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2.1 TheMod€

Abstract The model variables are the extracellular limiting nutrient con-

_ ) _ centration (denoted), the intra-cellular supply of limiting
We consider the control problem for a class of biological MQyytrient per unit of biomass (denoted cell qug)aand the

dels of photo-synthetic algae growth in the chemostat. Theggmass (denoted). The functionp(.), depending on the ex-
models are “variable yield” models, on the contrary to classicghcellular limiting nutrient concentratios is the uptake rate

bioprocess models that are “constant yield” ones. We develgpiie the functiony(.), depending on the cell quotg is the
then a nonlinear controller for a wide class of qualitativelyrowth rate of the algae.

known variable yield models and theoretically prove the global
asymptotic stability of the resulting set point for the closed
loop system. Finally some simulations fBunaliella terti-
olectagrowth, with realistic parameters, illustrate this proof.
Moreover, the controller appears to be robust to noise and algae
concentration dynamics does not depend upon feeding nutrient
concentration. It is well known in biology that the most important problem in
modelling these kind of biological phenomena is to give some
reasonable expressions for the functigg andp(.). As in
[13], in order to relax this modelling difficulties, we only sup-
Since Monod did the first model for microorganisms growtpose qualitative hypotheses about these functions.

in continuous controlled laboratory devices [12], so-calleg|yp0the$i s1:

chemostats, it appears that, especially for unicellular photo(0> — 0 andp(.) is aC', increasing, bounded function ef

synthetic algae growth, the “Monod” like models do not fit s (.)is aCl, non-negative, increasing, bounded function of
well experimental data. Later, Droop proposed a new one [ ere existi'%] < 0 such tﬁatu(q ) = 0

taking into account nutrient supply accumulation in the cells,
using two steps to model the unicellular algae growth on odde qualitative hypotheses (H1) mean that: if there is some
limiting nutrient: first ingestion of the nutrient in the cell toextracellular nutrient, then the cell takes it up to make some
make some cell supply, then metabolisation of these suppliggpplies. The parametey, is the minimum cell quota: when

by the cell to grow. These Droop like models are often calledrops belowy,, there is insufficient internal nutrient to sustain
“variable yield models” [15], on the contrary to Monod likethe cell.

models that are of “constant yield” type.

$=D(sin — ) — p(s)z

q=p(s) —n(q)q 1)
& = p(q)r — Dz

1 Introduction

Throughout the paper we will only consider initial conditions
In a previous work, we exhibited a new nonlinear feedbadRr the state variables belonging to the set= {s > 0,¢ >
control for Monod like models, that needs only qualitative hyg,.,z > 0} which only has biological sense. Note that the
potheses on the microorganisms’ growth rates [9, 10]. Thidosure ofQ2 is invariant by system (1).

contribution’s subject is the study of these kind of non-line

h hibi form of thi h
feedback control for variable yield models of algae growth. order to exhibit a better form of this system, we use a change

of coordinates, so-called “first integral of Burmaster” [3, 13],
This paper is organized as follows: we first present the genera= s + gz which represents the total amount of intra-cellular
variable yield model for unicellular algae growth in chemosta@nd extracellular limiting nutrient in the chemostat. Then we
and we make some qualitative hypotheses about the algae’s @iptain the following system, which is easier to deal with:

take and growth rates. Then we propose the nonlinear con-

troller and prove the global asymptotic stability of the closed 2= D(8in — 2)

loop resulting system. Finally some simulations illustrate our $=D(sin — ) — p(s)z (2)
approach. &= p(=2)x — Dz



2.2 Behavior of the open loop model 3.2 Nonlinear Control Design

It is well known that the asymptotic behavior of system (1Here we will use the outpug together with the inpuD to
is of two different types, depending on the valuelofcom- design a nonlinear controller for system (1). Let us denote by
pared tos;, [15, 8]: either there exists a positive equilibrium¢ the state vector.
point towards each forward positive orbits initiated(lrgoes, . ]
. - .Proposition 1:
either not and every forward orbit goes to the washout poi . . )
. : nder assumptions (H1) and (H2), the nonlinear control law:
corresponding to the disappearance of the algae from the che-
e. x = 0). i i . dm
mostat (.. x = 0). Here our goal is _to control the r_nodel in D(.) = vy = vu(q)a withy > 4™ 3)
order to prevent the washout of the biomass and to impose the Sin
convergence of the state Fowa_rds a positive eqU|_I|br|um po”grobally stabilizes system (1) towards the single “positive”
Spemflcally,'v.ve.want to drive biomass concentrgtlon towar,dse?]uilibrium ¢*, determined by the value of the gain
chosen equilibrium. Moreover, chemostat devices sometimes B o . _
suffers from uncertainty on the feeding substrate concentratiBf “positive” equilibrium point we mean that each coordinate
sin, that can destabilize the system so that the algae are washgde pointis positive. For instance the washout point that cor-
out of the chemostat. Then it is important to guarantee that tisponds to the disappearance of algae from the chemiostat (
biomass goes towards its chosen equilibrium value, indep@®responding te = 0 ands = s,,) is an equilibrium point of

