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Abstract

We consider the control problem for a class of biological mo-
dels of photo-synthetic algae growth in the chemostat. These
models are “variable yield” models, on the contrary to classical
bioprocess models that are “constant yield” ones. We develop
then a nonlinear controller for a wide class of qualitatively
known variable yield models and theoretically prove the global
asymptotic stability of the resulting set point for the closed
loop system. Finally some simulations forDunaliella terti-
olectagrowth, with realistic parameters, illustrate this proof.
Moreover, the controller appears to be robust to noise and algae
concentration dynamics does not depend upon feeding nutrient
concentration.

1 Introduction

Since Monod did the first model for microorganisms growth
in continuous controlled laboratory devices [12], so-called
chemostats, it appears that, especially for unicellular photo-
synthetic algae growth, the “Monod” like models do not fit so
well experimental data. Later, Droop proposed a new one [4],
taking into account nutrient supply accumulation in the cells,
using two steps to model the unicellular algae growth on one
limiting nutrient: first ingestion of the nutrient in the cell to
make some cell supply, then metabolisation of these supplies
by the cell to grow. These Droop like models are often called
“variable yield models” [15], on the contrary to Monod like
models that are of “constant yield” type.

In a previous work, we exhibited a new nonlinear feedback
control for Monod like models, that needs only qualitative hy-
potheses on the microorganisms’ growth rates [9, 10]. This
contribution’s subject is the study of these kind of non-linear
feedback control for variable yield models of algae growth.

This paper is organized as follows: we first present the general
variable yield model for unicellular algae growth in chemostats
and we make some qualitative hypotheses about the algae’s up-
take and growth rates. Then we propose the nonlinear con-
troller and prove the global asymptotic stability of the closed
loop resulting system. Finally some simulations illustrate our
approach.

2 The Variable Yield Model

2.1 The Model

The model variables are the extracellular limiting nutrient con-
centration (denoteds), the intra-cellular supply of limiting
nutrient per unit of biomass (denoted cell quotaq) and the
biomass (denotedx). The function�(:), depending on the ex-
tracellular limiting nutrient concentrations, is the uptake rate
while the function�(:), depending on the cell quotaq, is the
growth rate of the algae.

8<
:

_s = D(sin � s)� �(s)x
_q = �(s)� �(q)q
_x = �(q)x �Dx

(1)

It is well known in biology that the most important problem in
modelling these kind of biological phenomena is to give some
reasonable expressions for the functions�(:) and�(:). As in
[13], in order to relax this modelling difficulties, we only sup-
pose qualitative hypotheses about these functions.

Hypothesis 1:
�(0) = 0 and�(:) is aC1, increasing, bounded function ofs
�(:) is aC1, non-negative, increasing, bounded function ofq

there existsqm > 0 such that�(qm) = 0

The qualitative hypotheses (H1) mean that: if there is some
extracellular nutrient, then the cell takes it up to make some
supplies. The parameterqm is the minimum cell quota: whenq
drops belowqm there is insufficient internal nutrient to sustain
the cell.

Throughout the paper we will only consider initial conditions
for the state variables belonging to the set
 = fs > 0; q >

qm; x > 0g which only has biological sense. Note that the
closure of
 is invariant by system (1).

In order to exhibit a better form of this system, we use a change
of coordinates, so-called “first integral of Burmaster” [3, 13],
z = s + qx which represents the total amount of intra-cellular
and extracellular limiting nutrient in the chemostat. Then we
obtain the following system, which is easier to deal with:

8<
:

_z = D(sin � z)
_s = D(sin � s)� �(s)x
_x = �( z�s

x
)x�Dx

(2)



2.2 Behavior of the open loop model

It is well known that the asymptotic behavior of system (1)
is of two different types, depending on the value ofD com-
pared tosin [15, 8]: either there exists a positive equilibrium
point towards each forward positive orbits initiated in
 goes,
either not and every forward orbit goes to the washout point
corresponding to the disappearance of the algae from the che-
mostat (i.e. x = 0). Here our goal is to control the model in
order to prevent the washout of the biomass and to impose the
convergence of the state towards a positive equilibrium point.
Specifically, we want to drive biomass concentration towards a
chosen equilibrium. Moreover, chemostat devices sometimes
suffers from uncertainty on the feeding substrate concentration
sin, that can destabilize the system so that the algae are washed
out of the chemostat. Then it is important to guarantee that the
biomass goes towards its chosen equilibrium value, indepen-
dently fromsin variations.

