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Abstract: State observers provide estimates of non-measured variables based
on a mathematical model of the process and some available hardware sensor
signals. On the one hand, exponential observers, such as Luenberger observers
or Kalman filters, have an adjustable rate of convergence, but strongly rely on
the accuracy of the process model. On the other hand, asymptotic observers use
a state transformation in order to avoid using the (usually uncertain) kinetic
model, but have a rate of convergence imposed by the process dilution rate.
In an attempt to combine the advantage of both techniques, a hybrid observer
is developed, which estimates a level of confidence in the process model and,
accordingly, evolves between the two above-mentioned limit cases (model perfectly
known or kinetic model unknown). In particular, attention is focused on a hybrid
"Luenberger-asymptotic" observer, for which a rigorous stability/convergence
analysis is possible. The efficiency and usefulness of the proposed observer is
illustrated with an application example.
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INTRODUCTION

Bioprocess modelling, monitoring and control are
important developments in order to ensure opti-
mal operation and product quality. As the bio-
process becomes more complex (in terms of re-
actor design, biocatalysts, products...) more in-
formation about the dynamics of the main con-
stituents is required. Whereas sensors for process
variables such as dissolved oxygen, pH and tem-
perature are widespread, key biological state vari-
ables such as biomass and products of interest,

usually require more sophisticated measurement
devices, which can have several drawbacks, e.g.
sterilisation, discrete-time (and often rare) sam-
ples, relatively long processing (analysis) time,
hardware and maintenance costs, degradation of
reactor hydrodynamics. A solution to these latter
problems can be found through the design of soft-
ware sensors, which combine some available hard-
ware sensors signals and a mathematical model,
in order to provide time-continuous estimates of
non-measured variables on-line. The estimation
algorithm is called a state observer.



Several estimation techniques considering the
non-linear models involved in bioprocesses have
been proposed in the literature. Usually, state
observers are classified as exponential or asymp-
totic observers (Bastin and Dochain 1990). The
former class of algorithms have an adjustable rate
of convergence towards the true state, which is
defined by one or several tuning parameters. The
main drawback of exponential observers is that
their efficiency strongly rely on the model quality.
The extended Kalman filter, the extended Luen-
berger observer, and the high gain observer belong
to this class. On the other hand, asymptotic ob-
servers (Bastin and Dochain 1990) do not require
any knowledge about the kinetic model, which is
most of the time difficult to identify with good
accuracy. However, the price to pay is that the
rate of convergence is completely determined by
the experimental conditions (namely the dilution
rate). This may lead to very slow convergence in
the case of low dilution rate or no converge at all
in the case of batch cultures.

In order to combine the advantages of exponential
observers (i.e. fast convergence with an accurate
model) and asymptotic observers (i.e. convergence
without any knowledge about the kinetic model),
hybrid observers have recently been developed.
The principle of these observers is to evolve be-
tween two limit cases (corresponding rigorously
to an exponential and an asymptotic observer)
according to the quality of the kinetic model.
This evolution is ensured by the introduction
of a confidence parameter in the kinetic model
within the observer structure. Besides the sta-
bility and convergence analysis of the observer,
the tuning of the confidence parameter is a key
element in the development of hybrid observers. In
the extended Kalman-asyptotic hybrid observer
(Bogaerts 1999) and the full horizon-asymptotic
observer (Hulhoven and Bogaerts 2002) the evo-
lution of the observer structure is driven by a
confidence parameter which is evaluated on-line.
The main drawback of the extended Kalman-
asymptotic observer is the absence of proof of
stability. This was the motivation for subsequently
developing a full horizon-asymptotic observer,
whose stability could in principle be analysed
(this work has however not been completed so
far). In the hybrid high gain-asymptotic observer
(Lemesle and Gouzé 2001), the stability proper-
ties are well described. However, the structure
evolution is driven by an, a priori, fixed con-
fidence parameter. In this contribution, a new
hybrid observer is proposed, which allows both
aspects to be addressed at the same time, i.e. the
automatic tuning of a confidence parameter and
the development of a complete, rigorous, stabil-
ity /convergence analysis. This latter observer is
based on the extended Luenberger observer.