dently froms;,, variations. (1), but not a “positive” one. Moreover, note that with expres-
sion (3), the inpuD(.) is non-negative and therefore fulfills its
3 Nonlinear Control Design constraint.
Proof:
3.1 Statement of the control framework The control law (3) leads to the following closed loop system:
Applied control of biological systems generally differs from i =D()(sin — 2)
the theoretical framework of control where it is generally as- i=D()(L-2) 4)
sumed that the model is perfectly known and the state variables i = D(.)(;m —5) —p(s)z

are outputs of the system [7]. To control biological systems, we
have to take into account first that the model may be not fully We first want to show that for the closed loop system (4)

only quali_tatively known, and second, that the c_)utputs are n éth variables: andz converge (asymptotically) te;, and
necessarily the full state and may be some qualitatively (badly respectively. Therefore we need to prove that the quantity
known nonlinear functions of the state variables. Moreovet.

inputs are considered free in classical control theory, wherehsD(7)dr diverges towards infinity astends to infinity. Let
they usually fulfill some constrainte @. positivity) in biologi- US integrate the two first equations of this system, we have:

cal systems. { 2(t) = sin + (2(0) = sin)e Jo DT

z(t) =1 + (2(0) — L)e= o P(DIr (5)

Due to the high variability of biological phenomena, we con-
sider here a qualitatively known model, qualitative outputs and
constrained input and therefore we can not apply classical gince D

nearisation technigues (sea. [5]). (.) is non-negative, it is straightforward that:

e~ Jo D(M)d7 ¢ [0, 1]. Then, we have:

However, we still need to define the manipulated variables,

i.e. the inputs, and the online available variables, the S { max(sn, 2(0)) > z(t) > min(sin, 2(0)) >0 ()
outputs. In chemostat-like systems, it is well known that the — = | max(,z(0)) > (t) > min(3,2(0)) > 0
(non-negative) dilution rat® is easy to manipulate, thus we

use it as the (constrained) input of the system. Now we defipg; us suppose thdtm,_. . . [ D(r)dr is bounded. Thus
the outputs; here since we aim at applying results in a sam@ecessary condition is thhtﬂota{»oo D(t) = 0. From (6),

way as in [10], and since this approach was based on gasegiize, is positive and: lower bounded by a positive constant,
measurements related to biomass growth, we suppose thatiPHﬁpIies at least that:

chemostat is instrumented with sensors that can measure, either

the fixed carbon or the produced oxygen by the algae photo- lim ¢(t) = ¢m

synthesis. Note that both of these quantities are proportional e

to the cells’ growth rate and hence we assume that the out@iceq(¢) is a time-Lipschitz functionj(is bounded) and using
y = p(g)z is available online from the plant. Note thats of Barbalat’s lemma [7], we show:

gualitatively known state function output type. Let us summa-

rize these assumptions in the following hypothesis. t_léinooq. =0
Hypothesis 2: that leads tolim;_. , o, p(s(t)) = 0 and thus:
D > 0is a constrained input of system (1)

y = p(q) is an output of the system (1) lim s(t)=0

t—+4o0



Note that, these points, correspondingte ¢, ands = 0, are the setQ. Thenlim;_ 4 fot D(r)dr cannot be bounded, and
equilibria for all values of the variable. Sincez is positively sinceD(.) > 0, we have:
lower bounded, they are defined, for all> min( %, z(0)), by:

lim D(r)dr =+00 O 9)
§u = (5 =0,9= vax)T t=tee Jo ( )