3 Nonlinear Control Design

3.1 Statement of the control framework

Applied control of biological systems generally differs from
the theoretical framework of control where it is generally as-
sumed that the model is perfectly known and the state variables
are outputs of the system [7]. To control biological systems, we
have to take into account first that the model may be not fully or
only qualitatively known, and second, that the outputs are not
necessarily the full state and may be some qualitatively (badly)
known nonlinear functions of the state variables. Moreover,
inputs are considered free in classical control theory, whereas
they usually fulfill some constraints (e.g.positivity) in biologi-
cal systems.

Due to the high variability of biological phenomena, we con-
sider here a qualitatively known model, qualitative outputs and
constrained input and therefore we can not apply classical li-
nearisation techniques (seee.g.[5]).

However, we still need to define the manipulated variables,
i.e. the inputs, and the online available variables,i.e. the
outputs. In chemostat-like systems, it is well known that the
(non-negative) dilution rateD is easy to manipulate, thus we
use it as the (constrained) input of the system. Now we define
the outputs; here since we aim at applying results in a same
way as in [10], and since this approach was based on gaseous
measurements related to biomass growth, we suppose that our
chemostat is instrumented with sensors that can measure, either
the fixed carbon or the produced oxygen by the algae photo-
synthesis. Note that both of these quantities are proportional
to the cells’ growth rate and hence we assume that the output
y = �(q)x is available online from the plant. Note thaty is of
qualitatively known state function output type. Let us summa-
rize these assumptions in the following hypothesis.

Hypothesis 2:
D � 0 is a constrained input of system (1)
y = �(q)x is an output of the system (1)

3.2 Nonlinear Control Design

Here we will use the outputy together with the inputD to
design a nonlinear controller for system (1). Let us denote by
� the state vector.

Proposition 1:
Under assumptions (H1) and (H2), the nonlinear control law:

D(:) = 
y = 
�(q)x with 
 >
qm

sin
(3)

globally stabilizes system (1) towards the single “positive”
equilibrium�?, determined by the value of the gain
.

By “positive” equilibrium point we mean that each coordinate
of the point is positive. For instance the washout point that cor-
responds to the disappearance of algae from the chemostat (i.e.
corresponding tox = 0 ands = sin) is an equilibrium point of
(1), but not a “positive” one. Moreover, note that with expres-
sion (3), the inputD(:) is non-negative and therefore fulfills its
constraint.

Proof:
The control law (3) leads to the following closed loop system:8<

:
_z = D(:)(sin � z)
_x = D(:)( 1



� x)

_s = D(:)(sin � s)� �(s)x

(4)

We first want to show that for the closed loop system (4),
both variablesz andx converge (asymptotically) tos in and
1



respectively. Therefore we need to prove that the quantityR t
0 D(�)d� diverges towards infinity ast tends to infinity. Let

us integrate the two first equations of this system, we have:(
z(t) = sin + (z(0)� sin)e

�
R
t

0
D(�)d�

x(t) = 1


+ (x(0)� 1



)e�

R
t

0
D(�)d� (5)

Since D(:) is non-negative, it is straightforward that:
e�

R
t

0
D(�)d� 2 [0; 1]. Then, we have:

8t � 0

�
max(sin; z(0)) � z(t) � min(sin; z(0)) > 0
max( 1



; x(0)) � x(t) � min( 1



; x(0)) > 0

(6)

Let us suppose thatlimt!+1

R t
0 D(�)d� is bounded. Thus

a necessary condition is thatlimt!+1D(t) = 0. From (6),
since
 is positive andx lower bounded by a positive constant,
it implies at least that:

lim
t!+1

q(t) = qm

Sinceq(t) is a time-Lipschitz function (_q is bounded) and using
Barbalat’s lemma [7], we show:

lim
t!+1

_q = 0

that leads to:limt!+1 �(s(t)) = 0 and thus:

lim
t!+1

s(t) = 0



Note that, these points, corresponding toq = qm ands = 0, are
equilibria for all values of the variablex. Sincex is positively
lower bounded, they are defined, for allx > min( 1



; x(0)), by:

�u = (s = 0; q = qm; x)
T

Now we want to show that these equilibria are not reachable
from initial conditions belonging to the set
. To achieve this
purpose, let us compute the Jacobian matrix at these equilib-
rium points, in the(s; q; x)T variables, we have:

J (�u) =

0
@ ��0(0)x 
�0(qm)xsin 0

�0(0) ��0(qm)qm 0
0 
�0(qm)x( 1



� x) 0

1
A (7)

It is straightforward that one of the eigenvalue is zero, with the
associated eigenvector(0; 0; 1)T , which corresponds to the fact
that we have a continuum of equilibria that does not depend
upon the variablex. Note that the only non zero term of the
last line is different from zero, otherwise our proof is over (see
equation (5)).