This paper is organized as follows. The next
section briefly introduces macroscopic reaction
schemes and the associated mass balance equa-
tions, which are used for bioprocess modelling.
Based on this modelling framework, Section 2 and
3 present the basic principles of the extended
Luenberger and the asymptotic observers. Sec-
tion 4 is devoted to the development of a new
hybrid extended Luenberger-asymptotic observer.
The performance of this observer is illustrated
with a simulation example in section 5. Finally,
Section 6 is devoted to some conclusions.

1. MACROSCOPIC REACTION SCHEMES
AND MASS BALANCES FOR BIOPROCESS
MODELLING

A bioprocess can be described by a reaction
scheme defined by a set of M reactions (Bastin
and Dochain 1990). Such a reaction scheme can
be expressed by:

Z (—Vi,k)fi 2y Z Vj,kfj ke [LM] (1)
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where

e v; 1, and v; , are the pseudo-stoichiometric coef-
ficients or yield coefficients;

e ¢, is the reaction rate;

e &, is the i'" component;

o Ry(Py) is the set of & which are reactants
(products) in the reaction k;

e M is the number of reactions.

Assuming that the bioprocess takes place in a
perfectly stirred bioreactor, the system dynamics
can be described by a model resulting from mass
balances for the macroscopic species involved in
the reaction scheme:

) _ Koe(r) — D) + F) - Q) (2)

dt
where
o £ € RV is the vector of concentrations;
e K € RVXM i5 the pseudo-stoichiometric coeffi-
cients matrix (M < N);
e ¢ € RM is the vector of reaction rates;
e D € R is the dilution rate;
o F ¢ RN is the vector of external feed rates;
o Q € RV is the vector of gaseous outflow rates.

In the sequel, the external feed rates and gaseous
outflow rates are put together in a vector

u(t) = F(t) — Q1) 3)

In the context of state observation the state vector
can be subdivided into two vectors:

BT =6 €] (4)
where &, € RI(L < N) contains the elements of
& which are measured :

§=C5=[I Orn-L]§ (5)



These measurements are in the form of discrete
samples y(tx) :

y(tr) = C(tr) + €(tr) (6)
€ being a white noise sequence normally distrib-
uted with Ele(tr)] = 0 and Ele(ty)el (tx)] =
0k,1Q(tr). C is the measurement matrix.

The other elements &, € RN=L) of ¢ are the
variables which are not measured.

2. THE EXTENDED LUENBERGER
OBSERVER

In the field of bioprocesses, the extended Luen-
berger observer can be described by (in the sequel,
the time dependence of the variables will no longer
be specified for simplicity of notations):

L1 Kyp(&) ~ D&y s+ @)y~ 8 (1)
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where ~; and v, are the tuning parameters of the
observer.

The objective of a state observer is to generate
an accurate estimation of the non-measured state
variables. In practice, there is an estimation error

(&) which is defined by the difference between the

true state (£) and the estimated state ().
§=£-¢

The convergence of an observer is related to the

dynamics of the estimation error, i.e. the rate at

which the estimation error tends towards zero.

The convergence properties of the extended Lu-

enberger observer can be analysed on the basis

of state estimation error equations which are ob-
tained by linearization along the estimated trajec-

tory : ~ ~
4[5 wo[¢]
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In order to ensure stability (and therefore the
exponential convergence) of this observer, the
tuning of y;and v, must be done in order to fulfill
the following sufficient conditions.

CLRIN; {A(é)}} <0 VE Vi
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Where C; and C5 are positive constants

R{A\i(.)} represents the real part of the matrix
eigenvalues.

Note that, rigorously, {C1, C2, C3} constitute a
sufficient condition of stability of the time-varying
linearized system (9), but in practice it is arduous
to ensure that conditions C2 and C3 will be
fulfilled for every value of the state estimate.

The main advantage of this observer is that it can
be tuned by an appropriate choice of v, and ~,.
However, its efficiency is strongly dependent on
the model quality including the kinetic model.

3. THE ASYMPTOTIC OBSERVER

The derivation of the asymptotic observer (Bastin
and Dochain 1990) is based on the following
conditions : ¢(&) is unknown, K is known, L =
dim(&y) = p = rank(K);

Hence, there always exists a partition

¢ =l &) (11)
so that the corresponding partition
K" =[K; K] (12)

involves a matrix K, € RP*M of full row rank.