Now we want to show that these equilibria are not reachaligte that equation (9) together with (5) implies that:
from initial conditions belonging to the st To achieve this

purpose, let us compute the Jacobian matrix at these equilib- im0 2(t) = Sin (10)
rium points, in the(s, ¢, 2) variables, we have: limy .y oo z(t) = =
/ ! .
(7 ((()))x T (,qm)xsm 8 Then all forward trajectories of system (4), converges towards
J (&) = p(() ) pACN 0 () thesett = { € 0,z = s,z = 1,5 < sin}. Nowlet us
14 (gm)a(5 — ) consider the “reduced” system (4), in under the constraint

It is straightforward that one of the eigenvalue is zero, with th%e £, we have:
associated eigenvect@r, 0, 1), which corresponds to the fact ) p(s)
that we have a continuum of equilibria that does not depend § = p(v(sin — 8))(Sin — 8) — e (11)

upon the variable:. Note that the only non zero term of the
last line is different from zero, otherwise our proof is over (se&hich is equivalent to (seeg[6]):

equation (5)).
Now let us wonder about the two other eigenvalues. These are §=7(sin = 8)u(y(sin = 5)) = pls) (12)
the same eigenvalues as the following maiBix
Sinces €]0, sin[, v > L=, andy(.) is an increasing function,
00z YR (qm)TSin it is straightforward tha})"(% $) = Y(sin — $)p(y(sin — 8)) i
B= < 0'(0) . ) @) a decreasing function of on |0, s;,[. Note thatg(~, s) is an
increasing function ofy on R}. This situation corresponds to
Remind that since (H1) holdy’(0) and z/(¢.,) are positive, figure 1, which shows that there exists a single positive equi-
then the trace of matri® is obviously negative. Now we com- librium s* for (12) which is globally asymptotically stable on
pute the determinant, we have: 10, s;»[. Moreover, note that* increases as increases.

det B = p'(0)xit (¢ ) (@m — YSin) a(sy)
y very large

This determinant is negative sinee > Z=, then there ex- 0®
ist a positive real eigenvalue and unfortunately a negative real ssv
one. Now we focus only on the stable eigenspace, since the
equilibrium points¢,, can only be reached from this manifold.
Hence, we want to show that the stable eigenvectqr, atoes
not point from the sef towards the poing,, which will prove
that¢,, can not be reached frof.

g(sy)
y large

g(sy)
y medium

Note that the matrix3 is off-diagonal positive and irreducible.
Then we apply Perron-Frobenius theorem, in fact the corollary
3.2 from chapter 4 in [14], what shows that the positive eigen;
vectors are associated only with the largest eigenvalue (here
the positive one). Then the stable eigenvector of mafiis ! \ ‘ :
non-positive. O amal ymedum ylge yreylage S

From matrix B, since none of its components is zero, it is

straightforward that the stable eigenvector has NO z€ro CORyyre 1: Existence, unicity and stability of for system (12)
ponent and then both components have different signs. Note

tnhear:t;hgfs ;gosgi?gi?ir?\;gc;g?oﬁ?: stcctgiea:Nr?l;g ():omPRén it is straightforward that system (4) has a single, positive,
9 o _equilibrium denoted* = (sin, =, s*)". Moreover, the choice

Then, the stable eigenvector of the Jacobian matrix has no et . . [ ;
et . . ~0f the gain~y allows to choose the desired equilibrium point

components and its first two components are of different S|gr?9§, €10, sun]

which proves that the tangent vector,£at, of the stable ma- ol

nifold does not point from the sé€t towards the poinf,, and Now let us come back to system (4) and considerstlegua-

therefore that the equilibrium poings, are not reachable from tion, injecting the solutions(t¢) andz(t) initiated atz(0) and



x(0). Then, for each couple of initial condition§0), x(0), we the simulations):
obtain the following non-autonomous system:

§=D(s,2(t),x(t)) (sin — 8) — p(s)z(t) (1) Prm k| . y

Remark that equation (9) implies that for each couple of inj L5 0.06 | 1.6 0.15 0.1
tial conditionsz(0), 2(0), the non-autonomous system (13) i
“asymptotically autonomous” (in the sense of [11]) with limit
equation (11). Applying corollary 4.3 from [16], we conclude 10~ °ug.c™".d™" | pgL=! | d=' [ 107 %ug.c! | 107 %L
that for each couple of initial conditiong0), z(0), each for-
ward trajectory of system (13) converges towards the globally

asymptotically stable equilibrium poist of the limit equation On figure 2, the parametey,, equals20 ;g.L~*, while on fig-
(11). Thus, for each initial state vectgf0), the forward orbit ure 4s;, varies from5 to 40 ug.L™'. On the figures, extra-
of system (4) converges towards the pdjiit= (si,, %7 s*)T.  cellular nutrient concentration axis is graduatedgaL ~*, par-