Now let us wonder about the two other eigenvalues. These are
the same eigenvalues as the following matrixB:

B =

�
��0(0)x 
�0(qm)xsin
�0(0) ��0(qm)qm

�
(8)

Remind that since (H1) hold,�0(0) and�0(qm) are positive,
then the trace of matrixB is obviously negative. Now we com-
pute the determinant, we have:

detB = �0(0)x�0(qm)(qm � 
sin)

This determinant is negative since
 > qm
sin

, then there ex-
ist a positive real eigenvalue and unfortunately a negative real
one. Now we focus only on the stable eigenspace, since the
equilibrium points�u can only be reached from this manifold.
Hence, we want to show that the stable eigenvector, at�u, does
not point from the set
 towards the point�u, which will prove
that�u can not be reached from
.

Note that the matrixB is off-diagonal positive and irreducible.
Then we apply Perron-Frobenius theorem, in fact the corollary
3.2 from chapter 4 in [14], what shows that the positive eigen-
vectors are associated only with the largest eigenvalue (here
the positive one). Then the stable eigenvector of matrixB is
non-positive.

From matrixB, since none of its components is zero, it is
straightforward that the stable eigenvector has no zero com-
ponent and then both components have different signs. Note
that these components are the same as the two first compo-
nents of the stable eigenvector of the Jacobian matrixJ (�u).
Then, the stable eigenvector of the Jacobian matrix has no zero
components and its first two components are of different signs,
which proves that the tangent vector, at�u, of the stable ma-
nifold does not point from the set
 towards the point�u, and
therefore that the equilibrium points�u are not reachable from

the set
. Thenlimt!+1

R t
0
D(�)d� cannot be bounded, and

sinceD(:) � 0, we have:

lim
t!+1

Z t

0

D(�)d� = +1 � (9)

Note that equation (9) together with (5) implies that:�
limt!+1 z(t) = sin
limt!+1 x(t) = 1




(10)

Then all forward trajectories of system (4), converges towards
the setE = f� 2 
; z = sin; x = 1



; s < sing. Now let us

consider the “reduced” system (4), ins, under the constraint
� 2 E , we have:

_s = �(
(sin � s))(sin � s)�
�(s)



(11)

which is equivalent to (seee.g.[6]):

_s = 
(sin � s)�(
(sin � s))� �(s) (12)

Sinces 2]0; sin[, 
 > qm
sin

, and�(:) is an increasing function,
it is straightforward thatg(
; s) = 
(sin � s)�(
(sin � s)) is
a decreasing function ofs on ]0; sin[. Note thatg(
; s) is an
increasing function of
 onR+

� . This situation corresponds to
figure 1, which shows that there exists a single positive equi-
librium s? for (12) which is globally asymptotically stable on
]0; sin[. Moreover, note thats? increases as
 increases.

(s)ρ

g(s,γ)
(s)ρ

g(s,γ)

g(s,γ)

g(s,γ)
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g(s,γ)

γ small γ medium
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γ large
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γ very large
Sin S0 S* S* S* S*

Figure 1: Existence, unicity and stability ofs? for system (12)

Then it is straightforward that system (4) has a single, positive,
equilibrium denoted�? = (sin;

1


; s?)T . Moreover, the choice

of the gain
 allows to choose the desired equilibrium point
s? 2]0; sin[.

Now let us come back to system (4) and consider the_s equa-
tion, injecting the solutionsz(t) andx(t) initiated atz(0) and



x(0). Then, for each couple of initial conditionsz(0); x(0), we
obtain the following non-autonomous system:

_s = D
�
s; z(t); x(t)

�
(sin � s)� �(s)x(t) (13)

Remark that equation (9) implies that for each couple of ini-
tial conditionsz(0); x(0), the non-autonomous system (13) is
“asymptotically autonomous” (in the sense of [11]) with limit
equation (11). Applying corollary 4.3 from [16], we conclude
that for each couple of initial conditionsz(0); x(0), each for-
ward trajectory of system (13) converges towards the globally
asymptotically stable equilibrium points? of the limit equation
(11). Thus, for each initial state vector�(0), the forward orbit
of system (4) converges towards the point� ? = (sin;

1


; s?)T .

Then we conclude that�? is globally attractive onR3
+� .