Given such a partition of K, the following matrix
equation
AoKo + Kp = O0N—pm (13)
has always a unique solution 4y € RIN-P)xM Tt
is therefore possible to define an auxiliary vector
Z e RIN-P),
Z = Ao¢, + &, (14)
whose dynamics is independent of the kinetics

e(§) :

dz(t
% = —D(t)Z(t) + Aouq(t) +up(t)  (15)
where u? = [ul' u]l] is the partition of u corre-

sponding to the partition of £. It is possible to
write the vector Z as a linear combination of the
vectors £; and &, of measured and non-measured
states :

Z(t) = A1, (1) + A28,(t) (16)
where A; € RW-PIXL and Ay € ROV-P)Ix(N-L)

The asymptotic observer is finally defined by :

@ = —D(t)Z(t) + Ajur (t) + Asua(t)

E5(t) = AJ(Z(t) — A& (1))

where AJ is a left pseudo inverse of the matrix
As,

The dynamics of the state estimation error 52 =

&y — &, is given by:

déy(t) -
=2 = —D(t)&,(1) (17)



It is therefore obvious that the convergence of the
asymptotic observer is function of the experimen-
tal conditions (D). This observer may therefore
not converge (batch process) or converge very
slowly (low dilution rate).

4. THE HYBRID EXTENDED
LUENBERGER-ASYMPTOTIC OBSERVER

The principle of the hybrid extended Luenberger-
asymptotic observer is to use the advantages of the
extended Luenberger observer when the process
model is in good agreement with the real system
and to evolve towards the asymptotic observer
when the confidence in the kinetic model decre-
sases.

Let consider the auxiliary state variable Z(t)
defined in (16).

The process model (2) can be rewritten:

d
L1 _ Kiple) - Dyt
Z—f =—DZ + Ajuq + Asus (18)

£ = A;(Z - A151)

The extended Luenberger observer for this model
is:

L3

= = Kip(§) = D& +ur + () — &)
% = —DZ + Ajus + Asus +v5(E)(y — &)

éz = A;(ZA - A151)
(19)

In order to take account of the confidence in the
kinetic model and to allow the evolution of this
observer towards the asymptotic one according
to this degree of confidence the following output
injection is proposed:

& — 06 +(1-0)y (20)
Introducing this in the second and the third
equation of (19) yield

d'\ . “ ~ ~
% = K19(&) — D& +ui +71(E)(y — &)
‘fl_f = —DZ + Ajur + Asus + 74 (£)3(y — &)

o= AF(Z — A1(56, + (1 - 0)y))
(21)
Within this system the hybrid behavior of the ob-
server (i.e. its evolution between two limit cases)
is insured by the definition of §:

(y—£1)?

0= (e”
2

“D)1—e )41 (22)

where o“ corresponds to an a priori confidence in
the kinetic model.

Using this function to define §, the observer will
evolve between the extended Luenberger and the
asymptotic observer according to the estimation
error on &;. The two limit cases are § = 1 (cor-
responding rigorously to the extended Luenberger
observer) and ¢ = 0 (corresponding rigorously to
the asymptotic observer). Note that the introduc-
tion of a time constant 7 prevents the observer
from evolving directly to the asymptotic observer
in the first times, when the observation error on ¢,
is due to a bad estimation of the initial condition
rather than a bad kinetic model.

The linearized state estimation error of the hybrid
observer is described by:

. o
l3raenly] @
where
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The suPﬁment conditions to guarantee the stability
of this hybrid observer (O < ¢ < 1) are still given
by (10) but applied to the matrix A given in (23).

A practical way to tune this hybrid observer is to
tune the parameters v; and v, in the particular
case § = 1 (i.e, extended Luenberger observer)
and then to verify that the conditions (10) still
hold for O < § < 1.

