optimisation and Multiple Constraint Handling with
Evolutionary Algorithms – Part I: A Unified
Formulation”, IEEE Transactions on Systems, Man, and
Cybernetics – Part A, 28 (1), 26-37, (1998).

[4] B. Igelnik, M. Tabib-Azar and S. R. LeClair. “A Net with
Complex Weights”, IEEE Transactions on Neural
Networks, 12 (2), pp. 236-249, (2001).

[5] R. Isermann, S. Ernst and O. Nelles. „Identification with
Dynamic Neural Networks: Architectures, Comparisons,
Applications”, Preprints of IFAC Symposium on System
Identification, Fukuoka, Japan, 3, pp. 997-1022, (1997).

[6] K. F. Mann, K. S. Tang, S. Kwong and W. A. Halang.
Genetic Algorithms for Control and Signal Processing,
Springer, London, UK, (1997).

[7] T. Marcu, L. Ferariu and P. M. Frank. “Genetic Evolving
of Dynamic Neural Networks with Application to Process
Fault Diagnosis”, Proceedings of European Control
Conference, Karlsruhe, Germany, CD-ROM, F1046-1,
(1999).

[8] T. Marcu, L. Mirea, L. Ferariu, P. M. Frank.
“Miscellaneous neural networks applied to fault detection
and isolation of an evaporation station”, Proceedings of
4th IFAC Symposium on Fault Detection, Supervision and
Safety for Technical Processes SAFEPROCESS'2000,
Budapest, Hungary, 1, pp. 352 – 356, (2000).

[9] K. Rodriguez-Vazquez and P. J. Fleming. “A Genetic
Programming NARMAX Approach to Nonlinear System
Identification”, Proceedings of GALESIA’97, Sheffield,
UK, pp.409-413, (1997).

[10] H. Tamaki, H. Kita and S. Kobayashi. “Multiobjective
Optimisation by Genetic Algorithms: A Review”,
Proceedings of Conference on Evolutionary
Computation, Nagoya, Japan, pp. 517-522, (1996).

[11] P. Wasiewicz. “Description of sugar technology
process”, Prep. of the EC INCO-Copernicus Workshop
on Integration of Quantitative and Qualitative Fault
Diagnosis Methods within the Framework of Industrial
Application, Kazimierz, Poland, pp.17-23, (1998).

	Session Index
	Author Index