Now let us compute the Jacobian matrix of the closed loop sys-
tem (4) around the equilibrium point� ? in the(z; x; s)T coor-
dinates. Remark that this matrix is lower triangular, then we
only care about the diagonal terms of this matrix (� will stand
for any possible term). We have:

J ? =

0
@ �D(�?) 0 0

0 �D(�?) 0

� � �D(�?)� @�
@s
(s?)
�1

1
A

Since�(:) is an increasing function,
 is positive andD(� ?) =
�(
(sin � s?)) is positive, it is straightforward that�? is lo-
cally stable for system4. Since�? is globally attractive too, we
conclude that�? is a positive, globally asymptotically stable
equilibrium point for the closed loop system (4).�

Remark 1: Remind that the demonstration is not based on any
analytical expression for the “biological” functions�(:) and
�(:) what is particularly important regarding to the difficulty of
modelling and identification of these functions.

Remark 2: It is important to note that the asymptotic behavior
of biomass concentrationx does not depend on parameters in.
Then, even for a time varying parametersin(t), biomass con-
centrationx will asymptotically converge towards1



, provided

that for all time
 > qm
sin(t)

.

4 Simulations

We consider as an exampleDunaliella tertiolectagrowth; this
is a chlorophilian phytoplanktonic green microalga. Then ac-
cording to [1], the uptake and growth rates are (for all simula-
tions):

�(s) =
�ms

k + s
and �(q) = max(0; �m(1�

qm

q
))

Liters are denotedL, micro grams of nitrogen�g, number of
cellsc and daysd. The parameters are according to [1] (for all

the simulations):

�m k �m qm 


1:5 0:06 1:6 0:15 0:1

10�6�g.c�1:d�1 �g.L�1 d�1 10�6�g.c�1 10�6L.c�1

On figure 2, the parametersin equals20 �g.L�1, while on fig-
ure 4sin varies from5 to 40 �g.L�1. On the figures, extra-
cellular nutrient concentration axis is graduated in�g.L�1, par-
ticular nutrient axis in�g.L�1, biomass axis in106cell.L�1 and
time axis in days.

We show on figure 2 some numerical simulations of the closed
loop plant. From biologists’ point of view, the control law (3)
drives the state variables towards the desired equilibrium de-
termined by the value of the feedback gain
. Note that the
behavior of the closed loop plant is quite simple and agrees
with the predicted theoretical behavior.
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Figure 2: Simulation of the closed loop system; constants in

On figure 3, we show some noisy simulations: we put a 15%
white noise on the outputy to check the controller robustness.
Results are good, especially for biomass concentration that fil-
ters almost all the noise.

Moreover, to illustrate the fact that time variations of influent
substrate concentrationsin do not change the behavior of the
biomass concentrationx, we put a piecewise constant time-
dependentsin; the results are shown on figure 4. We check
that, despite fast and largesin variations, the behavior of the
variablex remains the same than with fixedsin: it converges
towards its equilibriumx? = 1



: in both of these simulations

we had chosen
 = 0:1, hencex? = 10.
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Figure 3: Simulation; constantsin; 15% white noise ony
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Figure 4: Simulation of the closed loop system; varyings in(t)

Finally, from controllers’ point of view, note that the only re-
quired knowledge from the plant for control is the outputy and
the feedback gain
. It ensures (provided that
 > qm

mint(sin(t))
)

a very simple behavior for biomass concentrationx that goes
asymptotically towards1



like a first order with moving gain,

independently fromsin(t), even for quick and/or large varia-
tions. Of course, since model (1) is not controllable, in the
classical sense [7], the other variables change in time asx re-
mains at equilibrium.

5 Conclusions

In this contribution, we have proposed a nonlinear controller
able to globally stabilize algae growth biological models in the
chemostat. The hypothesis assumed on the model are of qual-
itative and of structural type, therefore our approach would be

suitable for a wide class of variable yield models for microor-
ganisms growth in controlled laboratory devices as bioreactors.
Some simulations with realistic parameters forDunaliella terti-
olectagrowth had been performed and had shown the relevance
of our approach. Moreover, the controller appears to be quite
robust to noisy output.

A further step in this study could be to manipulate the feeding
substrate concentrationsin(t) in order to reconstruct a dynam-
ical extracellular concentration signals?(t) whereas we keep
biomass concentration at a constant level. It should be interest-
ing for instance in the experimental laboratory study of algae
meeting various limiting substrate concentrations as in the sea
(seee.g.[2]).

Of course, this approach is, up to now, mainly theoretical and
needs experimental tests to prove its interest in real life phe-
nomena.
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