5. EXAMPLE: A SIMULATED FED-BATCH
BACTERIAL CULTURE

Consider a fed-batch bacterial fermentation tak-
ing place in a perfectly stirred bioreactor. Con-
sider the following reaction scheme :

vsS 5 X (24)

where S denotes the substrate, X the biomass, and

)
vg the yield coefficient. X denotes an autocat-
alytic reaction. The mass balance corresponding
to this reaction scheme is :

X
X _ s, - DX

where S and X are the substrate and biomass
concentrations, D is the dilution rate, ¢ is the re-
action rate and S*" is the substrate concentration



in the feed medium. The reaction rate ¢ will be
described using the Monod law:
P S

The numerical values used for the simulation
are : vg = 0.5[g(10cell)Y]; K, = 12[gl71];
= 1AL S(0) = 12[gl7']; X(0) =
0.1410M [cell I71]; S™ = 20[gl~']; D = g—ft[h—l].

A simulation of this process is presented in figure
1.

In order to illustrate the performance of the
extended Luenberger-asymptotic observer these
simulation results are considered as the real
process, the substrate is asumed to be measured
on line and the biomass concentration is estimated
thanks to the following state observer (26)

ds . , .
o = VP DS+ DS 4y (y - 5)

dz . , .
e = —DZ+ A\DS™ + (3 - §) (26)

X = AF(Z - A1(55 + (1 - 0)y))

5.1 Tuning v, and vy,

As suggested in the last section, the hybrid ob-
server is first tuned for § = 1 (in the case of
the extended Luenberger observer). In order to fix
both eigenvalues of the matrix A describing the
linearized state estimation error at a value —%,
the tuning parameter are given by:
2
Y1 - 2D +vGgs + Gx (27)
Yz = A171 + A2

-1
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Fig. 1. Simulation of a fed-batch bacterial culture

o :discrete noisy samples (with the 99 % con-
fidence intervals),—continuous non measured
signal.

0p(X,S)

= YP\0) — ___Hm
where G5 = ~F55 ‘ ) = (Km+5)2X and
X=X, =8
Gy = 9p(§) _u,S
X = Tox ) T (Km+95)
X=X, 5=8

and

1
V2= (p —D(—vGs —Gx +D+m) +71GX)

1
vGx

*

Moreover, it is possible to proof that, in this case,
the condition (10) (with the matrix A defined by
(23)) are fulfilled for O <§ <1 (V¢).

Two cases are presented. First the use of the exact
model (figure 2), second, the use of a very bad
model (figure 3).

In this latter case, the comparison of the different
observers can be made on the basis of the root of
the mean square error of the biomass estimation.
These values are 0.3211 [10!cell 171] for the ex-
tended Luenberger observer, 0.4676 [10'!cell 171]
for the asymptotic observer and 0.1749 [10*!cell
171] for the hybrid extended Luenberger-
asymptotic observer.

6. CONCLUSION

The extended Luenberger observer is a well-known
exponential observer, which has the typical advan-
tages and drawbacks of this class of observers, i.e.
an adjustable rate of convergence determined by
an appropriate choice of the tuning parameters,
and actual performances completely dependent on
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Fig. 2. Estimation of the substrate and the bio-
mass concentrations (exact model).—: real
signal, -.-. extended Luenberger observer, .....:
asymptotic observer and — —: hybrid observer.
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Fig. 3. Estimation of the substrate and the bio-
mass concentrations (bad model). (modelling
error : fi,,.. = 0.7h™! and K, = 18¢l~!
in place of p,,,, = 1.4h~! and K, =
12gl=1).—: real signal, -.-. extended Luen-
berger observer, .....: asymptotic observer and
— — : hybrid observer.

the model quality. On the other hand, the asymp-
totic observer is able to provide state estimates
without any knowledge about the kinetic model.
However, its convergence rate is completely de-
fined by the process operating conditions (i.e.
dilution rate).

In this contribution, a hybrid observer is pro-
posed, which builds upon these two state esti-
mation algorithms. This hybrid observer evolves
between the extended Luenberger and the as-
ymptotic observer according to the kinetic model
quality. The evolution is driven by a parameter
which is function of the estimation error on the
measured variables. This parameter may vary be-
tween two limit values, 1 and 0, corresponding
rigorously to the extended Luenberger observer
(100% confidence in the kinetic model) and the
asymptotic observer (0% confidence in the kinetic
model). Moreover, sufficient stability conditions
are discussed.
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