Then we conclude th@t* is g|0ba||y attractive oR3 _ . ticular nutrient axis img.Lil, biomass axis iﬂOGCGH.L_l and

_ _ time axis in days.
Now let us compute the Jacobian matrix of the closed loop sys-

tem (4) around the equilibrium poigt: in the (z, 2, s)” coor- We show on figure 2 some numerical simulations of the closed
dinates. Remark that this matrix is lower triangular, then wieop plant. From biologists’ point of view, the control law (3)

only care about the diagonal terms of this matsix(ll stand drives the state variables towards the desired equilibrium de-
for any possible term). We have: termined by the value of the feedback gain Note that the

behavior of the closed loop plant is quite simple and agrees
with the predicted theoretical behavior.

—D(&*) 0 0
7= o -pe 0
° ° _D(g*) _ %(s*yy*l 10 . 10.85 : 1
Sincep(.) is an increasing function is positive andD(£*) = o | 075

©
J

w(v(sin — s*)) is positive, it is straightforward that* is lo-
cally stable for systenh. Since¢* is globally attractive too, we
conclude thatt* is a positive, globally asymptotically stable
equilibrium point for the closed loop system (4).
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Remark 1: Remind that the demonstration is not based on any
analytical expression for the “biological” functiong(.) and

p(.) what s particularly important regarding to the difficulty of I | 0
modelling and identification of these functions.
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Remark 2: It is important to note that the asymptotic behavior ‘ o ‘ . ‘
of biomass concentrationdoes not depend on parametey, . 0 s oo > oo ; 10
Then, even for a time varying parametey, (t), biomass con-
centrationz will asymptotically converge toward7%, provided

that for all time~ > s-q"'(})- Figure 2: Simulation of the closed loop system; constant

©

4 Simulations On figure 3, we show some noisy simulations: we put a 15%

white noise on the outputto check the controller robustness.
We consider as an examfinaliella tertiolectagrowth; this Results are good, especially for biomass concentration that fil-
is a chlorophilian phytoplanktonic green microalga. Then agers almost all the noise.

cording to [1], the uptake and growth rates are (for all Smu'ﬁ\?loreover, to illustrate the fact that time variations of influent

tions): substrate concentration,, do not change the behavior of the
biomass concentration, we put a piecewise constant time-
p(s) = I;OL:S and u(q) = max(0, jim (1 — qﬂ)) dependent;,,; the results are shown on figure 4. We check
q that, despite fast and large,, variations, the behavior of the
variablex remains the same than with fixeg,: it converges
Liters are denoted,, micro grams of nitrogepg, number of towards its equilibriumz* = L: in both of these simulations

cellsc and daysl. The parameters are according to [1] (for allve had chosen = 0.1, hencer* = 10.



10.2

11

Extracellular nutrient S
.
=QX
Biomass X
®

Particular nutrient N

10
Time

Figure 3: Simulation; constast,,; 15% white noise oy
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Figure 4: Simulation of the closed loop system; varysng(t)

Finally, from controllers’ point of view, note that the only re-

quired knowledge from the plant for control is the outpuaind
the feedback gain. It ensures (provided that > m)
a very simple behavior for biomass concentratiotihat goes
asymptotically toward% like a first order with moving gain,
independently frons;,,(¢), even for quick and/or large varia-

tions. Of course, since model (1) is not controllable, in the[6]

classical sense [7], the other variables change in timeras
mains at equilibrium.

5 Conclusions

suitable for a wide class of variable yield models for microor-
ganisms growth in controlled laboratory devices as bioreactors.
Some simulations with realistic parametersamaliella terti-
olectagrowth had been performed and had shown the relevance
of our approach. Moreover, the controller appears to be quite
robust to noisy output.

A further step in this study could be to manipulate the feeding
substrate concentratian, (¢) in order to reconstruct a dynam-
ical extracellular concentration signaf(¢) whereas we keep
biomass concentration at a constant level. It should be interest-
ing for instance in the experimental laboratory study of algae
meeting various limiting substrate concentrations as in the sea
(seee.qg.[2]).

Of course, this approach is, up to now, mainly theoretical and
needs experimental tests to prove its interest in real life phe-
nomena.
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